Skip to content
2000
image of TMIGD2 in Bladder Cancer: A Bioinformatics and Experimental Approach to Understanding its Prognostic and Therapeutic Potential

Abstract

Introduction

Transmembrane and immunoglobulin domain-containing 2 (TMIGD2) has been implicated in several malignancies. However, the expression pattern, prognostic significance, and mechanistic role of TMIGD2 in bladder cancer (BLCA) remain largely unexplored. It is still unclear whether TMIGD2 serves as a reliable prognostic biomarker or functions as a druggable mediator of immune evasion and chemoresistance in BLCA.

Methods

The expression levels of TMIGD2 were assessed in BLCA cell lines using quantitative real-time PCR (qRT-PCR). Data from The Cancer Genome Atlas (TCGA) were used to analyze the correlation between TMIGD2 expression and clinical characteristics and to assess its prognostic value in BLCA patients. Potential regulatory mechanisms involving TMIGD2 were explored, including its interactions with immune infiltration, immune checkpoint genes, and drug responsiveness. A ceRNA network centered on TMIGD2 was established. The expression of TMIGD2 at both mRNA and protein levels was validated using data from the Gene Expression Omnibus (GEO) and the Human Protein Atlas (HPA).

Results

TMIGD2 was found to be downregulated in BLCA cell lines and tissues compared to normal urothelial cells. Lower TMIGD2 expression was significantly associated with poorer overall survival (OS) (HR = 0.66, 95% CI = 0.49-0.89, p = 0.006), progression-free survival (PFS) (HR = 0.61, 95% CI = 0.46-0.83, p = 0.001), and disease-specific survival (DSS) (HR = 0.53, 95% CI = 0.37-0.76, p < 0.001) among BLCA patients. Multivariate analysis identified TMIGD2 as an independent prognostic factor (p = 0.046). Gene Set Enrichment Analysis (GSEA) indicated that TMIGD2 expression was connected to several pathways, including cell adhesion molecules and T cell receptor signaling. Immune-infiltration analysis showed a previously unrecognized positive association between TMIGD2 expression and intratumoral T-cell/cytotoxic cell abundance as well as PD-L1, CTLA-4, LAG-3, and TIGIT levels, indicating that TMIGD2 may refine patient stratification beyond PD-L1 status. Low TMIGD2 expression correlated with greater resistance to afatinib, sorafenib, and paclitaxel. Finally, we constructed the TCGA-derived ceRNA network (AC009245.1/miR-1304-3p/TMIGD2), which provides a new post-transcriptional mechanism governing TMIGD2 expression in BLCA.

Discussion

The findings highlight the potential of TMIGD2 as both a prognostic biomarker and a therapeutic target in BLCA. The downregulation of TMIGD2 in BLCA and its correlation with adverse prognosis and immune modulation suggest its involvement in tumor progression and immune response. The ceRNA network provides insights into the regulatory mechanisms of TMIGD2. However, the study's reliance on publicly available datasets, coupled with the lack of direct experimental validation of TMIGD2's functional role in BLCA, limits the immediate clinical application of these findings. Future research should focus on validating these results in larger cohorts and elucidating the specific mechanisms through which TMIGD2 influences BLCA progression and immune response.

Conclusion

This study demonstrates that TMIGD2 is downregulated in BLCA and correlates with adverse prognosis and immune regulation. Its potential as a prognostic biomarker and therapeutic target is underscored by its involvement in key pathways, immune infiltration, and drug sensitivity. Further research is essential to fully realize the clinical potential of TMIGD2 in the management of BLCA.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266414071251126071447
2026-01-15
2026-01-31
Loading full text...

Full text loading...

