Current Topics in Medicinal Chemistry - Online First
Description text for Online First listing goes here...
1 - 50 of 108 results
-
-
A Review of The Place of Adipose-Derived Stem Cells among Stem Cell Applications in Neurodegenerative Diseases
Authors: Gurkan Yigitturk and Turker CavusogluAvailable online: 31 October 2025More LessTreatment of neurodegenerative diseases aims to slow disease progression, alleviate symptoms, and improve life quality. Adipose-Derived Stem Cells (ADSCs) have emerged as a promising treatment for neurodegenerative diseases that can be easily obtained from adipose tissues. Their abundance, accessibility, and potential for multilinear differentiation make them an attractive candidate for regenerative medicine. ADSCs can release neurotrophic factors, modulate neuroinflammation, and potentially differentiate into neurons, giving hope for neuronal repair and replacement. Preclinical studies have shown the efficacy of several neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, and spinal cord injuries. ADSC has demonstrated the potential to improve functional results, promote neurogenesis, induce tissue integrity, and reduce neuron loss. Clinical trials are still underway, but evidence of the effectiveness of ADSC in neurodegeneration is still being developed. The first clinical studies focused on safety and feasibility and achieved promising results. Optimizing cell transmission, controlling tumor growth, standardizing treatment protocols and such challenges remain. Current research is aimed at addressing these obstacles and transforming ADSC therapy into a widespread clinical practice. This review focuses on the characteristics, problems, and future approaches of ADSC in the context of neurodegenerative diseases and therapeutic processes.
-
-
-
-
Role of Oxidative Stress in Human Neurodegenerative Pathologies: Lessons from the Drosophila Model
Available online: 29 October 2025More LessOxidative stress plays a critical role in many diseases, making it essential to study its impact on disease progression. However, clinical trials have many limitations and, in some cases, may not be possible at all. In this case, the development of in vivo models is highly anticipated. This is especially relevant for neurodegenerative diseases. Drosophila melanogaster models have a number of advantages over many other animal models, including the availability and cost-effectiveness of breeding, the accumulated knowledge of the Drosophila genome, and the ability to manipulate a large number of individuals. The latter allows for rapid screening and in-depth studies of potential therapeutic agents, including natural compounds with antioxidant activity. This review describes genetic models of such pathologies as Parkinson’s disease, Huntington’s disease, Alzheimer’s disease and hereditary spastic paraplegia created on Drosophila melanogaster. Studies conducted on such models are presented with an emphasis on the role of oxidative stress analysis. Oxidative stress is proven to be a link between neurodegenerative and metabolic diseases. In addition, studies on Drosophila melanogaster have been analyzed, in which the prospects of natural compounds as therapeutic agents for neurodegenerative and metabolic diseases have been demonstrated.
-
-
-
Expression of Glucocorticoid and Mineralocorticoid Receptors in the Offspring of Mothers Experiencing Chronic Stress during Pregnancy
Authors: Yanhua Bi, Hui Gao, Yahua Bi and Kadir UludagAvailable online: 24 October 2025More LessIntroductionGlucocorticoid receptors (GRs) and mineralocorticoid receptors (MRs) are distributed in the brain, and they are particularly dense in the hippocampus. The two receptors are implicated in stress-related psychiatric diseases, such as anxiety, autism spectrum disorders (ASD) and depression. This study aims to investigate the alterations in neurological behaviour and the expression of GRs and MRs in male offspring from prenatal stress-exposed dams that were subjected to chronic stress.
MethodsIn our study, we conducted the elevated plus maze (EPM) test on adult offspring of pregnant mice exposed to chronic stress, as well as on mice in the control group, to examine their neurological behaviors. Expression levels of GRs, MRs, and interleukin 6 (IL-6) were detected by Real-Time Quantitative Reverse Transcription Polymerase Chain Reaction (qRT PCR). After euthanizing the adult mice from both groups, we dissected their cortex and hippocampus for immunofluorescence staining.
ResultsWe observed an increase in the IL-6 mRNA content in the cerebral cortex of male offspring from the stress group, which was accompanied by the activation of microglial cells. Additionally, the relative mRNA expression levels of GRs and MRs in the hippocampus of male offspring from the stress group were found to be decreased. As a result, adult offspring from the stress group exhibited anxiety-like behavior.
DiscussionThe observed reduction in hippocampal GR and MR expression, alongside increased cortical IL-6 and anxiety-like behavior in male offspring, suggests that prenatal stress disrupts neuroendocrine and inflammatory pathways, supporting previous findings on stress-induced neurodevelopmental vulnerability, although further studies are needed to address sex differences, long-term behavioral outcomes, and causal mechanisms.
ConclusionOur study indicates that chronic prenatal stress induces anxiety like behaviour in offspring and decreases the expression levels of GRs and MRs.
-
-
-
Zingerone Induces Apoptosis and Ferroptosis in Prostate Cancer DU145 Cells
Available online: 16 October 2025More LessIntroductionProstate cancer is among the most prominent malignant tumors in the male population, characterized by growing morbidity, a high fatality rate, and currently limited therapeutic options, necessitating the urgent development of novel clinical medications. The objective of the current study was to examine the therapeutic potential of zingerone in prostate cancer cells.
MethodsIn this study, we investigated the underlying mechanism by which zingerone exerts its anticancer effects in prostate cancer cells. We conducted various in vitro and in silico experiments to determine the therapeutic efficacy and mechanism of action of zingerone.
ResultsCytotoxicity analysis of zingerone revealed its substantial cytotoxic impact and ability to elevate lactose dehydrogenase levels in DU145 cells. Using the MTT assay, we determined that a concentration of 24.84 μM zingerone in DU145 cells grown for 24 h resulted in an IC50 value. Zingerone effectively induced apoptosis by increasing the levels of cytochrome c and caspase in DU145 cells. Regarding the identification of signs of ferroptosis, evidence has been shown for the presence of heightened mitochondrial ROS, disrupted mitochondrial membrane potential, increased levels of glutathione (GSH) and malondialdehyde (MDA), and reduced expression of SCL7A11 and GPX4.
DiscussionImportantly, our study confirms that zingerone triggered both apoptosis and ferroptosis in DU145 cells by downregulating SLC7A11 and GPX4 expression.
ConclusionThis study provides evidence that makes zingerone a potent therapeutic agent for prostate cancer.
-
-
-
Ethyl Acetate Extract from Wenxia Formula (WFEA) Attenuates Immunosuppression in Lung Cancer by Inhibiting Treg Differentiation via Blockade of TGF-Β/Smad Signaling
Authors: Meng Wang, Xiangyu Han, Hui Li, Bin Zheng, Dongdong Fang and Shulong JiangAvailable online: 16 October 2025More LessIntroductionThe ethyl acetate extract of Wenxia Formula (WFEA) is the most effective antitumor component of the Wenxia formula. Its key active components, emodin and quercetin, exhibit unique advantages in targeting TGF-β1 and regulating the function of Tregs. This study explored the mechanism of WFEA in enhancing the immune environment in lung cancer by influencing immune cell balance and the level of cytokines.
Materials and MethodsLewis lung cancer xenograft mouse models were established. WFEA was administered at low (100 mg/kg), medium (200 mg/kg), and high (400 mg/kg) doses, while a cisplatin (DDP) group served as the positive control. Tumor weight, spleen index, and serum cytokine levels (IL-10, TGF-β1) were measured. Flow cytometry, qPCR, and immunohistochemistry were employed to analyze the proportion of CD4+CD25+Foxp3+ Treg cells and Foxp3 expression in tumor and spleen tissues. The regulatory mechanism of WFEA on the TGF-β/Smads signaling pathway was investigated via combined intervention with the TGF-β1 inhibitor halofuginone (HF), cell differentiation assays, and molecular docking analyses.
ResultsWFEA inhibited tumor growth in a dose-dependent manner, with the 400 mg/kg group exhibiting a 60% tumor inhibition rate comparable to that of DDP. The agent significantly increased the spleen index by 106.42% and reduced serum levels of IL-10 and TGF-β1. Mechanistically, WFEA downregulated Foxp3 mRNA and protein expression in both tumor and spleen tissues, leading to a decrease in the proportion of Treg cells. It blocked the TGF-β/Smads pathway by downregulating TGF-β1, upregulating Smad4/Smad7, and inhibiting Smad2/3 phosphorylation. Cell-based experiments confirmed that WFEA-containing serum inhibited the differentiation of CD4+ T cells into Tregs, an effect enhanced by TGF-β1 interference. Molecular docking analyses revealed that the active components emodin and quercetin directly bound to TGF-β1 with binding energies of -5.4 kcal/mol and -5.1 kcal/mol, respectively.
DiscussionWFEA could serve as a new adjunct treatment for lung cancer; however, further clinical trials are required to evaluate its long-term safety and effectiveness across various treatment stages.
ConclusionWFEA may regulate the growth of Tregs to modulate the immune microenvironment of the LLC model mice, indicating its potential as an anti-LLC agent.
-
-
-
Interleukin-10 Promotes Treg Formation and Tumorigenesis via Regulating Nrp-1/PDX1/FoxP3 Axis: Insights from Integrative Data Analysis
Authors: Shimin Wang, Yuanbo Hu, Carl K. Edwards III, Yimin Guo, Hai Qin and Bicheng JinAvailable online: 10 October 2025More LessIntroductionThis study aimed to explore the mechanisms by which interleukin-10 (IL-10) influences tumorigenesis through T regulatory cells (Treg) regulation.
BackgroundEnvironmental factors, such as IL-10, significantly shape the immune microenvironment and tumor progression, yet the regulatory pathways remain unclear.
Objective1) To elucidate the regulatory mechanism of IL-10 on Treg cells through in vitro assays; 2) To elaborate whether Nrp-1/PDX1 knockout affects tumorigenesis via in vivo assays.
MethodsCD4+ T cells were isolated from the healthy mice's spleen and induced to differentiate into Treg cells. Then, after being treated with IL-10 and mouse melanoma cell supernatant (CM), the expression levels of Nrp-1 and FoxP3 in Treg cells were examined via qRT-PCR and Western blotting. The ratio of Treg cells was measured by flow cytometry. The interaction between Nrp-1 and PDX1 proteins was detected through GST pull-down assay, Co-IP, Western blotting and immunofluorescence staining. STAT3 luciferase activity was detected, and the expression levels of JAK1 and STAT1 proteins were detected by Western blotting. Furthermore, the B16-bearing melanoma mice and Nrp-1/PDX1 knockout mice model were established to verify the effects of Nrp-1 and PDX1 on Treg formation and tumor development.
