Current Topics in Medicinal Chemistry - Online First
Description text for Online First listing goes here...
1 - 20 of 108 results
-
-
A Review of The Place of Adipose-Derived Stem Cells among Stem Cell Applications in Neurodegenerative Diseases
Authors: Gurkan Yigitturk and Turker CavusogluAvailable online: 31 October 2025More LessTreatment of neurodegenerative diseases aims to slow disease progression, alleviate symptoms, and improve life quality. Adipose-Derived Stem Cells (ADSCs) have emerged as a promising treatment for neurodegenerative diseases that can be easily obtained from adipose tissues. Their abundance, accessibility, and potential for multilinear differentiation make them an attractive candidate for regenerative medicine. ADSCs can release neurotrophic factors, modulate neuroinflammation, and potentially differentiate into neurons, giving hope for neuronal repair and replacement. Preclinical studies have shown the efficacy of several neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, and spinal cord injuries. ADSC has demonstrated the potential to improve functional results, promote neurogenesis, induce tissue integrity, and reduce neuron loss. Clinical trials are still underway, but evidence of the effectiveness of ADSC in neurodegeneration is still being developed. The first clinical studies focused on safety and feasibility and achieved promising results. Optimizing cell transmission, controlling tumor growth, standardizing treatment protocols and such challenges remain. Current research is aimed at addressing these obstacles and transforming ADSC therapy into a widespread clinical practice. This review focuses on the characteristics, problems, and future approaches of ADSC in the context of neurodegenerative diseases and therapeutic processes.
-
-
-
-
Role of Oxidative Stress in Human Neurodegenerative Pathologies: Lessons from the Drosophila Model
Available online: 29 October 2025More LessOxidative stress plays a critical role in many diseases, making it essential to study its impact on disease progression. However, clinical trials have many limitations and, in some cases, may not be possible at all. In this case, the development of in vivo models is highly anticipated. This is especially relevant for neurodegenerative diseases. Drosophila melanogaster models have a number of advantages over many other animal models, including the availability and cost-effectiveness of breeding, the accumulated knowledge of the Drosophila genome, and the ability to manipulate a large number of individuals. The latter allows for rapid screening and in-depth studies of potential therapeutic agents, including natural compounds with antioxidant activity. This review describes genetic models of such pathologies as Parkinson’s disease, Huntington’s disease, Alzheimer’s disease and hereditary spastic paraplegia created on Drosophila melanogaster. Studies conducted on such models are presented with an emphasis on the role of oxidative stress analysis. Oxidative stress is proven to be a link between neurodegenerative and metabolic diseases. In addition, studies on Drosophila melanogaster have been analyzed, in which the prospects of natural compounds as therapeutic agents for neurodegenerative and metabolic diseases have been demonstrated.
-
-
-
Expression of Glucocorticoid and Mineralocorticoid Receptors in the Offspring of Mothers Experiencing Chronic Stress during Pregnancy
Authors: Yanhua Bi, Hui Gao, Yahua Bi and Kadir UludagAvailable online: 24 October 2025More LessIntroductionGlucocorticoid receptors (GRs) and mineralocorticoid receptors (MRs) are distributed in the brain, and they are particularly dense in the hippocampus. The two receptors are implicated in stress-related psychiatric diseases, such as anxiety, autism spectrum disorders (ASD) and depression. This study aims to investigate the alterations in neurological behaviour and the expression of GRs and MRs in male offspring from prenatal stress-exposed dams that were subjected to chronic stress.
MethodsIn our study, we conducted the elevated plus maze (EPM) test on adult offspring of pregnant mice exposed to chronic stress, as well as on mice in the control group, to examine their neurological behaviors. Expression levels of GRs, MRs, and interleukin 6 (IL-6) were detected by Real-Time Quantitative Reverse Transcription Polymerase Chain Reaction (qRT PCR). After euthanizing the adult mice from both groups, we dissected their cortex and hippocampus for immunofluorescence staining.