References

  1. Xiong S. Li S. Zeng J. Nie J. Liu T. Liu X. Chen L. Fu B. Deng J. Xu S. Deciphering the immunological and prognostic features of bladder cancer through platinum-resistance-related genes analysis and identifying potential therapeutic target P4HB. Front. Immunol. 2023 14 1253586 10.3389/fimmu.2023.1253586 37790935
    [Google Scholar]
  2. Liu C. Liu X. Cao P. Xin H. Li X. Zhu S. Circadian rhythm related genes identified through tumorigenesis and immune infiltration-guided strategies as predictors of prognosis, immunotherapy response, and candidate drugs in skin cutaneous malignant melanoma. Front. Immunol. 2025 16 1513750 10.3389/fimmu.2025.1513750 40191195
    [Google Scholar]
  3. Zhang Y. Rumgay H. Li M. Yu H. Pan H. Ni J. The global landscape of bladder cancer incidence and mortality in 2020 and projections to 2040. J. Glob. Health 2023 13 04109 10.7189/jogh.13.04109 37712386
    [Google Scholar]
  4. Witjes J.A. Bruins H.M. Cathomas R. Compérat E.M. Cowan N.C. Gakis G. Hernández V. Linares Espinós E. Lorch A. Neuzillet Y. Rouanne M. Thalmann G.N. Veskimäe E. Ribal M.J. van der Heijden A.G. European association of urology guidelines on muscle-invasive and metastatic bladder cancer: Summary of the 2020 Guidelines. Eur. Urol. 2021 79 1 82 104 10.1016/j.eururo.2020.03.055 32360052
    [Google Scholar]
  5. Lobo N. Afferi L. Moschini M. Mostafid H. Porten S. Psutka S.P. Gupta S. Smith A.B. Williams S.B. Lotan Y. Epidemiology, screening, and prevention of bladder cancer. Eur. Urol. Oncol. 2022 5 6 628 639 10.1016/j.euo.2022.10.003 36333236
    [Google Scholar]
  6. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 Countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  7. Wang Y. Song W. Feng C. Wu S. Qin Z. Liu T. Ye Y. Huang R. Xie Y. Tang Z. Wang Q. Li T. Multi-omics analysis unveils the predictive value of IGF2BP3/SPHK1 signaling in cancer stem cells for prognosis and immunotherapeutic response in muscle-invasive bladder cancer. J. Transl. Med. 2024 22 1 900 10.1186/s12967‑024‑05685‑8 39367493
    [Google Scholar]
  8. Babjuk M. Burger M. Capoun O. Cohen D. Compérat E.M. Dominguez Escrig J.L. Gontero P. Liedberg F. Masson-Lecomte A. Mostafid A.H. Palou J. van Rhijn B.W.G. Rouprêt M. Shariat S.F. Seisen T. Soukup V. Sylvester R.J. European association of urology guidelines on non–muscle-invasive bladder cancer (Ta, T1, and Carcinoma in Situ). Eur. Urol. 2022 81 1 75 94 10.1016/j.eururo.2021.08.010 34511303
    [Google Scholar]
  9. Lenis A.T. Lec P.M. Chamie K. Mshs M. Bladder Cancer. JAMA 2020 324 19 1980 1991 10.1001/jama.2020.17598 33201207
    [Google Scholar]
  10. Wang T. Guo T. Sun J. Zang X. Dong L. Zhang J. Chen S. Chen G. Ma S. Zhai X. Chu C. Wang C. Wang X. Xu D. Tan M. Loss of OBSCN expression promotes bladder cancer progression but enhances the efficacy of PD-L1 inhibitors. Cell Biosci. 2025 15 1 40 10.1186/s13578‑025‑01379‑w 40149008
    [Google Scholar]
  11. Nishimura C. D. Corrigan D. Zheng X. Y. Galbo P. M. Wang S. Liu Y. Wei Y. Suo L. Cui W. Mercado N. TOP CAR with TMIGD2 as a safe and effective costimulatory domain in CAR cells treating human solid tumors. Sci. Adv. 2024 10 19 eadk1857 10.1126/sciadv.adk1857
    [Google Scholar]