ResultsThe results demonstrated that IL-10 promoted Nrp-1 expression in Treg cells via the JAK-STAT3 signaling pathway. Nrp-1 could combine with PDX1 to form a complex, facilitating PDX1-mediated activation of FoxP3 and Treg production. In melanoma xenograft models, targeting Nrp-1 and PDX1 using shRNAs or antibodies significantly reduced Treg levels and inhibited tumor growth. Collectively, IL-10 promotes Treg formation and tumorigenesis via regulating Nrp-1/PDX1/FoxP3 axis.
DiscussionThis study was the first to identify the interaction between Nrp-1 and PDX1, leading to PDX1 ubiquitination, which enhanced FoxP3 expression and Treg function in the tumor microenvironment. These novel insights highlighted the Nrp-1/PDX1/FoxP3 axis as a critical regulator of Treg-mediated tumorigenesis, offering potential targets for cancer therapy.
ConclusionThese findings highlight the interplay between environmental influences and immune regulation, providing novel insights into Treg-mediated tumorigenesis and suggesting potential strategies for targeted therapy.
-
-
-
Viral Vertical Transmission through the Placenta: The Potential of Natural Products as Therapeutic and Prophylactic Antiviral Agents
Available online: 25 September 2025More LessPregnant women are among the most vulnerable groups in human populations. The human placenta, consisting of fetal chorionic villi and maternal basal decidua, is a specialized and transient organ crucial for supporting pregnancy and ensuring the well-being of both the mother and the fetus. Although the placenta has a developed, robust defense system, some pathogens can overcome it and cause a fetal infection that may be lethal. This review examines the defense mechanisms in the placenta against viral infections, how microorganisms bypass these defense barriers to cause illness, and the potential use of natural products in treating viral infections during pregnancy. Research on natural products has shown their promise to serve as an alternative to antiviral therapy, particularly for pregnant women.
-
-
-
Schizophrenia Pathophysiology: Neurotransmitter Dysfunctions and Biomarker Frontiers
Authors: Acharya Balkrishna, Sumit Kumar Singh, Sonam Verma, Pratha Bora, Vidhi Dobhal and Vedpriya AryaAvailable online: 25 September 2025More LessIntroductionSchizophrenia is a heterogeneous chronic brain disorder driven by multiple pathophysiological processes. While dopaminergic theories dominate current therapies, emerging evidence highlights glutamatergic dysregulation, particularly N-methyl-D-aspartate receptor (NMDAR) hypofunction, as a key mechanism alongside dopaminergic, serotonergic, and neurodevelopmental pathways. This article synthesizes mechanistic insights, focusing on neurotransmitter disruptions, oxidative stress, neuroinflammation, and Wnt signaling, to elucidate the clinical diversity of schizophrenia and identify biomarkers for precise diagnostics and therapeutics.
MethodsA comprehensive literature search was conducted using Web of Science, Scopus, Google Scholar, and PubMed, with keywords including “schizophrenia,” “psychosis,” “pathophysiology,” “mechanism,” and “biomarker.” Studies were selected to explore NMDAR hypofunction, glutamatergic dysregulation, and associated signaling pathways, integrating preclinical and human data to map circuit-based interactions and biomarker profiles.
ResultsWe present a novel circuit-based model of schizophrenia pathophysiology, centered on NMDAR hypofunction and glutamatergic dysregulation, integrating dopaminergic, GABAergic, and inflammatory pathways. Key biomarkers, including inflammatory (e.g., high-sensitivity C-reactive protein [hs-CRP], interleukin-6 [IL-6]), neurochemical (e.g., brain-derived neurotrophic factor [BDNF]), and functional (e.g., mismatch negativity [MMN]), are categorized by symptomatic domains and clinical stages, providing diagnostic and prognostic insights.
DiscussionsThe findings underscore NMDAR hypofunction’s role in driving schizophrenia’s symptomatic spectrum, though its interplay with other pathways highlights the disorder’s complexity. Neuronal loss, although not universal, is context-specific (e.g., hippocampal interneurons), complementing functional biomarkers such as MMN. Limitations include the need for robust human validation of biomarkers and broader exploration of non-glutamatergic mechanisms.
ConclusionConsidering the multifaceted nature of the disorder, our emphasis on the NMDAR hypofunction model can help explain many of the synergies involved among the seemingly independent dysregulated events.
-
-
-
Progress in Synthesis and Therapeutic Applications of Mefloquine: AReview
Authors: Nidhi Yadav, Divyansh Singh, Ram Singh and Yogesh Kumar TyagiAvailable online: 16 September 2025More LessMefloquine is a synthetic antimalarial drug known for its effectiveness in the treatment and prevention of malaria. This belongs to the amino alcohol group of compounds. Its structure consists of a quinoline and piperidine ring, along with two chiral centers, which give rise to four distinct stereoisomers. There are various synthetic methods for preparing this compound from starting materials such as p-trifluoromethylaniline, 4-bromoquinoline, and trifluoroacetimidoyl iodide. In recent years, mefloquine has gained attention for its potential therapeutic applications beyond malaria, with research exploring its use in cancer therapy, parasitic infections, neurological disorders, tuberculosis, and COVID-19. This article covers its synthetic approaches, established application as an antimalarial compound, as well as repurposed therapeutic applications.
-
-
-
Development and Exploration of Organic Compounds as AldoseReductase Inhibitors: An Overview
Authors: Bhanupriya Bhrigu, Shikha Sharma and Bimal Krishna BanikAvailable online: 05 September 2025More LessChanges in the body's natural glucose levels have been associated with the onset of diabetes mellitus. It is frequently accompanied by a number of long-term consequences, including cardiovascular disease, retinopathy, nephropathy, and cataracts. Aldose reductase (AR), an enzyme belonging to the aldoketo reductase superfamily, plays a crucial role in the polyol pathway of glucose metabolism by converting glucose into sorbitol. Aldose reductase inhibitors (ARIs), a key target for reducing sorbitol flow through the polyol pathway, may be a new target for treating significant diabetic complications. A variety of structural classes of ARIs have been developed. These include: i) derivatives of carboxylic acids (e.g., Epalrestat, Alrestatin, Zopalrestat, Zenarestat, Ponalrestat, Lidorestat, and Tolrestat); ii) derivatives of spirohydantoins and related cyclic amides (e.g., Sorbinil, Minalrestat, and Fidarestat); and iii) phenolic derivatives (e.g., related to Benzopyran-4-one and Chalcone). The current review article provides concise details of the various chemical classes that aldose reductase inhibitors play in the treatment of diabetic complications. This also describes the advancements made in ARI research and possible applications by obtaining the required data. The process involves thoroughly searching multiple databases—such as PubMed, ScienceDirect, and SciFinder—for citations.
-
-
-
Druggable Targets in Zika Virus: A Systematic Review of Therapeutic Opportunities in Brazil
Available online: 21 August 2025More LessIntroductionZika virus (ZIKV), a flavivirus primarily transmitted by Aedes aegypti, became a major global health concern during the 2015–2016 outbreak, particularly in Brazil. Its association with congenital malformations and neurological disorders underscores the urgent need for effective therapeutic interventions. This review explores molecular targets for ZIKV treatment within the Brazilian context.
MethodA systematic search was conducted using PubMed, ScienceDirect, and Scopus for studies published between 2004 and 2024. Inclusion criteria focused on studies identifying druggable molecular targets related to viral replication, immune evasion, or host-virus interactions. Key search terms included “Zika virus,” “molecular targets,” “Brazil,” “antiviral,” and “drug discovery.”
ResultsThe review identified several critical viral proteins, NS1, NS3, NS5, and the envelope protein, as potential drug targets. Host cellular factors essential for viral survival were also highlighted. Technologies such as high-throughput screening, molecular docking, and structural genomics contributed significantly to the identification and validation of these targets.
DiscussionAlthough promising targets have been identified, therapeutic development is hindered by the genetic variability of ZIKV and its antigenic similarity to other flaviviruses, notably the dengue virus. These challenges complicate the specificity and efficacy of drugs. Nevertheless, Brazil has made strides in research infrastructure and collaborations to tackle these obstacles.
ConclusionThis review synthesizes current knowledge on ZIKV molecular targets and ongoing drug discovery efforts. The findings support the strategic development of antivirals and emphasize the necessity for sustained investment in research to mitigate future ZIKV outbreaks in Brazil and globally.
-
-
-
Unlocking the Multifunctional Therapeutic Potential of Manassantin: A Lignan-Derived Scaffold
Available online: 21 August 2025More LessManassantin, a dineolignan, is a natural compound that has gained significant attention due to its diverse pharmacological properties, including anti-inflammatory, anticancer, neuroprotective, and antimicrobial effects. Its unique polyphenolic scaffold offers a versatile platform for drug development, enabling targeted therapeutic applications. This review explores the molecular mechanisms underlying the bioactivity of manassantin with a focus on its role in modulating key cellular pathways, including NF-κB, MAPK, JAK/STAT, oxidative stress, apoptosis, and inflammatory signaling. Furthermore, it highlights recent advancements in structural modifications aimed at enhancing the pharmacokinetic and pharmacodynamic properties of this compound. By unlocking the full therapeutic potential of manassantin, this study paves the way for its future development as a multifunctional therapeutic agent.