ResultsWe observed an increase in the IL-6 mRNA content in the cerebral cortex of male offspring from the stress group, which was accompanied by the activation of microglial cells. Additionally, the relative mRNA expression levels of GRs and MRs in the hippocampus of male offspring from the stress group were found to be decreased. As a result, adult offspring from the stress group exhibited anxiety-like behavior.
DiscussionThe observed reduction in hippocampal GR and MR expression, alongside increased cortical IL-6 and anxiety-like behavior in male offspring, suggests that prenatal stress disrupts neuroendocrine and inflammatory pathways, supporting previous findings on stress-induced neurodevelopmental vulnerability, although further studies are needed to address sex differences, long-term behavioral outcomes, and causal mechanisms.
ConclusionOur study indicates that chronic prenatal stress induces anxiety like behaviour in offspring and decreases the expression levels of GRs and MRs.
-
-
-
Zingerone Induces Apoptosis and Ferroptosis in Prostate Cancer DU145 Cells
Available online: 16 October 2025More LessIntroductionProstate cancer is among the most prominent malignant tumors in the male population, characterized by growing morbidity, a high fatality rate, and currently limited therapeutic options, necessitating the urgent development of novel clinical medications. The objective of the current study was to examine the therapeutic potential of zingerone in prostate cancer cells.
MethodsIn this study, we investigated the underlying mechanism by which zingerone exerts its anticancer effects in prostate cancer cells. We conducted various in vitro and in silico experiments to determine the therapeutic efficacy and mechanism of action of zingerone.
ResultsCytotoxicity analysis of zingerone revealed its substantial cytotoxic impact and ability to elevate lactose dehydrogenase levels in DU145 cells. Using the MTT assay, we determined that a concentration of 24.84 μM zingerone in DU145 cells grown for 24 h resulted in an IC50 value. Zingerone effectively induced apoptosis by increasing the levels of cytochrome c and caspase in DU145 cells. Regarding the identification of signs of ferroptosis, evidence has been shown for the presence of heightened mitochondrial ROS, disrupted mitochondrial membrane potential, increased levels of glutathione (GSH) and malondialdehyde (MDA), and reduced expression of SCL7A11 and GPX4.
DiscussionImportantly, our study confirms that zingerone triggered both apoptosis and ferroptosis in DU145 cells by downregulating SLC7A11 and GPX4 expression.
ConclusionThis study provides evidence that makes zingerone a potent therapeutic agent for prostate cancer.
-
-
-
Ethyl Acetate Extract from Wenxia Formula (WFEA) Attenuates Immunosuppression in Lung Cancer by Inhibiting Treg Differentiation via Blockade of TGF-Β/Smad Signaling
Authors: Meng Wang, Xiangyu Han, Hui Li, Bin Zheng, Dongdong Fang and Shulong JiangAvailable online: 16 October 2025More LessIntroductionThe ethyl acetate extract of Wenxia Formula (WFEA) is the most effective antitumor component of the Wenxia formula. Its key active components, emodin and quercetin, exhibit unique advantages in targeting TGF-β1 and regulating the function of Tregs. This study explored the mechanism of WFEA in enhancing the immune environment in lung cancer by influencing immune cell balance and the level of cytokines.
Materials and MethodsLewis lung cancer xenograft mouse models were established. WFEA was administered at low (100 mg/kg), medium (200 mg/kg), and high (400 mg/kg) doses, while a cisplatin (DDP) group served as the positive control. Tumor weight, spleen index, and serum cytokine levels (IL-10, TGF-β1) were measured. Flow cytometry, qPCR, and immunohistochemistry were employed to analyze the proportion of CD4+CD25+Foxp3+ Treg cells and Foxp3 expression in tumor and spleen tissues. The regulatory mechanism of WFEA on the TGF-β/Smads signaling pathway was investigated via combined intervention with the TGF-β1 inhibitor halofuginone (HF), cell differentiation assays, and molecular docking analyses.