  12. Li Y. Lv C. Yu Y. Wu B. Zhang Y. Lang Q. Liang Z. Zhong C. Shi Y. Han S. Xu F. Tian Y. KIR3DL3-HHLA2 and TMIGD2-HHLA2 pathways: The dual role of HHLA2 in immune responses and its potential therapeutic approach for cancer immunotherapy. J. Adv. Res. 2023 47 137 150 10.1016/j.jare.2022.07.013 35933091
    [Google Scholar]
  13. Guo H. Zhang C. Tang X. Zhang T. Liu Y. Yu H. Li Y. Wang R. HHLA2 Activates the JAK/STAT signaling pathway by binding to tmigd2 in hepatocellular carcinoma cells. Inflammation 2022 45 4 1585 1599 10.1007/s10753‑022‑01644‑x 35175496
    [Google Scholar]
  14. Zhao Y. Chen H. Zhang W. Shang W. Cao J. Zhao H. Zou Z. Mir-615-5p inhibits cervical cancer progression by targeting TMIGD2. Hereditas 2025 162 1 4 10.1186/s41065‑024‑00363‑7 39789663
    [Google Scholar]
  15. Wang J. Wu Y. MicroRNA-486-3p affects cisplatin resistance in high-grade serous ovarian cancer by regulating TMIGD2: An experimental study. Heliyon 2024 10 15 e34978 10.1016/j.heliyon.2024.e34978 39145009
    [Google Scholar]
  16. Zhu J. Zhang T. Jiang J. Yang M. Xia N. Chen Y. Genetic variation perspective reveals potential drug targets for subtypes of endometrial cancer. Sci. Rep. 2024 14 1 28180 10.1038/s41598‑024‑78689‑5 39548148
    [Google Scholar]
  17. Lou W. Ding B. Fan W. High Expression of pseudogene PTTG3P indicates a poor prognosis in human breast cancer. Mol. Ther. Oncolytics 2019 14 15 26 10.1016/j.omto.2019.03.006 31011629
    [Google Scholar]
  18. Liu C. Qiao H. Li H. Hu X. Yan M. Fu Z. Zhang H. Wang Y. Du N. Exploring the role of LOX family in glioma progression and immune modulation. Front. Immunol. 2025 16 1512186 10.3389/fimmu.2025.1512186 40270974
    [Google Scholar]
  19. Huang Z. Hu X. Wei Y. Lai Y. Qi J. Pang J. Huang K. Li H. Cai P. ADAMTSL2 is a potential prognostic biomarker and immunotherapeutic target for colorectal cancer: Bioinformatic analysis and experimental verification. PLoS One 2024 19 5 e0303909 10.1371/journal.pone.0303909 38814950
    [Google Scholar]
  20. Liang D. Zhang Q. Pang Y. Yan R. Ke Y. SGSM2 in uveal melanoma: Implications for survival, immune infiltration, and drug sensitivity. Protein Pept. Lett. 2024 31 11 894 905 10.2174/0109298665341953240926041613 39501960
    [Google Scholar]
  21. Jiang X. Shi Y. Chen X. Xu H. Huang X. Li L. Pu J. The N6-methylandenosine-related gene BIRC5 as a prognostic biomarker correlated with cell migration and immune cell infiltrates in low grade glioma. Front. Mol. Biosci. 2022 9 773662 10.3389/fmolb.2022.773662 35309512
    [Google Scholar]
  22. Jin Y. Wang Z. He D. Zhu Y. Hu X. Gong L. Xiao M. Chen X. Cheng Y. Cao K. Analysis of m6A-Related Signatures in the Tumor Immune Microenvironment and Identification of Clinical Prognostic Regulators in Adrenocortical Carcinoma. Front. Immunol. 2021 12 637933 10.3389/fimmu.2021.637933 33746977
    [Google Scholar]
  23. Guo L. Yuan M. Jiang S. Jin G. Li P. Expression of pyroptosis-associated genes and construction of prognostic model for thyroid cancer. Transl. Cancer Res. 2023 12 12 3360 3383 10.21037/tcr‑23‑810 38193001
    [Google Scholar]
  24. Huang H. Xu Q. Zhang Y. Zhou Y. Ma K. Luo Y. miR-628-5p is a Potential novel prognosis biomarker, associated with immune infiltration in bladder urothelial carcinoma. Curr. Pharm. Des. 2023 29 31 2477 2488 10.2174/0113816128254621231017062923 37916623
    [Google Scholar]