-
-
-
Amarogentin, Natural Bitter Terpenoids: Research Update with Pharmacological Potential, Patent and Toxicity Aspects
Authors: Sonia Singh, Mahima Varshney and Himanshu SharmaAvailable online: 21 August 2025More LessAmarogentin is a secoiridoid glycoside that was initially isolated from the medicinal plant Swertia chirayita. It is well-known for its formidable bitter characteristics and the varied pharmacological actions it possesses. Especially in both conventional and modern medical practices, this molecule has garnered considerable attention due to its enormous therapeutic potential. Amarogentin possesses a wide range of biological actions, some of which include functions that are hepatoprotective, anti-inflammatory, anti-cancer, anti-diabetic, and antibacterial. The hepatoprotective function it possesses is achieved by enhancing antioxidant defense systems and reducing liver damage caused by toxins. It is believed that the ability of amarogentin to block pro-inflammatory mediators, such as TNF-α and IL-6, is responsible for its anti-inflammatory properties. The stimulation of apoptosis and the reduction of cancer cell proliferation in various tumor models are two additional ways in which it demonstrates promising anti-cancer potential. The anti-diabetic activity of amarogentin is characterized by the modification of glucose metabolism as well as an improvement in insulin sensitivity. To enhance the therapeutic efficacy of amarogentin, further research is needed to investigate its bioavailability and stability in the human body. This is despite the fact that it possesses a wide range of pharmacological advantages. There are formulation options that could improve its pharmacokinetic profile. Some examples of these strategies are nanoparticle delivery systems and derivatization. In general, amarogentin exhibits a great deal of promise as a natural therapeutic agent for the treatment of liver diseases, cancer, and metabolic disorders. Accordingly, there is a need for further research into the mechanisms underlying its clinical applications and potential uses.
-
-
-
Comprehension of the Function of Antioxidants in Targeting Different Signaling Pathways to Cure Oxidative Stress-Induced Hepatotoxicity
Authors: Kartik Jadon and Swarupanjali PadhiAvailable online: 21 August 2025More LessOxidative stress plays a central role in the pathogenesis of liver diseases, including hepatotoxicity, by disrupting the balance between reactive oxygen species (ROS) and the hepatic antioxidant defense system. Excessive ROS production leads to inflammation, fibrosis, and cellular damage. Antioxidants—both endogenous and exogenous—can mitigate these effects by neutralizing ROS and restoring redox homeostasis. This review evaluates the mechanistic role of antioxidants in modulating key oxidative stress-related signaling pathways, such as nuclear factor erythroid 2-related factor 2 (Nrf2), mitogen-activated protein kinases (MAPKs), nuclear factor-kappa B (NF-κB), phosphoinositide 3-kinase/Akt (PI3K/Akt), and Janus kinase/signal transducer and activator of transcription (JAK/STAT). Through the regulation of these pathways, antioxidants reduce apoptosis, suppress pro-inflammatory signaling, and enhance the expression of detoxifying enzymes. Natural compounds like flavonoids, polyphenols, and vitamins C and E have shown hepatoprotective effects, while synthetic antioxidants and their combinations with other therapeutic agents represent promising strategies for clinical application. This review underscores the therapeutic potential of antioxidants in combating oxidative stress-induced hepatotoxicity by offering a comprehensive overview of their mechanistic targets.
-
-
-
In Silico and In Vivo Hepatorenal Protective Effect of Chitosan-Loaded Chrysin Nanoparticles in Obese Rats
Available online: 18 August 2025More LessIntroductionObesity, a widespread health condition marked by excessive body fat, markedly elevates the risk of chronic diseases and has emerged as a major global health issue. Chrysin, a flavonoid with promising health benefits, exhibits potent antioxidant and anti-inflammatory properties. This study seeks to examine the impact of chitosan chrysin nanoparticles (Chrysin-CSNPS) on obesity induced by a high-fat diet (HFD) in male rats.
MethodsRats were fed a high-fat diet for 4 weeks to induce obesity, followed by a 4-week treatment period. Thirty rats were allocated into five groups (six rats per group): control (dist. water, orally), HFD control (dist. water, orally), HFD + chrysin (500 mg/kg, orally), HFD + chitosan-NP (60 mg/kg, orally), and HFD + Chrysin-CSNPS (60 mg/kg, orally).
ResultsIn silico studies revealed that chrysin has a binding energy value of −8.8 kcal/mol to fat mass and obesity-associated (FTO) protein. Also, Chrysin is identified as an inhibitor of several cytochrome P450 enzymes, specifically CYP1A2, CYP2D6, and CYP3A4. Albumin, high-density lipoprotein cholesterol, glutathione, and nitric oxide levels rose, whereas glucose, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, creatinine, urea, total cholesterol, triglycerides, malondialdehyde, and nitric oxide levels fell upon Chrysin-CSNPS treatment. The histological examination revealed a significant enhancement in the structures of the liver and kidneys.
DiscussionThese findings suggest that chrysin could potentially inhibit FTO activity, thereby contributing to a reduction in obesity-related phenotypes. The compound that satisfied Lipinski’s criteria was selected for toxicity prediction.
ConclusionChrysin-CSNPS have hypolipidemic properties and an antioxidant role, reducing HFD consequences in the liver and kidney.
-
-
-
UPLC-LCMS-Based Method Development, Validation, Forced Degradation, and Impurity Profiling of Nirogacestat Drug Substance
Authors: Thrinath S R, Manikandan Krishnan, Lakshmi K.S and Sharad D MankumareAvailable online: 15 August 2025More LessIntroductionThis study aims to establish a novel, straightforward, and reliable UPLC-MS method for determining the stability and impurity profile of Nirogacestat under various stress conditions, in accordance with ICH guidelines. The stability of Nirogacestat was investigated under various stress conditions, including acid/base hydrolysis, oxidation (H2O2), photolysis, reduction, and thermal degradation. This research addresses the need for a validated, stability-indicating method that performs reliably across key analytical parameters, thereby contributing to pharmaceutical quality assurance.
Materials and MethodsStress testing was performed by exposing Nirogacestat to various degradation conditions, including acid (0.1 and 1N HCl), base (NaOH), oxidative (30% H2O2), thermal (105°C), photolytic, and reductive environments. The mobile phase consisted of acetonitrile and 0.1% triethylamine/formic acid, adjusted to pH 2.5 in a 30:70 (v/v) ratio. Chromatographic separation was achieved using an Acquity UPLC BEH Shield RP-18 column (50 × 1.0 mm, 1.7 µm), with a flow rate of 0.5 mL/min and detection at 251 nm. Linearity was evaluated over a concentration range of 0.25 to 1.5 µg/mL. Validation studies assessed parameters such as selectivity, linearity, accuracy, precision, robustness, and solution stability.
ResultsThe method demonstrated excellent linearity (r2 = 0.999), with peak area directly proportional to concentration within the studied range. All validation parameters were within acceptable limits. Forced degradation studies revealed distinct degradation products under each stress condition. Notably, alkaline degradation resulted in the least degradation, while acid, peroxide, photolytic, thermal, and reductive conditions produced a variety of degradation products. These were effectively separated from Nirogacestat using the developed method. The relative retention times for Nirogacestat and its impurities remained consistent, and mass spectrometry confirmed the identities of the degradation products.
DiscussionThe validated UPLC-MS method exhibited high sensitivity, selectivity, and robustness in detecting Nirogacestat and its impurities. It effectively distinguishes degradation products even within complex matrices and fully complies with ICH guidelines for analytical method validation. The degradation profile of Nirogacestat under various stress conditions provides critical insights into its stability behavior, which is essential for formulation development and regulatory compliance. The successful separation and identification of degradation products further underscore the method’s applicability as a stability-indicating assay.
ConclusionThe developed UPLC-MS method is the first validated stability-indicating technique for Nirogacestat, offering comprehensive impurity profiling. It is precise, accurate, linear, and robust, making it highly suitable for routine quality control and regulatory submission. This method enables the reliable detection of degradation products, thereby enhancing the safety and efficacy profile of Nirogacestat in pharmaceutical preparations.
-
-
-
Decoding Dementia Mechanisms: Identification of Key Oligodendrocyte-Associated Genes through Integrative Bioinformatics and MachineLearning
Authors: Yan Chen, Hao Wen, Xinyi Qiu, Chen Li, Yinhui Yao and Yazhen ShangAvailable online: 13 August 2025More LessIntroductionThis study aims to elucidate the mechanisms underlying Dementia using bioinformatics analysis and machine learning algorithms, to identify novel therapeutic targets for its clinical management.
MethodsGene expression datasets related to dementia were sourced from the GEO database. Differentially expressed genes (DEGs) were identified using R, and key module genes were determined through the Weighted Gene Co-expression Network Analysis (WGCNA) method. Oligodendrocyte (OL) related targets were retrieved from the GeneCards database. The intersecting genes from DEGs, WGCNA, and OL were analyzed using Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes. Subsequently, three machine learning algorithms were employed to pinpoint core genes associated with OL in dementia. The CIBERSORT algorithm was used to evaluate the abundance of 22 immune cell types and their correlation with Dementia-related immune infiltration. Validation was carried out via quantitative reverse transcription polymerase chain reaction (RT-qPCR).
ResultsThrough bioinformatics and machine learning techniques, six core OL genes associated with Dementia were identified, notably C1QA, CD163, and TGFB2, which showed elevated expression in Dementia. Immune cell infiltration analysis indicated that several immune cell types may contribute to Dementia's pathogenesis, and RT-qPCR results corroborated the bioinformatics findings.
DiscussionThe discovered genes may contribute to dementia pathogenesis through oligodendrocyte dysfunction and neuroimmune interactions. Notably, TGFB2 and complement-related genes (C1QA, CD163) suggest involvement in both myelination defects and neuroinflammation, highlighting their therapeutic potential.
ConclusionThe six feature genes: TGFB2, C1QA, CD163, ACTG1, WIF1, and OPALIN are significantly linked to Dementia.
-
-
-
Formononetin Mediates α7nAChR to Inhibit Macrophage Polarization and Ameliorate Atherosclerotic Plaque
Authors: Li Du, Shirong Li, Qiansong He, Min Zhang and Wenxiu WangAvailable online: 12 August 2025More LessObjectiveTo explore the molecular mechanism of α7 nicotinic acetylcholine receptor (α7nAChR) mediated by Formononetin (FMN) in inhibiting macrophage inflammatory polarization and stabilizing atherosclerotic plaque.
MethodsSiRNA α7nAChR was transfected into THP-1-induced M0 cells and treated with FMN. Oil Red O staining was used to evaluate macrophage lipid deposition. RT-qPCR was used to detect α7nAChR, COX-2, IL-1β, IL-6, HO-1, and SHIP1 expression in M1 and M2 macrophages. Western blot was used to detect α7nAChR, iNOS, CD206, CD68, p-JAK2, and p-STAT3 protein expression in M1 and M2 macrophages.