ResultsWFEA inhibited tumor growth in a dose-dependent manner, with the 400 mg/kg group exhibiting a 60% tumor inhibition rate comparable to that of DDP. The agent significantly increased the spleen index by 106.42% and reduced serum levels of IL-10 and TGF-β1. Mechanistically, WFEA downregulated Foxp3 mRNA and protein expression in both tumor and spleen tissues, leading to a decrease in the proportion of Treg cells. It blocked the TGF-β/Smads pathway by downregulating TGF-β1, upregulating Smad4/Smad7, and inhibiting Smad2/3 phosphorylation. Cell-based experiments confirmed that WFEA-containing serum inhibited the differentiation of CD4+ T cells into Tregs, an effect enhanced by TGF-β1 interference. Molecular docking analyses revealed that the active components emodin and quercetin directly bound to TGF-β1 with binding energies of -5.4 kcal/mol and -5.1 kcal/mol, respectively.
DiscussionWFEA could serve as a new adjunct treatment for lung cancer; however, further clinical trials are required to evaluate its long-term safety and effectiveness across various treatment stages.
ConclusionWFEA may regulate the growth of Tregs to modulate the immune microenvironment of the LLC model mice, indicating its potential as an anti-LLC agent.
-
-
-
Interleukin-10 Promotes Treg Formation and Tumorigenesis via Regulating Nrp-1/PDX1/FoxP3 Axis: Insights from Integrative Data Analysis
Authors: Shimin Wang, Yuanbo Hu, Carl K. Edwards III, Yimin Guo, Hai Qin and Bicheng JinAvailable online: 10 October 2025More LessIntroductionThis study aimed to explore the mechanisms by which interleukin-10 (IL-10) influences tumorigenesis through T regulatory cells (Treg) regulation.
BackgroundEnvironmental factors, such as IL-10, significantly shape the immune microenvironment and tumor progression, yet the regulatory pathways remain unclear.
Objective1) To elucidate the regulatory mechanism of IL-10 on Treg cells through in vitro assays; 2) To elaborate whether Nrp-1/PDX1 knockout affects tumorigenesis via in vivo assays.
MethodsCD4+ T cells were isolated from the healthy mice's spleen and induced to differentiate into Treg cells. Then, after being treated with IL-10 and mouse melanoma cell supernatant (CM), the expression levels of Nrp-1 and FoxP3 in Treg cells were examined via qRT-PCR and Western blotting. The ratio of Treg cells was measured by flow cytometry. The interaction between Nrp-1 and PDX1 proteins was detected through GST pull-down assay, Co-IP, Western blotting and immunofluorescence staining. STAT3 luciferase activity was detected, and the expression levels of JAK1 and STAT1 proteins were detected by Western blotting. Furthermore, the B16-bearing melanoma mice and Nrp-1/PDX1 knockout mice model were established to verify the effects of Nrp-1 and PDX1 on Treg formation and tumor development.
ResultsThe results demonstrated that IL-10 promoted Nrp-1 expression in Treg cells via the JAK-STAT3 signaling pathway. Nrp-1 could combine with PDX1 to form a complex, facilitating PDX1-mediated activation of FoxP3 and Treg production. In melanoma xenograft models, targeting Nrp-1 and PDX1 using shRNAs or antibodies significantly reduced Treg levels and inhibited tumor growth. Collectively, IL-10 promotes Treg formation and tumorigenesis via regulating Nrp-1/PDX1/FoxP3 axis.
DiscussionThis study was the first to identify the interaction between Nrp-1 and PDX1, leading to PDX1 ubiquitination, which enhanced FoxP3 expression and Treg function in the tumor microenvironment. These novel insights highlighted the Nrp-1/PDX1/FoxP3 axis as a critical regulator of Treg-mediated tumorigenesis, offering potential targets for cancer therapy.
ConclusionThese findings highlight the interplay between environmental influences and immune regulation, providing novel insights into Treg-mediated tumorigenesis and suggesting potential strategies for targeted therapy.