  25. Lyu G. Li D. ZP3 expression in pancreatic adenocarcinoma: Its implications for the prognosis and therapy. Protein Pept. Lett. 2025 32 2 124 138 10.2174/0109298665350171241204153202 39791146
    [Google Scholar]
  26. Chen W. Ding G. Zhong Y. Lao M. Zhang Q. Li D. Deng W. Chen Y. PRR22: A novel prognostic indicator and therapeutic target for prostate cancer. Anticancer. Agents Med. Chem. 2025 10.2174/0118715206415552250910202624
    [Google Scholar]
  27. Zhang C. Chen Y. Zuo Y. Wang M. Chen H. Wang C. Cao Y. Zeng Y. Chen Y. Zhang T. Ge X. Cao X. Liu Y. Cheng H. Deng Y. Lu J. Dual targeting of FR+CD44 overexpressing tumors by self-assembled nanoparticles quantitatively conjugating folic acid-hyaluronic acid to the GSH-sensitively modified podophyllotoxin. Chem. Eng. J. 2025 505 159276 10.1016/j.cej.2025.159276
    [Google Scholar]
  28. Helali M. Kaviani S. Alizadeh S. Afrisham R. Ahmadvand M. The effects of plasma exosomes of young individuals compared to old ones on age-related inflammation and lineage differentiation of CD34+ umbilical cord blood hematopoietic stem cells. Curr. Top. Med. Chem. 2025 25 10.2174/0115680266361607250418052405 40325533
    [Google Scholar]
  29. Chen Q. Tan L. Jin Z. Liu Y. Zhang Z. Downregulation of CRABP2 Inhibit the tumorigenesis of hepatocellular carcinoma in vivo and in vitro. BioMed Res. Int. 2020 2020 1 3098327 10.1155/2020/3098327 32685464
    [Google Scholar]
  30. Song D. Shen T. Feng K. He Y. Chen S. Zhang Y. Luo W. Han L. Tong M. Jin Y. LIG1 is a novel marker for bladder cancer prognosis: evidence based on experimental studies, machine learning and single-cell sequencing. Front. Immunol. 2024 15 1419126 10.3389/fimmu.2024.1419126 39234248
    [Google Scholar]
  31. Zhang Q. Tian Y. He B. Zhang W. Liu X. Hao J. Theobromine prevents affective symptoms of nicotine withdrawal by modulating the neuroendocrine and immune systems, as well as the glutathione mechanism in the hippocampus. IBRO Neurosci. Rep. 2025 19 160 173 10.1016/j.ibneur.2025.06.011 40620832
    [Google Scholar]
  32. Zhang Z.J. Wang K.P. Huang Y.P. Jin C. Jiang H. Xiong L. Chen Z.Y. Wen Y. Liu Z.T. Mo J.G. Comprehensive analysis of the potential immune-related biomarker ATG101 that regulates apoptosis of cholangiocarcinoma cells after photodynamic therapy. Front. Pharmacol. 2022 13 857774 10.3389/fphar.2022.857774 35592424
    [Google Scholar]
  33. Gao Z. Liu C. Yang L. He T. Wu X. Zhang H. Dong K. SPARC Overexpression Promotes Liver Cancer Cell Proliferation and Tumor Growth. Front. Mol. Biosci. 2021 8 775743 10.3389/fmolb.2021.775743 34912848
    [Google Scholar]
  34. Chen H. Sun Q. Zhang C. She J. Cao S. Cao M. Zhang N. Adiila A.V. Zhong J. Yao C. Wang Y. Xia H. Lan L. Identification and Validation of CYBB, CD86, and C3AR1 as the Key Genes Related to Macrophage Infiltration of Gastric Cancer. Front. Mol. Biosci. 2021 8 756085 10.3389/fmolb.2021.756085 34950700
    [Google Scholar]
  35. Yao X.R. Xiao F.Z. Xiao W.T. Huang C.Q. He J.Y. C16orf74 is a novel prognostic biomarker and associates with immune infiltration in head and neck squamous cell carcinoma. PLoS One 2025 20 5 e0322701 10.1371/journal.pone.0322701 40333816
    [Google Scholar]
  36. Chen R. Duan J. Ye Y. Xu H. Ding Y. Liu J. Identification and verification of a prognostic risk signature in oral squamous cell carcinoma. Curr. Top. Med. Chem. 2024 24 10.2174/0115680266335055240828061128 39238386