ResultsCompared with the control group, FMN-mediated α7nAChR reduced lipid deposition in M1 and M2 macrophages. RT-qPCR results showed that FMN intervention significantly downregulated COX-2 and IL-1β expression in M1 (P < 0.05). α7nAChR expression significantly reduced COX-2, IL-6, and IL-1β expression in M2 (P < 0.05) and significantly increased HO-1 and SHIP1 expression (P < 0.05). FMN-mediated α7nAChR significantly decreased the expression of iNOS, CD68, p-JAK2, and p-STAT3 in M1 and M2 macrophages and significantly increased the expression of CD206 protein by Western blot (P < 0.05).
DiscussionThis study, for the first time, elucidated the mechanism of FMN regulating macrophage polarization through the α7nAChR/JAK2/STAT3 axis, providing new experimental evidence for the role of the cholinergic anti-inflammatory pathway in cardiovascular diseases. However, there are some limitations, such as the limited applicability of the THP-1 cell line, the need to strengthen the dose correlation study, the bioavailability and solubility limiting clinical translation, and the lack of human toxicological data.
ConclusionFMN effectively modulates macrophage polarization through inhibition of the JAK/STAT signaling pathway while promoting α7nAChR expression.
-
-
-
Research Progress in Chemical Synthesis and Biosynthesis of Bioactive Pyridine Alkaloids
Available online: 11 August 2025More LessPyridine alkaloids possess important biological activities and are widely used in fields such as medicine and pesticides. This paper comprehensively reviews the research progress in the chemical synthesis and biosynthesis of pyridine alkaloids. In terms of chemical synthesis, there are diverse synthesis methods for arylpyridine compounds. For example, 2,4,6-triarylpyridine can be synthesized by using iron-organic framework materials or other reagents. The 3-ethylsulfone pyridine compounds with aryltriazole structures can be synthesized through specific reactions. And 2-arylpyridine can also be synthesized in this way. Heterocyclic pyridine compounds can be prepared into their corresponding derivatives through multiple approaches. The synthesis of polysubstituted pyridine adopts reactions such as cycloaddition, Diels-Alder, condensation, cyclization, and aromatization. The synthesis of polypyridine focuses on the construction of new complexes. Other synthesis methods such as ultrasound-assisted synthesis are also introduced. The main biosynthesis pathways include the co-synthesis of polyketide synthase and non-ribosomal peptide synthase, the origin of lysine, the participation of aspartate, and the synthesis of thiopeptide antibiotics. Meanwhile, the biosynthesis pathways of pyridomycin, pyridine pigment compounds in functional red yeast rice, and vitamin B6 were also discussed, which provides a theoretical basis for further research and application of pyridine alkaloids.
-
-
-
Macrophage-Related GBP4 as a Novel Biomarker for Crohn’s Disease: Insights from WGCNA, Mendelian Randomization, and Immunohistochemical Validation
Available online: 06 August 2025More LessIntroductionCrohn's disease (CD) is a complex inflammatory bowel disorder with incompletely understood mechanisms. This study aimed to identify novel biomarkers and elucidate macrophage-related pathogenesis in CD.
MethodsUsing gene expression data (GSE17928522) from the Gene Expression Omnibus (GEO) database, we compared 1135 CD patients with 180 healthy controls to identify altered gene expression profiles. Immune infiltration analysis was conducted to evaluate changes in immune cell subpopulations. Weighted Gene Co-expression Network Analysis (WGCNA) was employed to construct gene co-expression networks and identify macrophage-associated modules. Mendelian randomization was used to validate the causal role of macrophages. For ex vivo validation, immunohistochemical staining of GBP4 protein expression was performed in colonic tissue samples from 6 CD patients (with ileal or colonic lesions). Non-lesional tissues from the same patients served as intra-individual controls to minimize inter-patient variability.
ResultsOur analysis revealed significant changes in immune cell subpopulations, particularly macrophages, within the CD microenvironment. A macrophage-associated module was identified, with GBP4 emerging as a critical gene. Immunohistochemical staining confirmed differential expression of GBP4 in CD tissue samples compared to controls.
DiscussionThis multi-modal study establishes GBP4 as a novel macrophage-associated biomarker for CD, supported by causal Mendelian randomization and immunohistochemical validation. The integration of WGCNA and genetic evidence strengthens the role of macrophage dysregulation in CD pathogenesis. Limitations include population bias in genomic data and small validation cohorts, but the consistency across methodologies underscores GBP4's potential as a therapeutic target.
ConclusionOur findings highlight GBP4 as a novel potential biomarker and therapeutic target in CD, providing insights into the immune-mediated mechanisms underlying the disease. These results contribute to a better understanding of CD pathogenesis and may lead to new therapeutic strategies.
-
-
-
Comprehensive Analysis of TSPAN11: A Potential Prognostic and Immunotherapy Biomarker in Colorectal Cancer
Authors: Pengjun Sun, Dongbing Li and Jiajia YanAvailable online: 06 August 2025More LessIntroductionColorectal cancer (CRC) remains a significant global health challenge due to its high incidence and mortality rates. The disease's complexity and heterogeneity impede early diagnosis and effective treatment. The study aims to investigate the role of Tetraspanin 11 (TSPAN11) in CRC, exploring its potential as a prognostic biomarker and immunotherapy target through bioinformatics analysis and experimental validation.
MethodsPan-cancer patient data were obtained from The Cancer Genome Atlas (TCGA) and the GSE71187 dataset, including 672 CRC tissues and 51 adjacent normal tissues. Differential expression analysis, Kaplan-Meier survival analysis, gene set enrichment analysis (GSEA), and immune infiltration assessment were performed. TSPAN11 expression was validated in CRC cell lines using quantitative reverse transcription PCR (qRT-PCR).
ResultsTSPAN11 was significantly downregulated in CRC tissues compared to normal tissues (p < 0.001), with lower expression associated with poorer overall survival (OS; p = 0.011) and disease-specific survival (DSS; p = 0.038). Multivariate analysis identified TSPAN11 as an independent prognostic factor (p = 0.045). TSPAN11 expression was linked to key pathways such as ECM receptor interaction and TGF-β signaling, and correlated with immune infiltration, immune checkpoint genes, tumor mutational burden (TMB), microsatellite instability (MSI), and drug sensitivity.
DiscussionThe findings suggest that TSPAN11 may influence CRC progression through multiple biological pathways and immune-related mechanisms. Its downregulation is associated with poorer prognosis and immune evasion, highlighting its potential as a biomarker and therapeutic target. However, validation in larger cohorts and elucidation of underlying mechanisms are needed to confirm these results and translate them into clinical practice.
ConclusionTSPAN11 may serve as a promising prognostic biomarker and immunotherapy target in CRC. Its associations with clinical outcomes, immune features, and drug sensitivity underscore its potential for improving CRC diagnosis and treatment strategies.
-
-
-
A Comprehensive Review on Discovery, Development, the Chemistry of Quinolones, and Their Antimicrobial Resistance
Authors: Gayatri S Patil, Kiran N Gaikwad, Shailendra S. Suryawanshi and Parixit BhandurgeAvailable online: 05 August 2025More LessQuinolones, discovered in the 1970s, have played a critical role in revolutionizing the treatment of bacterial infections due to their broad-spectrum antimicrobial activity. Over the decades, these compounds have been extensively studied, resulting in the development of numerous new derivatives. This review explores the history and development of quinolones, focusing on their Structure-Activity Relationship (SAR), mechanisms of action, and the challenges posed by antimicrobial resistance. The key resistance mechanisms include mutations in DNA gyrase and topoisomerase IV, which reduce drug binding, plasma-mediated mechanisms, and chromosomal changes that decrease drug uptake or retention. These mechanisms highlight the need for innovative approaches to design quinolones to overcome these resistance pathways. This review also provides an understanding of the SAR of quinolones and, by integrating historical advancements and current challenges, it provides a foundation for the development of next-generation quinolone derivatives with improved efficacy and minimized resistance.
-
-
-
Natural Oil and Polycystic Ovary Syndrome: A Comprehensive Review of Therapeutic Benefits
Authors: Punam Kumari, Pervej Alom Barbhuiya, Ireenia Warjri and Manash Pratim PathakAvailable online: 05 August 2025More LessIntroductionPolycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder affecting 70-75% of women. This condition is frequently linked with large and dysfunctional ovaries, high levels of androgens, and insulin resistance. A variety of conventional treatments, including metformin, oral contraceptives, and anti-androgen agents, have been used to treat PCOS and its complications, but they have been linked to several negative side effects, including hyperkalemia, weight gain, cardiovascular and hepatic toxicity, vitamin B12 and folic acid deficiency. As a result, there is growing interest in natural methods as complementary or alternative approaches to mitigate these side effects. According to several studies, traditionally used Natural oils (NOs) from various sources have been utilized to identify their ameliorating characteristics against PCOS. The paper aims to study pre-clinical investigations and clinical studies of NOs from different sources against PCOS and gives a comprehensive overview of controlling PCOS. Also, it highlights and tabulates the prominent bioactive phytoconstituents from the reported NOs and their mechanism of action.
MethodsFor this review purpose, the authors have gone through a vast number of scientific literature from different scientific databases like Google Scholar, ScienceDirect, Web of Science, and PubMed.
ResultMentha spicata L., Foeniculum vulgare Mill., Linum usitatissimum L., Nigella sativa L., Bambusa bambos (L.) Voss, Thuja occidentalis L., Syzygium aromaticum L., Pimpinella anisum L., Rosa canina L., Cocos nucifera L., Oenothera biennis L., Corylus avellana L., and fish oil have been reported to have anti-PCOS activity by maintaining body weight, testosterone, LH, FSH levels, and improving ovarian cysts.
DiscussionNOs derived from plant and animal sources show promise in treating PCOS by balancing hormone levels, enhancing ovarian morphology, and alleviating metabolic symptoms. However, significant clinical trials and molecular research are required to evaluate their therapeutic potential, identify suitable dosages, investigate their precise mechanisms of action, and ensure long-term safety and efficacy in PCOS management.
ConclusionFurther research is needed to understand the molecular mechanisms of NOs responsible for anti-PCOS activity. Studies are needed to concentrate on their mechanisms of action, routes of impact, safe dosage, and potential side effects to ensure their efficacy and safety in treating PCOS.