-
-
-
Viral Vertical Transmission through the Placenta: The Potential of Natural Products as Therapeutic and Prophylactic Antiviral Agents
Available online: 25 September 2025More LessPregnant women are among the most vulnerable groups in human populations. The human placenta, consisting of fetal chorionic villi and maternal basal decidua, is a specialized and transient organ crucial for supporting pregnancy and ensuring the well-being of both the mother and the fetus. Although the placenta has a developed, robust defense system, some pathogens can overcome it and cause a fetal infection that may be lethal. This review examines the defense mechanisms in the placenta against viral infections, how microorganisms bypass these defense barriers to cause illness, and the potential use of natural products in treating viral infections during pregnancy. Research on natural products has shown their promise to serve as an alternative to antiviral therapy, particularly for pregnant women.
-
-
-
Schizophrenia Pathophysiology: Neurotransmitter Dysfunctions and Biomarker Frontiers
Authors: Acharya Balkrishna, Sumit Kumar Singh, Sonam Verma, Pratha Bora, Vidhi Dobhal and Vedpriya AryaAvailable online: 25 September 2025More LessIntroductionSchizophrenia is a heterogeneous chronic brain disorder driven by multiple pathophysiological processes. While dopaminergic theories dominate current therapies, emerging evidence highlights glutamatergic dysregulation, particularly N-methyl-D-aspartate receptor (NMDAR) hypofunction, as a key mechanism alongside dopaminergic, serotonergic, and neurodevelopmental pathways. This article synthesizes mechanistic insights, focusing on neurotransmitter disruptions, oxidative stress, neuroinflammation, and Wnt signaling, to elucidate the clinical diversity of schizophrenia and identify biomarkers for precise diagnostics and therapeutics.
MethodsA comprehensive literature search was conducted using Web of Science, Scopus, Google Scholar, and PubMed, with keywords including “schizophrenia,” “psychosis,” “pathophysiology,” “mechanism,” and “biomarker.” Studies were selected to explore NMDAR hypofunction, glutamatergic dysregulation, and associated signaling pathways, integrating preclinical and human data to map circuit-based interactions and biomarker profiles.
ResultsWe present a novel circuit-based model of schizophrenia pathophysiology, centered on NMDAR hypofunction and glutamatergic dysregulation, integrating dopaminergic, GABAergic, and inflammatory pathways. Key biomarkers, including inflammatory (e.g., high-sensitivity C-reactive protein [hs-CRP], interleukin-6 [IL-6]), neurochemical (e.g., brain-derived neurotrophic factor [BDNF]), and functional (e.g., mismatch negativity [MMN]), are categorized by symptomatic domains and clinical stages, providing diagnostic and prognostic insights.
DiscussionsThe findings underscore NMDAR hypofunction’s role in driving schizophrenia’s symptomatic spectrum, though its interplay with other pathways highlights the disorder’s complexity. Neuronal loss, although not universal, is context-specific (e.g., hippocampal interneurons), complementing functional biomarkers such as MMN. Limitations include the need for robust human validation of biomarkers and broader exploration of non-glutamatergic mechanisms.
ConclusionConsidering the multifaceted nature of the disorder, our emphasis on the NMDAR hypofunction model can help explain many of the synergies involved among the seemingly independent dysregulated events.
-
-
-
Progress in Synthesis and Therapeutic Applications of Mefloquine: AReview
Authors: Nidhi Yadav, Divyansh Singh, Ram Singh and Yogesh Kumar TyagiAvailable online: 16 September 2025More LessMefloquine is a synthetic antimalarial drug known for its effectiveness in the treatment and prevention of malaria. This belongs to the amino alcohol group of compounds. Its structure consists of a quinoline and piperidine ring, along with two chiral centers, which give rise to four distinct stereoisomers. There are various synthetic methods for preparing this compound from starting materials such as p-trifluoromethylaniline, 4-bromoquinoline, and trifluoroacetimidoyl iodide. In recent years, mefloquine has gained attention for its potential therapeutic applications beyond malaria, with research exploring its use in cancer therapy, parasitic infections, neurological disorders, tuberculosis, and COVID-19. This article covers its synthetic approaches, established application as an antimalarial compound, as well as repurposed therapeutic applications.