    [Google Scholar]
  37. Zhang B. Bian B. Zhao Z. Lin F. Zhu Z. Lou M. Correlations between apparent diffusion coefficient values of WB-DWI and clinical parameters in multiple myeloma. BMC Med. Imaging 2021 21 1 98 10.1186/s12880‑021‑00631‑2 34103001
    [Google Scholar]
  38. Fibla L. Forbes S.H. McCarthy J. Mee K. Magnotta V. Deoni S. Cameron D. Spencer J.P. Language exposure and brain myelination in early development. J. Neurosci. 2023 43 23 4279 4290 10.1523/JNEUROSCI.1034‑22.2023 37188518
    [Google Scholar]
  39. Liu J. He M. Song R. Li J. The association between deep vein thrombosis at admission and the time from injury to admission in hip fractures. BMC Geriatr. 2025 25 1 222 10.1186/s12877‑025‑05875‑z 40186130
    [Google Scholar]
  40. Li Q. Wu B. Daba M. Gao X. Chen B. Song G. Zeng K. Miao J. Yuan X. Liu J. Wang Z. Liu B. Identification of calcium channel-related gene P2RX2 for prognosis and immune infiltration in prostate cancer. Dis. Markers 2022 2022 1 23 10.1155/2022/8058160 36246559
    [Google Scholar]
  41. Yang D. Liu M. Jiang J. Luo Y. Wang Y. Chen H. Li D. Wang D. Yang Z. Chen H. Comprehensive analysis of DMRT3 as a potential biomarker associated with the immune infiltration in a pan-cancer analysis and validation in lung adenocarcinoma. Cancers 2022 14 24 6220 10.3390/cancers14246220 36551704
    [Google Scholar]
  42. Yan X. Wang N. Dong J. Wang F. Zhang J. Hu X. Zhao H. Gao X. Liu Z. Li Y. Hu S. A cuproptosis-related lncRNAs signature for prognosis, chemotherapy, and immune checkpoint blockade therapy of low-grade glioma. Front. Mol. Biosci. 2022 9 966843 10.3389/fmolb.2022.966843 36060266
    [Google Scholar]
  43. Chen B. Ding X. Wan A. Qi X. Lin X. Wang H. Mu W. Wang G. Zheng J. Comprehensive analysis of TLX2 in pan cancer as a prognostic and immunologic biomarker and validation in ovarian cancer. Sci. Rep. 2023 13 1 16244 10.1038/s41598‑023‑42171‑5 37758722
    [Google Scholar]
  44. Xing S. Li D. Zhao Q. RPL22L1 is a novel biomarker for prognosis and immune infiltration in lung adenocarcinoma, promoting the growth and metastasis of LUAD cells by inhibiting the MDM2/P53 signaling pathway. Aging (Albany NY) 2024 16 17 12392 12413 10.18632/aging.206096 39207452
    [Google Scholar]
  45. Yue C. Zheng X. Ye Y. Li D. Zhou Y. TNFAIP8L3 regulation of the TGF-β signaling pathway affects the proportion of macrophages during tumor antigen presentation and affects the prognosis of ovarian cancer. Front. Mol. Biosci. 2025 12 1566363 10.3389/fmolb.2025.1566363 40343258
    [Google Scholar]
  46. Jiang J. Xia N. Yang M. Qiu P. Zhu W. Chen J. Zhu J. Identification and validation of glucose metabolism-related gene signature in endometrial cancer. BMC Cancer 2025 25 1 30 10.1186/s12885‑024‑13418‑9 39773448
    [Google Scholar]
  47. Meng S. Fan X. Zhang J. An R. Li S. GJA1 expression and its prognostic value in cervical cancer. BioMed Res. Int. 2020 2020 1 8827920 10.1155/2020/8827920 33299882
    [Google Scholar]
  48. Zhang H. Zhao X. Wang J. Ji W. Development and validation of an immune-related signature for the prediction of recurrence risk of patients with laryngeal cancer. Front. Oncol. 2021 11 683915 10.3389/fonc.2021.683915 34976784
    [Google Scholar]