-
-
-
Elucidating the Role of Galectin-3 in the Recurrence of Primary Sclerosing Cholangitis Post-Liver Transplantation as a Potential Therapeutic Target
Available online: 05 August 2025More LessPrimary sclerosing cholangitis (PSC) occurs in approximately 25% of patients post-liver transplantation (LT) and is associated with significant morbidity and mortality. Hepatic duct cholestasis following recurrent PSC may lead to the development of liver cirrhosis and the need for liver retransplantation. To date, the exact etiology of the recurrence of PSC post-LT remains unknown, and it is not currently possible to predict which patients are at risk for recurrence of PSC. Extracellular Galectin-3 (Gal-3) acts as a damage-associated molecular pattern (DAMP) when released into the extracellular matrix (ECM) by injured liver cells. Gal-3 plays a crucial role in immune responses and inflammation by binding and cross-linking surface proteins of neutrophils and macrophages, facilitating the chemotaxis of immune cells to the site of injury, and activating the macrophage inflammasome complex. In addition, Gal-3, by activation of hepatic satellite cells (HSC) to myofibroblast phenotype, induces profibrotic molecules, such as transforming growth factor beta (TGF-β) and increases the expression of collagens in the ECM, leading to liver fibrogenesis. According to the evidence, targeting Gal-3 may have important therapeutic potential in preventing the progression of recurrence in PSC and cholestatic progression post-LT.
-
-
-
Total Synthesis of Biologically Potent Peptides and their In Silico Studies: A TAG Approach
Available online: 04 August 2025More LessIntroductionCurrent trends in peptide synthesis protocols have emerged as the most attractive domain in the field of pharma and medicine. Since most of the peptide/peptidomimetic-based molecules serve as potential candidates for many diseases, as they are bioavailable molecules.
MethodsWe present the synthesis of bioactive peptides through TAGGING approach with the help of TAG-OH as a linker to the Nα-protected amino acid.
ResultsFRDEHKK and NKDRG are two peptides that possess antioxidant and antiproliferative activity, and their in-silico investigations reveal that they exhibit anticancer properties when bound to the AXL kinase and EGFR proteins.
DiscussionThis TAG method enables the easy isolation of peptides at each step as solids, and all the impurities were washed off by simple filtration. The method allows a bulk-scale preparation of the peptides without any difficulty, and hence the protocol is highly efficient for the production of peptides of therapeutic importance.
ConclusionThe two peptides FRDEHKK and NKDRG were isolated as fine solids with 82% and 85% yield and were characterized by NMR and MASS spectroscopy. In-silico studies reveal FRDEHKK and NKDRG peptides exhibit good affinity towards EGFR and AXL kinase.
-
-
-
Pharmaceutical Sciences Encompass A Wide Range of Techniques and Methodologies
Authors: Uma Agarwal, Swati Paliwal and Rajiv Kumar TonkAvailable online: 01 August 2025More LessPharmaceutical research and development encompass a series of interconnected steps that are crucial for creating safe and effective drug candidates targeting specific diseases. This process involves rigorous testing and evaluation to ensure that the drugs developed meet safety standards and therapeutic efficacy. The significance of this systematic approach lies in its ability to address the complications of various diseases, ultimately leading to advancements in medical treatment and patient care. The successful development of a drug candidate is contingent upon thorough research, which includes preclinical studies and clinical trials, ensuring that the final product is both reliable and beneficial for patients. The review emphasizes the importance of a systematic approach in the pharmaceutical research and development sector. It highlights the interconnected steps necessary for the successful development of drugs, underscoring the critical need for safety and efficacy in pharmaceutical products. The primary objective is to ensure that the drugs developed meet the standards required for public use, thereby enhancing public health outcomes. Overall, the review serves as a guide for stakeholders in the pharmaceutical industry to prioritize safety and effectiveness throughout the drug development process. With an emphasis on the interrelated processes in the drug development process and the significance of new and advanced approaches, this article highlights the evidence based on the importance of a systematic and structured approach in drug development. It points out that a systematic approach is crucial in pharmaceutical Research and Development (R&D) to ensure successful outcomes. It is essential to continuously update and understand these steps to keep pace with advancements in the field. Additionally, staying informed about the development of new and advanced techniques at each stage of drug R&D is vital for enhancing efficiency and effectiveness. This comprehensive literature review was conducted using databases such as PubMed and Scopus, focusing on research published up to January 2025. Continuous upgrades in awareness about R&D and innovative procedures within the industry are essential. It highlights the importance of following systematic methods to ensure that R&D practices remain relevant and practical. Moreover, this understanding is necessary for the safe and effective creation of pharmaceuticals. Ultimately, enhancing this awareness is likely to improve the overall effectiveness of R&D processes.
-
-
-
Preliminary Study on GZMA- and GSDMB-Associated Pyroptosis and CD8+ T Cell-Mediated Immune Evasion in Skin Cutaneous Melanoma
Authors: Jianqin Chen, Zhirong Huang, Fengfeng Xie, Jing Liu, Wen Sun, Jingli Xu and Wenfang XieAvailable online: 31 July 2025More LessBackgroundSkin cutaneous melanoma (SKCM) is a life-threatening malignancy, and pyroptosis-mediated inflammatory response is associated with SKCM progression. We aimed to uncover the underlying pathogenesis of SKCM based on pyroptosis features.
MethodThe single-cell and bulk RNA-seq data and clinical information of SKCM patients were downloaded from the TCGA and GEO databases, and the REACTOME_PYROPTOSIS.v2024.1.Hs.gmt from the MSigDB database was used for Gene Set Enrichment Analysis (GSEA). Differentially expressed gene (DEG) analysis was performed utilizing the “limma” R package, and the “GSVA” R package was used for the analysis of pyroptosis pathway activation. In addition, scRNA-seq analysis and cell communication analysis were carried out by employing the “Seurat” R package and “CellChat” R package, respectively. Gene expression was measured using quantitative reverse transcription polymerase chain reaction (qRT-PCR), while cell counting kit-8 (CCK-8), wound healing, and Transwell assays were carried out to assess cell proliferation, migration, and invasion, respectively.
ResultsDEGs analysis detected no significant pyroptosis-related DEGs. Analysis of the expression of two representative pyroptosis genes (GZMA and GSDMB) revealed that GZMA was significantly upregulated in the SKCM tissues, but the expression of GSDMB was downregulated. The pyroptosis pathway was not activated in the tumor group. In addition, we observed that high expression of GZMA and GSDMB was closely associated with a favorable outcome in SKCM. The two genes were downregulated in SKCM cells, while the overexpression of GZMA significantly impaired the proliferation, migration, and invasion ability of SKCM cells. Nine main cell subpopulations were identified, and GZMA was specifically overexpressed in CD8+ T cells. Gene function analysis revealed that specific genes of CD8+ T cells were enriched in cell death-related and inflammation activation pathways. Cell communication demonstrated that CD8+ T cells interacted with melanocytes through the CD99-CD99 and HLA-C-KIR2DL3 ligand-receptor pairs.
ConclusionBased on the pyroptosis features in SKCM, this study found that blocking GZMA protein in CD8+ T cells within melanocytes may be the potential underlying pathogenesis for tumor immune escape in cancer.
-
-
-
INHBA: A Protein-coding Gene Closely Related to Tumour Diseases
Authors: Jiayi Ma, Yining Pan, Cheng Chen, Dongshuo Wang, Xiaolan Li and Chengfu YuanAvailable online: 30 July 2025More LessIntroductionAt present, malignant tumors are still under development with an increasing trend, and their prevention, treatment, and prognosis are also difficult. The INHBA gene, also known as inhibin β, has a wide range of roles to play in this context. Through studies, several researchers have confirmed that an abnormal expression of the INHBA gene affects the development and prognosis of several malignant tumors (cervical, colorectal, breast, gastric, etc.). This study aims to investigate the relationship between INHBA and the occurrence, development, treatment, and prognosis of malignant tumors.
MethodsThis review, which involved scanning of pertinent literature, describes and evaluates recent research on the biological functions and mechanisms of INHBA in malignancies.
ResultsAn aberrant expression of INHBA can lead to a variety of tumors, including cervical, esophageal, breast, colorectal, squamous cell, bladder, nasopharyngeal, gastric, and ovarian cancers.
DiscussionINHBA, as a protein-coding gene, can affect the development of various tumors and the prognosis of tumor patients, suggesting that INHBA can be a target for tumor therapy. However, the research on targeted therapy is still immature and has certain safety risks.
ConclusionResearch findings indicate that the INHBA gene plays a role in both carcinogenesis and prognosis. As such, it may have the potential utility as a biomarker or therapeutic target in the treatment of malignant tumors.
-
-
-
Kinase Inhibitors for Targeted Cancer Therapy
Authors: M. Amin Mir, Devalina Ray, Suman Mazumdar and Bimal Krishna BanikAvailable online: 30 July 2025More LessPrecision medicine's quick development has transformed the way cancer is treated, and because small-molecule kinase inhibitors can specifically block the abnormal signaling pathways that cause tumor growth and progression, they are now a key component of targeted therapy. This review explores the most recent advancements in kinase inhibitor design and optimization, with a focus on novel drug scaffolds, improved structure–activity relationships (SARs), and molecular modification techniques meant to improve target selectivity, potency, and pharmacokinetic profiles. Emerging strategies to combat resistance mechanisms are heavily emphasized, such as the use of dual-target inhibitors that block parallel signaling cascades, allosteric modulators that bind to non-ATP sites, and combination therapies that work in concert to increase efficacy while reducing resistance. A thorough summary of the kinase inhibitors that are now FDA-approved for use in treating different forms of cancer is also included in the review, along with information on their safety profiles, clinical effectiveness, and changing indications of usage. Additionally, it examines encouraging results from preclinical research and ongoing clinical studies assessing next-generation kinase inhibitors, which have the potential to further customize cancer treatment. In order to improve patient outcomes, address therapeutic resistance, and broaden the therapeutic scope of kinase-targeted interventions in oncology, the review concludes by highlighting future research directions, such as drug repurposing, computational drug discovery, and advanced precision oncology approaches.