-
-
-
Development and Exploration of Organic Compounds as AldoseReductase Inhibitors: An Overview
Authors: Bhanupriya Bhrigu, Shikha Sharma and Bimal Krishna BanikAvailable online: 05 September 2025More LessChanges in the body's natural glucose levels have been associated with the onset of diabetes mellitus. It is frequently accompanied by a number of long-term consequences, including cardiovascular disease, retinopathy, nephropathy, and cataracts. Aldose reductase (AR), an enzyme belonging to the aldoketo reductase superfamily, plays a crucial role in the polyol pathway of glucose metabolism by converting glucose into sorbitol. Aldose reductase inhibitors (ARIs), a key target for reducing sorbitol flow through the polyol pathway, may be a new target for treating significant diabetic complications. A variety of structural classes of ARIs have been developed. These include: i) derivatives of carboxylic acids (e.g., Epalrestat, Alrestatin, Zopalrestat, Zenarestat, Ponalrestat, Lidorestat, and Tolrestat); ii) derivatives of spirohydantoins and related cyclic amides (e.g., Sorbinil, Minalrestat, and Fidarestat); and iii) phenolic derivatives (e.g., related to Benzopyran-4-one and Chalcone). The current review article provides concise details of the various chemical classes that aldose reductase inhibitors play in the treatment of diabetic complications. This also describes the advancements made in ARI research and possible applications by obtaining the required data. The process involves thoroughly searching multiple databases—such as PubMed, ScienceDirect, and SciFinder—for citations.
-
-
-
Druggable Targets in Zika Virus: A Systematic Review of Therapeutic Opportunities in Brazil
Available online: 21 August 2025More LessIntroductionZika virus (ZIKV), a flavivirus primarily transmitted by Aedes aegypti, became a major global health concern during the 2015–2016 outbreak, particularly in Brazil. Its association with congenital malformations and neurological disorders underscores the urgent need for effective therapeutic interventions. This review explores molecular targets for ZIKV treatment within the Brazilian context.
MethodA systematic search was conducted using PubMed, ScienceDirect, and Scopus for studies published between 2004 and 2024. Inclusion criteria focused on studies identifying druggable molecular targets related to viral replication, immune evasion, or host-virus interactions. Key search terms included “Zika virus,” “molecular targets,” “Brazil,” “antiviral,” and “drug discovery.”
ResultsThe review identified several critical viral proteins, NS1, NS3, NS5, and the envelope protein, as potential drug targets. Host cellular factors essential for viral survival were also highlighted. Technologies such as high-throughput screening, molecular docking, and structural genomics contributed significantly to the identification and validation of these targets.
DiscussionAlthough promising targets have been identified, therapeutic development is hindered by the genetic variability of ZIKV and its antigenic similarity to other flaviviruses, notably the dengue virus. These challenges complicate the specificity and efficacy of drugs. Nevertheless, Brazil has made strides in research infrastructure and collaborations to tackle these obstacles.
ConclusionThis review synthesizes current knowledge on ZIKV molecular targets and ongoing drug discovery efforts. The findings support the strategic development of antivirals and emphasize the necessity for sustained investment in research to mitigate future ZIKV outbreaks in Brazil and globally.
-
-
-
Unlocking the Multifunctional Therapeutic Potential of Manassantin: A Lignan-Derived Scaffold
Available online: 21 August 2025More LessManassantin, a dineolignan, is a natural compound that has gained significant attention due to its diverse pharmacological properties, including anti-inflammatory, anticancer, neuroprotective, and antimicrobial effects. Its unique polyphenolic scaffold offers a versatile platform for drug development, enabling targeted therapeutic applications. This review explores the molecular mechanisms underlying the bioactivity of manassantin with a focus on its role in modulating key cellular pathways, including NF-κB, MAPK, JAK/STAT, oxidative stress, apoptosis, and inflammatory signaling. Furthermore, it highlights recent advancements in structural modifications aimed at enhancing the pharmacokinetic and pharmacodynamic properties of this compound. By unlocking the full therapeutic potential of manassantin, this study paves the way for its future development as a multifunctional therapeutic agent.