  49. Meng L. He X. Hong Q. Qiao B. Zhang X. Wu B. Zhang X. Wei Y. Li J. Ye Z. Xiao Y. CCR4, CCR8, and P2RY14 as prognostic factors in head and neck squamous cell carcinoma are involved in the remodeling of the tumor microenvironment. Front. Oncol. 2021 11 618187 10.3389/fonc.2021.618187 33692955
    [Google Scholar]
  50. Qi Y. Deng G. Xu P. Zhang H. Yuan F. Geng R. Jiang H. Liu B. Chen Q. HHLA2 is a novel prognostic predictor and potential therapeutic target in malignant glioma. Oncol. Rep. 2019 42 6 2309 2322 10.3892/or.2019.7343 31578594
    [Google Scholar]
  51. Zhao L. Wang Y.F. Adamcakova-Dodd A. Thorne P.S. Islam R. Liu K.J. Chen F. Luo J. Liu L.Z. Nrf2/cyclooxygenase 2 signaling in Cr(VI)-induced carcinogenesis. Ecotoxicol. Environ. Saf. 2025 291 117800 10.1016/j.ecoenv.2025.117800 39923569
    [Google Scholar]
  52. Liu Z. Zhao X. Wang R. Tang X. Zhao Y. Zhong G. Peng X. Zhang C. Heterogeneous pattern of gene expression driven by TTN mutation is involved in the construction of a prognosis model of lung squamous cell carcinoma. Front. Oncol. 2023 13 916568 10.3389/fonc.2023.916568 37035196
    [Google Scholar]
  53. Ludwig K.D. Johnson C.P. Zbýň Š. Nowacki A. Marette S. Takahashi T. Macalena J.A. Nelson B.J. Tompkins M.A. Carlson C.S. Ellermann J.M. MRI evaluation of articular cartilage in patients with juvenile osteochondritis dissecans (JOCD) using T2* mapping at 3T. Osteoarthritis Cartilage 2020 28 9 1235 1244 10.1016/j.joca.2020.04.001 32278071
    [Google Scholar]
  54. Cao R. Ma B. Wang G. Xiong Y. Tian Y. Yuan L. Identification of autophagy‐related genes signature predicts chemotherapeutic and immunotherapeutic efficiency in bladder cancer (BLCA). J. Cell. Mol. Med. 2021 25 12 5417 5433 10.1111/jcmm.16552 33960661
    [Google Scholar]
  55. Miao L. Jing L. Chen B. Zeng T. Chen Y. TPD52 is a Potential Prognostic Biomarker and Correlated with Immune Infiltration: A Pan-cancer Analysis. Curr. Mol. Med. 2024 24 11 1413 1425 10.2174/0115665240260252230919054858 38178662
    [Google Scholar]
  56. Zou Y. Wang G. Fan M. Comprehensive multiomic analysis identified TUBA1C as a potential prognostic biological marker of immune-related therapy in pan-cancer. Comput. Math. Methods Med. 2022 2022 1 33 10.1155/2022/9493115 36466547
    [Google Scholar]
  57. Li J. Guan W. Ren W. Liu Z. Wu H. Chen Y. Liu S. Quan X. Yang Z. Jiang C. He J. Xiao X. Ye Q. Longitudinal genomic alternations and clonal dynamics analysis of primary malignant melanoma of the esophagus. Neoplasia 2022 30 100811 10.1016/j.neo.2022.100811 35661532
    [Google Scholar]
  58. Cai H. Chen S. Wu Z. Wang F. Tang S. Li D. Wang D. Guo W. Comprehensive analysis of ZNF692 as a potential biomarker associated with immune infiltration in a pan cancer analysis and validation in hepatocellular carcinoma. Aging (Albany NY) 2023 15 22 13041 13058 10.18632/aging.205218 37980166
    [Google Scholar]
  59. Yang Z. Li X. Zhou L. Luo Y. Zhan N. Ye Y. Liu Z. Zhang X. Qiu T. Lin L. Peng L. Hu Y. Pan C. Sun M. Zhang Y. Ferroptosis-related lncRNAs: Distinguishing heterogeneity of the tumour microenvironment and predicting immunotherapy response in bladder cancer. Heliyon 2024 10 11 e32018 10.1016/j.heliyon.2024.e32018 38867969
    [Google Scholar]
  60. Chen B. Jin X. Wang H. Zhou Q. Li G. Lu X. Expression, clinical significance, and prospective pathway signaling of miR-501-3p in ovarian cancer based on database and informatics analysis. Int. J. Gen. Med. 2021 14 5193 5201 10.2147/IJGM.S327673 34512002