-
-
-
The Vital Role of Long Non-Coding RNA SUMO1P3 in the Regulation of Human Cancer: Current Perspectives and Future Challenges
Authors: Jingjie Yang, Yuzhang Wei, Chengran Gao, Zihang Wang, Yulong Liu, Haodong He, Hao Zhou, Guihua Liao, Gang Zhou and Chengfu YuanAvailable online: 29 July 2025More LessSmall Ubiquitin-like Modifier 1 Pseudogene 3 (SUMO1P3) is a novel long non-coding RNA (lncRNA) located at the 1q23.2 locus of the human chromosome. Recent evidence indicates that SUMO1P3 is aberrantly upregulated in nine types of human cancer and functions as an oncogene. Elevated SUMO1P3 expression is strongly associated with unfavorable clinicopathological features and poor prognosis in eight cancer types. Mechanistically, SUMO1P3 functions as a miRNA sponge, an epigenetic regulator, and directly interacting with proteins. It activates key signaling pathways, such as the Wnt/β-catenin and AKT pathways, and regulates Epithelial-Mesenchymal Transition (EMT), which facilitates cancer progression and therapy resistance. Due to its diverse functional roles, SUMO1P3 emerges as a promising diagnostic and prognostic biomarker, as well as a potential therapeutic target in precision oncology. This review provides a comprehensive summary of current research on SUMO1P3, highlighting its regulatory mechanisms, biological functions, and clinical significance in cancer biology.
-
-
-
Exploring the Carbonic Anhydrase Activation Properties of 4-arylazo-3,5-diamino-1H-pyrazoles against hCA I, II, IV, and VII isoenzymes
Authors: Suleyman Akocak, Nebih Lolak, Andrea Ammara, Özen Özensoy Güler and Claudiu T. SupuranAvailable online: 28 July 2025More LessIntroductionCAs serve as crucial enzymes involved in a variety of physiological processes, including brain metabolism and cognitive function. hCA VII, a brain-associated isoform, plays an important role in modulating cerebral metabolism. Activating hCA VII may provide therapeutic benefits in Alzheimer's disease and other neurodegenerative or age-related illnesses. This study proposes to add to the growing interest in CAAs by developing innovative drugs with selective activation characteristics that target brain-associated CA isoforms.
MethodsA series of 4-arylazo-3,5-diamino-1H-pyrazoles have been produced by reacting aniline and aniline derivatives with a malononitrile solution at 0-5 °C, resulting in compounds 1(a-m). Then, arylazo malononitrile compounds were added with hydrazine monohydrate to obtain 4-arylazo-3,5-diamino-1H-pyrazole derivatives 2(a-m). The activity of the synthesized compounds was examined on human CA isoforms I, II, IV, and VII to determine activation potency and selectivity.
ResultsThe synthesized compounds demonstrated a wide spectrum of strong micromolar activation on human CA isoforms, with particularly encouraging results for hCA VII. The discovered activators showed a high selectivity profile for the brain-associated hCA VII isoform, indicating their potential use in neurological methods of therapy.
DiscussionAmong the most compelling findings of this study is the unprecedented potency of several synthesized derivatives, particularly 2i and 2m, in selectively activating hCA VII far beyond the benchmark histamine, positioning them as promising pharmacological candidates for addressing CA-related neurological disorders.
ConclusionThe research successfully discovered potent and selective CAAs with specific activity against hCA VII, a key enzyme in brain metabolism. These outcomes offer novel possibilities for developing medicinal products for neurological disorders and provide critical molecules for further study into CAAs. Furthermore, the study advances our understanding of enzyme activation kinetics and gives significant insights into the future of enzyme-based treatment research.
-
-
-
Nano-cocrystals as Nanotechnology-based Approach to Modulate Solubility and Bioavailability of Poorly Soluble Drugs
Authors: Deepak Tomar, Mainuddin, Anshika and Amulya JindalAvailable online: 28 July 2025More LessVarious drugs face limitations in their solubility parameters which limits their total oral bioavailability, and such drugs are also categorized under the biopharmaceutical classification system (BCS) Class II. To modulate such limitations there were various novel drug delivery systems (DDS) designed including lipid-based DDS such as liposomes, niosomes, nanostructured lipid carriers (NLCs), nanoemulsion, self-nanoemulsifying DDS (SNEDDS) but the most effective and easily prepared DDS is nano-cocrystals (NCs). This study aims to give a clear emphasis on the NCs, their development and various advantages related to their usage as DDS. NCs are developed to modify the characteristics of dynamic drug adjustments with enhanced dissolvability, disintegration, and bioavailability compared to their naive form. Due to their high surface-to-volume ratio and co-crystal structure, easily converted in the nanosized range, they can further enhance these qualities. Even though NCs have been the subject of numerous studies, drug NC research is still in its early stages. In this review, many methods for organizing NCs have been discussed. A detailed understanding of NCs will be provided by a thorough examination of a few scientific methods and representations. The purpose of this analysis is to provide direction for the development of novel NCs with pharmaceutical industry economic value and proven as an effective approach for enhancement of drug aqueous solubility and ultimately resulted in the modulation of total oral bioavailability of the drug. NCs will be the modern DDS from the futuristic point of view due to their easy development and better physiochemical properties.
-
-
-
Naringin Supplementation Reduces Inflammatory Processes in the Cerebellum in Brain Ischemia of Rats
Available online: 28 July 2025More LessIntroductionDuring cerebral ischemia, brain tissue is damaged in two successive stages: ischemia and reperfusion (I/R). In the ischemic phase, brain tissue undergoes energy failure due to an impaired circulatory system (cerebrovascular), resulting in oxygen and glucose deprivation and consequent brain damage.
ObjectiveThe study aimed to determine the effect of a two-week administration of naringin on caspase-3, IL-17, and NF-κB levels in cerebellar tissue in experimental focal brain ischemia-reperfusion in rats.
MethodsThe research was conducted on 10- to 12-week-old Wistar-type rats obtained from the Selcuk University Experimental Animals Research and Application Center. Experimental brain ischemia-reperfusion in rats was performed under general anesthesia (carotid arteries were exposed to ischemia for 30 minutes). Experimental groups were formed as follows. 1) Control group, 2) Sham, 3) Sham + vehicle, 4) Ischemia-reperfusion, 5) Ischemia-reperfusion + Naringin supplemented group for two weeks (100mg/kg). At the end of the experiments, the levels of IL-17, caspase-3, and NF-κB were determined in the cerebellum tissue of the animals under general anesthesia. First of all, blood was drawn from the heart, and the animals were killed by cervical dislocation.
ResultsExperimental brain ischemia-reperfusion significantly increased caspase-3, IL-17, and NF-κB levels in the brain tissue of rats. In contrast, naringin supplementation for 2 weeks significantly suppressed the ischemia-reperfusion-induced inflammatory process.
DiscussionThe findings obtained from our research generally showed that, as a result of focal brain ischemia-reperfusion in rats, the levels of NF-κB, a key molecule involved in inflammatory pathways, as well as the pro-inflammatory cytokine IL-17 and caspase-3, an indicator of apoptosis, increased significantly in cerebellar tissue. However, intragastric naringin supplementation for two weeks following ischemia-reperfusion led to significant improvements in the adverse effects caused by the ischemic injury.
ConclusionThe study's results demonstrate that naringin treatment effectively mitigates inflammatory activation in the cerebellum following brain ischemia-reperfusion in rats.
-
-
-
Nanotechnological Approaches for Mitochondrial Targeting in Neurodegenerative Diseases
Available online: 28 July 2025More LessObjectivesMitochondria are dynamic organelles essential for energy metabolism and cellular homeostasis, playing critical roles in ATP production, calcium regulation, redox balance, and apoptosis. However, mitochondrial dysfunction is a central factor in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease, amyotrophic lateral sclerosis, Huntington's disease, and Parkinson's disease. Given the essential role of mitochondria in neuronal survival, targeted therapeutic strategies that restore mitochondrial function have gained significant attention. This review explores the latest advances in mitochondrial-targeted therapies and their potential applications in neurodegenerative diseases.
MethodsA comprehensive literature review was conducted on mitochondrial-targeted therapeutic strategies, with a focus on nanotechnology-based drug delivery systems. The analysis includes various nanoparticle-based approaches, such as liposomes, DQAsomes, and polymeric nanoparticles, which have demonstrated high biocompatibility, controlled drug release, and enhanced mitochondrial targeting efficiency. Additionally, mitochondria-penetrating peptides and delocalized lipophilic cations (DLCs) are discussed for their role in improving drug localization within mitochondria and overcoming biological barriers, including the blood-brain barrier (BBB).
ResultsRecent research shows the potential of mitochondrial-targeted antioxidants, peptides, and biocompatible nanocarriers in arranging mitochondrial dysfunction and protecting neurons from oxidative damage. Various nanoparticle-based drug delivery systems have demonstrated the ability to selectively target mitochondria, improving drug bioavailability, therapeutic efficacy, and neuroprotective outcomes in neurodegenerative diseases.
ConclusionMitochondria-targeted therapies provide promising avenues for disease-modifying treatments aimed at preserving neuronal integrity and delaying disease progression. The unique properties of nanoparticles, such as their ability to enhance drug stability, facilitate controlled release, and achieve precise mitochondrial localization, make them valuable tools for neurodegenerative disease therapy. Future research should focus on optimizing delivery systems, validating clinical applicability, and exploring interdisciplinary approaches to accelerate translation into effective treatments.
-
-
-
Microfluidics-Based Polymeric Micro/Nanocarriers for Drug Delivery in Liver Cancer Treatment: Recent Advances, Outlooks, and Progress
Available online: 25 July 2025More LessMicrofluidics-based polymers are transforming drug delivery systems for liver cancer treatment as they enable precise synthesis of nano- and microparticles suitable for targeted therapy. The manufacture of programmable nanoparticles and tunable sizes is made possible by microfluidic platforms, which are essential for improving the effectiveness of medication administration. A wide range of therapeutic chemicals, including hydrophobic medications like doxorubicin, can be encapsulated in these systems to target liver cancers while reducing systemic toxicity effectively. It has also been demonstrated that combining natural hydrogels and droplet microfluidics can create multicellular tumor spheroids that resemble the tumor microenvironment more closely. This methodology improves screening and drug efficacy research and offers a strong foundation for assessing treatment outcomes. This research also explores novel uses of microfluidic technologies to develop intelligent drug delivery devices that respond to particular stimuli and release medication at the tumor site. It also investigated how artificial cell assemblies made with microfluidics can open new possibilities for individualized cancer treatment. To sum up, microfluidic-based polymers offer advanced tools for developing tailored and efficient drug delivery systems that can enhance patient outcomes, and represent a significant advancement in the treatment of liver cancer. The review paper discusses challenges in liver cancer treatment, including high drug clearance rates, low concentrations, and multidrug resistance. It suggests microfluidic technology can improve drug delivery systems by creating controlled particles and responding to tumor conditions. This could revolutionize liver cancer therapies, enabling better drug testing and treatment prediction, as well as designing tailored therapies.