-
-
-
Amarogentin, Natural Bitter Terpenoids: Research Update with Pharmacological Potential, Patent and Toxicity Aspects
Authors: Sonia Singh, Mahima Varshney and Himanshu SharmaAvailable online: 21 August 2025More LessAmarogentin is a secoiridoid glycoside that was initially isolated from the medicinal plant Swertia chirayita. It is well-known for its formidable bitter characteristics and the varied pharmacological actions it possesses. Especially in both conventional and modern medical practices, this molecule has garnered considerable attention due to its enormous therapeutic potential. Amarogentin possesses a wide range of biological actions, some of which include functions that are hepatoprotective, anti-inflammatory, anti-cancer, anti-diabetic, and antibacterial. The hepatoprotective function it possesses is achieved by enhancing antioxidant defense systems and reducing liver damage caused by toxins. It is believed that the ability of amarogentin to block pro-inflammatory mediators, such as TNF-α and IL-6, is responsible for its anti-inflammatory properties. The stimulation of apoptosis and the reduction of cancer cell proliferation in various tumor models are two additional ways in which it demonstrates promising anti-cancer potential. The anti-diabetic activity of amarogentin is characterized by the modification of glucose metabolism as well as an improvement in insulin sensitivity. To enhance the therapeutic efficacy of amarogentin, further research is needed to investigate its bioavailability and stability in the human body. This is despite the fact that it possesses a wide range of pharmacological advantages. There are formulation options that could improve its pharmacokinetic profile. Some examples of these strategies are nanoparticle delivery systems and derivatization. In general, amarogentin exhibits a great deal of promise as a natural therapeutic agent for the treatment of liver diseases, cancer, and metabolic disorders. Accordingly, there is a need for further research into the mechanisms underlying its clinical applications and potential uses.
-
-
-
Comprehension of the Function of Antioxidants in Targeting Different Signaling Pathways to Cure Oxidative Stress-Induced Hepatotoxicity
Authors: Kartik Jadon and Swarupanjali PadhiAvailable online: 21 August 2025More LessOxidative stress plays a central role in the pathogenesis of liver diseases, including hepatotoxicity, by disrupting the balance between reactive oxygen species (ROS) and the hepatic antioxidant defense system. Excessive ROS production leads to inflammation, fibrosis, and cellular damage. Antioxidants—both endogenous and exogenous—can mitigate these effects by neutralizing ROS and restoring redox homeostasis. This review evaluates the mechanistic role of antioxidants in modulating key oxidative stress-related signaling pathways, such as nuclear factor erythroid 2-related factor 2 (Nrf2), mitogen-activated protein kinases (MAPKs), nuclear factor-kappa B (NF-κB), phosphoinositide 3-kinase/Akt (PI3K/Akt), and Janus kinase/signal transducer and activator of transcription (JAK/STAT). Through the regulation of these pathways, antioxidants reduce apoptosis, suppress pro-inflammatory signaling, and enhance the expression of detoxifying enzymes. Natural compounds like flavonoids, polyphenols, and vitamins C and E have shown hepatoprotective effects, while synthetic antioxidants and their combinations with other therapeutic agents represent promising strategies for clinical application. This review underscores the therapeutic potential of antioxidants in combating oxidative stress-induced hepatotoxicity by offering a comprehensive overview of their mechanistic targets.
-
-
-
In Silico and In Vivo Hepatorenal Protective Effect of Chitosan-Loaded Chrysin Nanoparticles in Obese Rats
Available online: 18 August 2025More LessIntroductionObesity, a widespread health condition marked by excessive body fat, markedly elevates the risk of chronic diseases and has emerged as a major global health issue. Chrysin, a flavonoid with promising health benefits, exhibits potent antioxidant and anti-inflammatory properties. This study seeks to examine the impact of chitosan chrysin nanoparticles (Chrysin-CSNPS) on obesity induced by a high-fat diet (HFD) in male rats.
MethodsRats were fed a high-fat diet for 4 weeks to induce obesity, followed by a 4-week treatment period. Thirty rats were allocated into five groups (six rats per group): control (dist. water, orally), HFD control (dist. water, orally), HFD + chrysin (500 mg/kg, orally), HFD + chitosan-NP (60 mg/kg, orally), and HFD + Chrysin-CSNPS (60 mg/kg, orally).