    [Google Scholar]
  61. Hu T. Fang Z. Explore potential immune-related targets of leeches in the treatment of type 2 diabetes based on network pharmacology and machine learning. Front. Genet. 2025 16 1554622 10.3389/fgene.2025.1554622 40296871
    [Google Scholar]
  62. Xu D. Jiang C. Xiao Y. Ding H. Identification and validation of disulfidptosis-related gene signatures and their subtype in diabetic nephropathy. Front. Genet. 2023 14 1287613 10.3389/fgene.2023.1287613 38028597
    [Google Scholar]
  63. Choi J. Kim J. Jung Y.W. Park J.H. Lee J.H. Neurotrophic receptor tyrosine kinase 3 as a Prognostic biomarker in breast cancer using bioinformatic analysis. Medicina (Kaunas) 2025 61 3 474 10.3390/medicina61030474 40142285
    [Google Scholar]
  64. Li J. Tian X. Nie Y. He Y. Wu W. Lei X. Zhang T. Wang Y. Mao Z. Zhang H. Zhang X. Song W. BTBD10 is a prognostic biomarker correlated with immune infiltration in hepatocellular carcinoma. Front. Mol. Biosci. 2022 8 762541 10.3389/fmolb.2021.762541 35059434
    [Google Scholar]
  65. Xiao Y. Li H. Yang L.L. Mao L. Wu C.C. Zhang W.F. Sun Z.J. The expression patterns and associated clinical parameters of human endogenous retrovirus-H long terminal repeat-associating protein 2 and transmembrane and immunoglobulin domain containing 2 in oral squamous cell carcinoma. Dis. Markers 2019 2019 1 9 10.1155/2019/5421985 31089395
    [Google Scholar]
  66. Ferlay J. Shin H.R. Bray F. Forman D. Mathers C. Parkin D.M. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer 2010 127 12 2893 2917 10.1002/ijc.25516 21351269
    [Google Scholar]
  67. Zhang Y. Yang X. Zhou L. Gao X. Wu X. Chen X. Hou J. Wang L. Immune-related lincRNA pairs predict prognosis and therapeutic response in hepatocellular carcinoma. Sci. Rep. 2022 12 1 4259 10.1038/s41598‑022‑08225‑w 35277569
    [Google Scholar]
  68. Hu L. Liu Y. Kong X. Wu R. Peng Q. Zhang Y. Zhou L. Duan L. Fusobacterium nucleatum facilitates M2 macrophage polarization and colorectal carcinoma progression by activating TLR4/NF-κB/S100A9 cascade. Front. Immunol. 2021 12 658681 10.3389/fimmu.2021.658681 34093546
    [Google Scholar]
  69. Zhang M.J. Wang S. Wu C.C. Wu L. Sun Z.J. Expression of HHLA2, TMIGD2, and GITR in salivary gland adenoid cystic carcinoma and mucoepidermoid carcinoma. J. Oral Pathol. Med. 2022 51 4 379 387 10.1111/jop.13289 35226778
    [Google Scholar]
  70. Kula A. Koszewska D. Kot A. Dawidowicz M. Mielcarska S. Waniczek D. Świętochowska E. The importance of HHLA2 in solid tumors—a review of the literature. Cells 2024 13 10 794 10.3390/cells13100794 38786018
    [Google Scholar]
  71. Ren Q. Zhu P. Zhang H. Ye T. Liu D. Gong Z. Xia X. Identification and validation of stromal-tumor microenvironment-based subtypes tightly associated with PD-1/PD-L1 immunotherapy and outcomes in patients with gastric cancer. Cancer Cell Int. 2020 20 1 92 10.1186/s12935‑020‑01173‑3 32226313
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266414071251126071447
Loading
/content/journals/ctmc/10.2174/0115680266414071251126071447
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: Biomarker ; Immune infiltration ; Urothelial carcinoma ; ceRNA network ; Prognosis ; Drug sensitivity
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test