-
-
-
Impact of IDH Mutations on Ligand Unbinding: Insights from Steered Molecular Dynamics
Authors: Alka Singh, Sonia Kumari and M. Elizabeth SobhiaAvailable online: 24 July 2025More LessAimThis study explores the unbinding dynamics of alpha-ketoglutarate (AKG) from wild-type and mutant IDH1/IDH2 enzymes through steered molecular dynamics (SMD) simulations, examining how mutations influence binding, stability and enzymatic behaviour.
BackgroundIsocitrate dehydrogenase (IDH) enzymes are essential for cellular metabolism, catalyzing the conversion of isocitrate to AKG in the tricarboxylic acid cycle. Mutations in IDH1 and IDH2 lead to the aberrant accumulation of the oncometabolite 2-hydroxyglutarate (2-HG), disrupting normal metabolic processes and contributing to tumorigenesis.
MethodsSMD simulations were employed to investigate AKG unbinding from both wild-type and mutant IDH1/IDH2. External forces were applied to quantify rupture forces and assess differences in stability among enzyme variants.
ResultsWild-type IDH1 exhibited strong and stable AKG interactions, reflected by higher rupture forces and a greater number of hydrogen bonds, consistent with its normal catalytic function. In contrast, the R132H mutation in IDH1 weakened AKG binding, facilitating dissociation and potentially promoting 2-HG formation. Among IDH2 variants, the R140Q mutant demonstrated lower binding stability compared to R172K, while the wild-type enzyme maintained stronger interactions.
ConclusionMutations in IDH1 and IDH2 disrupt AKG binding and alter the stability, which may contribute to the pathological accumulation of 2-HG. These findings provide molecular insights into the oncogenic effects of IDH mutations and may aid in the development of targeted therapeutic strategies to inhibit mutant enzyme activity in cancer.
-
-
-
Harnessing the Potential of Polysaccharide-Derived Biomaterials for Wound Healing Applications
Available online: 24 July 2025More LessIntroductionPolysaccharide-derived biomaterials have emerged as promising candidates for wound healing applications due to their biocompatibility, biodegradability, and ability to mimic the extracellular matrix. These materials play a crucial role in maintaining a moist wound environment, promoting cell proliferation, and exhibiting anti-microbial properties, making them suitable alternatives to traditional wound dressings.
MethodsA systematic literature review was conducted using reputable databases including ScienceDirect, PubMed, Scopus, and Google Scholar. Relevant studies were identified, screened, and analyzed to ensure comprehensive coverage of the topic.
ResultWound healing is aided by essential polysaccharides such as chitosan, alginate, cellulose, and carrageenan, which help to retain moisture, promote cell proliferation, and prevent infections.
DiscussionPolysaccharide-derived biomaterials, including chitosan, alginate, and cellulose, facilitate wound healing by maintaining moisture, promoting cell migration, and exhibiting anti-microbial properties. However, challenges such as weak mechanical strength and rapid degradation limit their clinical use. Recent advancements in composite hydrogels, nanomaterials, and 3D-printed scaffolds have improved stability, drug release, and anti-microbial efficacy. Further research is required to enhance their mechanical properties and long-term applicability for clinical wound care solutions.
ConclusionBiomaterials developed from polysaccharides have the potential to revolutionize wound healing by providing biocompatible, adaptable solutions that promote enhanced tissue regeneration and infection control.
-
-
-
Exploring Therapeutic Potential of Emblica officinalis (Amla) Against Streptozotocin-Induced Diabetic Nephropathy in Wistar Rats
Authors: Umber Younas, Muhammad Issa Khan, Imran Pasha and Beenish IsrarAvailable online: 24 July 2025More LessIntroductionDiabetic nephropathy is a common microvascular complication that affects 20-40% of individuals with diabetes worldwide. This study aimed to evaluate the therapeutic potential of amla fruit against streptozotocin-induced diabetic nephropathy using animal models.
MethodsThe male Wistar rats procured for the study were divided into four groups randomly, G1 (negative control group), G2 (positive control group), G3 (rats receiving amla powder at 5% of their diet), and G4 (rats receiving amla powder at 7% of their diet). Diabetic nephropathy (DN) was induced using streptozotocin at a dose of 65 mg/kg. High-performance liquid chromatography (HPLC) was used to quantify the bioactive constituents of amla. Physical, glycemic, oxidative, inflammatory, and renal biomarkers were assessed periodically.
ResultsHPLC analysis confirmed the presence of high levels of vitamin C, gallic acid, and quercetin in amla. Amla supplementation significantly improved body weight, controlled kidney hypertrophy, reduced blood glucose levels, enhanced antioxidant enzyme activity such as superoxide dismutase (SOD) and catalase (CAT), and suppressed inflammatory cytokines. Renal function markers, including serum creatinine, blood urea nitrogen (BUN), and urine albumin, were significantly improved in the amla-treated groups. The 5% amla diet showed slightly superior effects compared to the 7% amla diet, although the differences were not statistically significant.
DiscussionThe findings suggested that amla mitigates DN progression by targeting key pathological pathways, particularly oxidative stress and inflammation. Its bioactive compounds appear to modulate glucose homeostasis, restore antioxidant defence, and reduce inflammatory responses. The findings also suggested a potential non-linear dose-response relationship, indicating 5% as a more effective dietary inclusion.
ConclusionConclusively, amla fruit effectively alleviated streptozotocin-induced diabetic nephropathy in rats by controlling oxidative stress, inflammation, and hyperglycemia.
-
-
-
Synthetic Approaches and Biological Significance of Four-Membered Heterocyclic Compounds
Authors: Neelottama Kushwaha and Swatantra K.S. KushwahaAvailable online: 23 July 2025More LessA four-membered heterocycle synthesis offers a thorough exploration of these unstable organic compounds, systematically introducing the synthesis and reactions of all standard four-membered heterocycles while showcasing various methods for creating unique variants. Due to their inherent strain, four-membered heterocyclic compounds are classified as unstable organic compounds, which makes them valuable as precursors for synthesizing a wide range of complex heterocyclic molecules. These compounds have become essential frameworks in medicinal chemistry, providing unique properties that enhance drug design and development. The incorporation of heteroatoms like nitrogen, oxygen, and sulfur into four-membered rings (such as azetidines, oxetanes, and thietanes) leads to diverse electronic, steric, and metabolic characteristics that can improve therapeutic efficacy, selectivity, and pharmacokinetics. Despite the challenges posed by their ring strain, recent advancements in chemical synthesis and functionalization techniques have made these compounds more accessible for various therapeutic applications. These strained ring structures offer increased metabolic stability, controlled lipophilicity, and the potential for advantageous binding interactions, making them suitable for multiple therapeutic uses, including oncology, infectious diseases, and CNS disorders. This review examines the key properties of four-membered heterocyclic rings, their role in drug development, recent synthetic advancements, and the potential of these compounds to yield next-generation medications with enhanced efficacy and precision.
-
-
-
Network Pharmacology, Molecular Docking, and In Vitro Validation to Explore the Key Phytochemicals of Da-cheng-qi Decoction Treating Intracerebral Hemorrhage
Authors: Yi-Zhi Yan, Xin-Yi Liu, Sha-Sha Yang, Shan-Shan Zhu, Ke Zhou, Qing Tian, Si-Jie Tan and Peng ZengAvailable online: 23 July 2025More LessBackgroundThe development of secondary brain injury following intracerebral hemorrhage (ICH) involves multiple pathophysiological processes. Da-cheng-qi decoction (DCQD) has a long history of effectiveness in treating ICH and exhibits a variety of pharmacological effects. However, the phytochemicals and targets of DCQD targeting the pathophysiological processes of ICH still require further elucidation. This study aims to investigate the mechanism and key phytochemicals of DCQD in treating ICH based on the pathophysiological processes.
MethodsWe used the UHPLC-MS/MS method to identify the main phytochemicals of DCQD and evaluate their pharmacological and toxicological parameters. We obtained and systematically analyzed the action targets of the main phytochemicals of DCQD and screened the targets related to ICH key pathophysiological processes and the corresponding phytochemicals. The results of molecular docking, molecular dynamic simulations, the GEO database and in vitro validation experiments confirmed the results of network pharmacology.
ResultsThe 20 main phytochemicals of DCQD interact with a total of 186 targets, with 75 targets specifically associated with the treatment of ICH identified through pathophysiological processes. Among them, chrysophanol 1-glucoside, aloe emodin, emodin, hesperidin, tangeritin, rhein and physcion were recognized as the potential phytochemicals of DCQD for the treatment of ICH. Neuroinflammation is a crucial factor in the development of secondary brain injury following ICH. Further analysis results suggest that targeting ferroptosis is one of the mechanisms by which DCQD regulates the pathophysiology processes of ICH to improve ICH. In vitro cell experiment results have demonstrated the regulatory effect of naringin on TNF-α and Cox2. In addition, the phytochemicals in DCQD also contribute to enhancement of cognitive function impaired by ICH.
ConclusionThis study contributes to a better understanding of the underlying mechanisms behind DCQD's medicinal effects in treating ICH, offering insights into potential lead compounds for the development of anti-ICH drugs.