ResultsIn silico studies revealed that chrysin has a binding energy value of −8.8 kcal/mol to fat mass and obesity-associated (FTO) protein. Also, Chrysin is identified as an inhibitor of several cytochrome P450 enzymes, specifically CYP1A2, CYP2D6, and CYP3A4. Albumin, high-density lipoprotein cholesterol, glutathione, and nitric oxide levels rose, whereas glucose, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, creatinine, urea, total cholesterol, triglycerides, malondialdehyde, and nitric oxide levels fell upon Chrysin-CSNPS treatment. The histological examination revealed a significant enhancement in the structures of the liver and kidneys.
DiscussionThese findings suggest that chrysin could potentially inhibit FTO activity, thereby contributing to a reduction in obesity-related phenotypes. The compound that satisfied Lipinski’s criteria was selected for toxicity prediction.
ConclusionChrysin-CSNPS have hypolipidemic properties and an antioxidant role, reducing HFD consequences in the liver and kidney.
-
-
-
UPLC-LCMS-Based Method Development, Validation, Forced Degradation, and Impurity Profiling of Nirogacestat Drug Substance
Authors: Thrinath S R, Manikandan Krishnan, Lakshmi K.S and Sharad D MankumareAvailable online: 15 August 2025More LessIntroductionThis study aims to establish a novel, straightforward, and reliable UPLC-MS method for determining the stability and impurity profile of Nirogacestat under various stress conditions, in accordance with ICH guidelines. The stability of Nirogacestat was investigated under various stress conditions, including acid/base hydrolysis, oxidation (H2O2), photolysis, reduction, and thermal degradation. This research addresses the need for a validated, stability-indicating method that performs reliably across key analytical parameters, thereby contributing to pharmaceutical quality assurance.
Materials and MethodsStress testing was performed by exposing Nirogacestat to various degradation conditions, including acid (0.1 and 1N HCl), base (NaOH), oxidative (30% H2O2), thermal (105°C), photolytic, and reductive environments. The mobile phase consisted of acetonitrile and 0.1% triethylamine/formic acid, adjusted to pH 2.5 in a 30:70 (v/v) ratio. Chromatographic separation was achieved using an Acquity UPLC BEH Shield RP-18 column (50 × 1.0 mm, 1.7 µm), with a flow rate of 0.5 mL/min and detection at 251 nm. Linearity was evaluated over a concentration range of 0.25 to 1.5 µg/mL. Validation studies assessed parameters such as selectivity, linearity, accuracy, precision, robustness, and solution stability.
ResultsThe method demonstrated excellent linearity (r2 = 0.999), with peak area directly proportional to concentration within the studied range. All validation parameters were within acceptable limits. Forced degradation studies revealed distinct degradation products under each stress condition. Notably, alkaline degradation resulted in the least degradation, while acid, peroxide, photolytic, thermal, and reductive conditions produced a variety of degradation products. These were effectively separated from Nirogacestat using the developed method. The relative retention times for Nirogacestat and its impurities remained consistent, and mass spectrometry confirmed the identities of the degradation products.
DiscussionThe validated UPLC-MS method exhibited high sensitivity, selectivity, and robustness in detecting Nirogacestat and its impurities. It effectively distinguishes degradation products even within complex matrices and fully complies with ICH guidelines for analytical method validation. The degradation profile of Nirogacestat under various stress conditions provides critical insights into its stability behavior, which is essential for formulation development and regulatory compliance. The successful separation and identification of degradation products further underscore the method’s applicability as a stability-indicating assay.
ConclusionThe developed UPLC-MS method is the first validated stability-indicating technique for Nirogacestat, offering comprehensive impurity profiling. It is precise, accurate, linear, and robust, making it highly suitable for routine quality control and regulatory submission. This method enables the reliable detection of degradation products, thereby enhancing the safety and efficacy profile of Nirogacestat in pharmaceutical preparations.
-
-
-
Decoding Dementia Mechanisms: Identification of Key Oligodendrocyte-Associated Genes through Integrative Bioinformatics and MachineLearning
Authors: Yan Chen, Hao Wen, Xinyi Qiu, Chen Li, Yinhui Yao and Yazhen ShangAvailable online: 13 August 2025More LessIntroductionThis study aims to elucidate the mechanisms underlying Dementia using bioinformatics analysis and machine learning algorithms, to identify novel therapeutic targets for its clinical management.
MethodsGene expression datasets related to dementia were sourced from the GEO database. Differentially expressed genes (DEGs) were identified using R, and key module genes were determined through the Weighted Gene Co-expression Network Analysis (WGCNA) method. Oligodendrocyte (OL) related targets were retrieved from the GeneCards database. The intersecting genes from DEGs, WGCNA, and OL were analyzed using Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes. Subsequently, three machine learning algorithms were employed to pinpoint core genes associated with OL in dementia. The CIBERSORT algorithm was used to evaluate the abundance of 22 immune cell types and their correlation with Dementia-related immune infiltration. Validation was carried out via quantitative reverse transcription polymerase chain reaction (RT-qPCR).
ResultsThrough bioinformatics and machine learning techniques, six core OL genes associated with Dementia were identified, notably C1QA, CD163, and TGFB2, which showed elevated expression in Dementia. Immune cell infiltration analysis indicated that several immune cell types may contribute to Dementia's pathogenesis, and RT-qPCR results corroborated the bioinformatics findings.
DiscussionThe discovered genes may contribute to dementia pathogenesis through oligodendrocyte dysfunction and neuroimmune interactions. Notably, TGFB2 and complement-related genes (C1QA, CD163) suggest involvement in both myelination defects and neuroinflammation, highlighting their therapeutic potential.
ConclusionThe six feature genes: TGFB2, C1QA, CD163, ACTG1, WIF1, and OPALIN are significantly linked to Dementia.
-
-
-
Formononetin Mediates α7nAChR to Inhibit Macrophage Polarization and Ameliorate Atherosclerotic Plaque
Authors: Li Du, Shirong Li, Qiansong He, Min Zhang and Wenxiu WangAvailable online: 12 August 2025More LessObjectiveTo explore the molecular mechanism of α7 nicotinic acetylcholine receptor (α7nAChR) mediated by Formononetin (FMN) in inhibiting macrophage inflammatory polarization and stabilizing atherosclerotic plaque.
MethodsSiRNA α7nAChR was transfected into THP-1-induced M0 cells and treated with FMN. Oil Red O staining was used to evaluate macrophage lipid deposition. RT-qPCR was used to detect α7nAChR, COX-2, IL-1β, IL-6, HO-1, and SHIP1 expression in M1 and M2 macrophages. Western blot was used to detect α7nAChR, iNOS, CD206, CD68, p-JAK2, and p-STAT3 protein expression in M1 and M2 macrophages.
ResultsCompared with the control group, FMN-mediated α7nAChR reduced lipid deposition in M1 and M2 macrophages. RT-qPCR results showed that FMN intervention significantly downregulated COX-2 and IL-1β expression in M1 (P < 0.05). α7nAChR expression significantly reduced COX-2, IL-6, and IL-1β expression in M2 (P < 0.05) and significantly increased HO-1 and SHIP1 expression (P < 0.05). FMN-mediated α7nAChR significantly decreased the expression of iNOS, CD68, p-JAK2, and p-STAT3 in M1 and M2 macrophages and significantly increased the expression of CD206 protein by Western blot (P < 0.05).
DiscussionThis study, for the first time, elucidated the mechanism of FMN regulating macrophage polarization through the α7nAChR/JAK2/STAT3 axis, providing new experimental evidence for the role of the cholinergic anti-inflammatory pathway in cardiovascular diseases. However, there are some limitations, such as the limited applicability of the THP-1 cell line, the need to strengthen the dose correlation study, the bioavailability and solubility limiting clinical translation, and the lack of human toxicological data.
ConclusionFMN effectively modulates macrophage polarization through inhibition of the JAK/STAT signaling pathway while promoting α7nAChR expression.
-