-
-
-
Computer-aided Drug Design for Alzheimer's Disease: Recent Advancements and Future Perspectives
Authors: Suman Rohilla and Garima GoyalAvailable online: 22 July 2025More LessAlzheimer's disease (AD) is a neurodegenerative disorder marked by a decline in cognitive function and memory loss, primarily resulting from cholinergic dysfunction, the accumulation of amyloid plaques, the formation of tau tangles, and the progressive degeneration of neurons. While existing treatments offer limited symptomatic relief, they do not effectively halt or reverse the underlying progression of the disease, presenting a major global challenge in Alzheimer’s research. Developing therapeutic strategies for AD remains complex, largely due to the inability of current medications to significantly slow neurodegeneration. Traditional drug discovery processes are often lengthy, costly, and inefficient, further complicating the search for effective treatments. To overcome these obstacles, researchers have turned to a combination of computational approaches alongside conventional drug design techniques. These integrated methodologies help accelerate the discovery process by significantly reducing both time and costs. This review delves into the underlying physiological and pathological mechanisms of Alzheimer's disease, while identifying potential drug targets such as acetylcholinesterase, butyrylcholinesterase, β-Secretase (BACE-1), A2A adenosine receptor, Dickkopf-1 protein, glycogen synthase kinase-3β, indoleamine 2,3-dioxygenase, monoamine oxidase-B, NMDA receptor, Wnt inhibitory factor, cyclin-dependent kinase-5, glutaminyl cyclase, and cathepsin-B. Furthermore, the review examines various computer-aided drug design (CADD) methodologies, including structure-based and ligand-based approaches, virtual screening, pharmacophore modeling, molecular modelling, and simulation techniques. These computational strategies are playing an increasingly important role in Alzheimer’s research, particularly in drug discovery. By investigating promising drug candidates and lead molecules that target key proteins involved in Alzheimer’s pathogenesis, the review highlights their binding modes with these targets and assesses the chemical properties essential for the development of effective clinical candidates. The aim is to provide researchers with critical insights and tools to design novel compounds with the necessary chemical and physical characteristics required for the successful treatment of Alzheimer’s disease.
-
-
-
Carboxamide: A Privileged Pharmacophore for the Development of Anti-infectious and Anti-cancer Drugs
Authors: Xiaopei Yang, Zirui Jiao, Kasemsiri Chandarajoti, Sai Lv, Xisong Ke and Wen ZhouAvailable online: 22 July 2025More LessCarboxamide is a privileged scaffold that is often used in FDA-approved drugs. Unlike traditional amides, which exhibit properties similar to valence bonds, carboxamide has a more excellent binding mode and thus constructs rich pharmacological activities. According to the different working principles and N-terminus substitution of its specific structures, carboxamide can be further divided into N-unsubstituted carboxamide and N-substituted carboxamide. Both kinds of carboxamides have been widely studied and used in drug design and development. This review starts from the binding style and thus summarizes the excellent carboxamide structures, current research progress, and future challenges in the fields of anti-infection and anti-cancer.
-
-
-
Unveiling Vadadustat: Comprehensive Review of its Chemistry, Pharmacology, Bioanalysis, and Patent Landscape as a Novel HIF-PH Inhibitor
Authors: Firdous Shaikh and Sanjay SharmaAvailable online: 22 July 2025More LessIntroductionThe goal of this study is to provide a comprehensive review of physicochemical and pharmacological properties, including pharmacokinetics and pharmacodynamics parameters, with an overview of preclinical and clinical trial data, chemistry, and multiple routes of synthesis, bioanalytical methods, and patents of the API: Vadadustat
MethodsA review was conducted by compiling data from Science Direct, PubMed, Drug Bank, WIPO patent, Clinicaltrialgov, Wolters Kluwer, and many others to enhance understanding of the topic
ResultsThe FDA approved Vadadustat on March 27, 2024, for treating anemia in adults with CKD on dialysis. Vadadustat effectively increased hemoglobin levels in both non-dialysis and dialysis-dependent CKD patients. It showed comparable efficacy to traditional erythropoiesis-stimulating agents (ESAs) like darbepoetin alfa. Multiple clinical trials, including Phase 2 and Phase 3 studies, demonstrated Vadadustat’s potential as an effective treatment for anemia in CKD patients.
DiscussionVadadustat, as an oral HIF-PH inhibitor, offers significant advantages in the treatment of anemia in CKD. Its oral route of administration improves patient compliance, and its efficacy is comparable to ESAs. Clinical and preclinical data support its safety and therapeutic potential, although long-term cardiovascular effects remain under observation.
ConclusionThis review examines therapeutic, pharmacological, analytical, and regulatory aspects related to Vadadustat.
-
-
-
LINC-PINT: A Distinctive Long Non-Coding RNA Functioning as a Potential Suppressor in Tumorigenesis
Authors: Jiayi Li, Yining Pan, Songqiang Li, Cheng Chen and Chengfu YuanAvailable online: 22 July 2025More LessIntroductionLong noncoding RNAs are essential regulators in numerous biological processes and have been linked to various diseases including cancer. Despite their initial classification as transcriptional byproducts lncRNAs have been shown to modulate chromatin structure transcription RNA processing protein translation and intranuclear transport. LINC-PINT a lncRNA induced by P53 is particularly noteworthy for its role in tumor suppression across multiple cancers
MethodsBy utilizing the PubMed database and applying inclusion criteria based on relevance literature quality and data availability we conducted a comprehensive analysis of 128 studies to provide an overview of the functions of LINC-PINT and its mechanisms of action in cancers
ResultsLINC-PINT was confirmed to function as a tumor suppressor factor in many cancers such as triple-negative breast cancer non-small cell lung cancer gastric cancer glioma melanoma osteosarcoma laryngeal squamous cell carcinoma esophageal cancer colorectal cancer nasopharyngeal carcinoma retinoblastoma ovarian cancer thyroid cancer hepatocellular carcinoma and pancreatic cancer by promoting apoptosis and senescence inhibiting proliferation migration invasion drug resistance cell stemness EMT radioresistance and DNA damage repair
DiscussionLINC-PINT serves as a tumor suppressor with its ability to sponge miRNAs regulate epigenetic modulation DNA damage repair etc. Despite the promising findings the complex and tissue-specific functions of LINC-PINT along with the need for further clinical validation underscore the importance of continued research to fully understand its mechanisms and potential as a therapeutic target
ConclusionLINC-PINT is a potential target in cancer progression and treatment
-
-
-
Advancements and Scientific Partnerships in the Application of Polysaccharides in Oral Formulations: A Bibliometric Analysis and Review
Available online: 18 July 2025More LessIntroduction/ObjectiveThe limitations of conventional drug delivery methods, such as systemic side effects and poor absorption, highlight the need for safer and more effective alternatives. Polysaccharides, due to their biocompatible, biodegradable, and mucoadhesive properties, have shown promise in formulations for the oral cavity, particularly in localized delivery systems and tissue regeneration. This study aims to conduct a bibliometric analysis to characterize the scientific output on the use of polysaccharides in the oral cavity, identifying trends, international collaborations, and research gaps.
MethodsA Web of Science search was conducted in January 2025 using keywords related to polysaccharides and mucosal adhesion. The analysis included original articles published in English between 2015 and 2024. Bibliometric data and study characteristics were extracted and analyzed, focusing on study types, formulation types, and international collaborations.
ResultsThe analysis included 66 articles with 1144 citations. In vitro studies were predominant, while clinical trials were lacking. Chitosan and alginate emerged as the most commonly used polysaccharides, with gels and hydrogels being the most prevalent formulations. International collaborations involved 28 countries, with China, Brazil, and Italy standing out in terms of scientific production.
DiscussionThe results highlight important advancements in the use of polysaccharides for oral cavity formulations, particularly in gels and hydrogels. However, the predominance of in vitro studies and the lack of clinical trials suggest limitations for translating these findings into clinical practice. The strong performance of countries such as China, Brazil, Italy, Spain, and Norway underscores the relevance of international collaborations and the global potential of this topic.
ConclusionThe increasing scientific output reflects the growing interest in the use of polysaccharides for oral health applications. Despite these advancements, critical gaps remain, such as the lack of clinical studies. Future research should prioritize translational studies, personalized therapies, and the sustainable development of biomaterials.
-
-
-
The Use of Virus-like Particles as Immunogens to Treat Infectious Diseases
Authors: Paulo Ricardo da Silva Sanches and Eduardo Maffud CilliAvailable online: 17 July 2025More LessVirus-like particles (VLPs) represent a promising approach to developing vaccines for infectious diseases. These nanostructures mimic the organization and conformation of native viruses but lack viral genetic material, rendering them non-infectious. VLPs can induce potent immune responses, making them ideal immunogens. This review provides an overview of VLP technology, its application in combating infectious diseases, and its potential to shape future vaccine development. Specific emphasis is placed on current clinical applications, emerging infectious disease targets, and the challenges in optimizing VLP-based immunogens.
-
-
-
Barrier Tissue-Resident Macrophages: Natural Compounds as Modulators in Immune Function and Disease
Available online: 17 July 2025More LessTissue-Resident Macrophages (TRMs) are essential cells of the immune system, strategically located in barrier tissues such as the skin, lungs, and intestines. They can originate from progenitor cells in the yolk sac and fetal liver, developing distinct features that enable them to respond effectively to local challenges and maintain tissue homeostasis. The functional plasticity of TRMs allows them to adapt to diverse microenvironments, facilitating their roles in tissue repair, inflammation, and immune surveillance. Recent studies have highlighted the potential of Natural Compounds (NCs) to modulate macrophage function, offering promising therapeutic strategies for managing inflammatory diseases. These compounds have been shown to enhance or suppress specific macrophage activities, influencing immune responses and promoting healing processes. This review highlights the importance of understanding TRMs and the role of natural compounds in modulating TRM activation and function. Deciphering the potential of NCs in macrophages may shed light on the development of innovative treatments for various immune-related diseases.
-
-
-
Potential Indicators for the Development of Hepatocellular Carcinoma: A Diagnostic Strategy
Available online: 16 July 2025More Less: Hepatocellular carcinoma (HCC), a primary malignancy of the liver, ranks among the top five most common cancers globally and is associated with high mortality due to its poor prognosis, late-stage detection, and limited therapeutic success. Early diagnosis is essential to improve treatment outcomes and survival rates. Biomarkers have emerged as vital tools for the early detection, prognosis, and therapeutic monitoring of HCC, with many detectable in serum or urine at quantifiable levels. These biomarkers may be overexpressed, downregulated, or involved in regulatory pathways affecting other proteins and molecules, thereby serving as potential indicators of tumor development. This review aims to provide an updated overview of promising HCC biomarkers, highlighting their diagnostic value and clinical utility. A structured literature search was conducted using PubMed, Scopus, and Web of Science databases for studies published. Eligible studies were selected based on predefined inclusion criteria, evaluated for quality, and thematically categorized according to the type and function of biomarkers. The review emphasizes the translational potential of these indicators in developing more effective diagnostic strategies for HCC.
-