Skip to content
2000
image of Review on Harnessing Silver Nanoparticles for Therapeutic Innovations: A Comprehensive Review on Medical Applications, Safety, and Future Directions

Abstract

A novel class of nanomaterials known as silver nanoparticles (AgNPs) changes the potential in modern medicine. AgNPs are rapidly gaining significance in therapeutic applications ranging from tissue engineering to drug delivery systems due to their strong antibacterial, anticancer, anti-inflammatory, and wound-healing properties. This review presents a comprehensive analysis of the biomedical potential of AgNPs, physical, chemical and biological features that allow for regulated release mechanisms, improved bioavailability, and selective cellular targeting. Considering their obvious promise, there are significant challenges due to concerns about long-term exposure, toxicity, and regulatory uncertainty. We cover new developments, clinical studies, and safety evaluations, providing a balanced perspective of the advantages and disadvantages of AgNP or drug-based therapies. This review proposes a framework for scientists, physicians, and legislators to harness the full therapeutic power of silver nanoparticles while directing associated risks.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266405632250929122554
2025-10-20
2025-12-16
Loading full text...

Full text loading...

/deliver/fulltext/ctmc/10.2174/0115680266405632250929122554/BMS-CTMC-2025-152.html?itemId=/content/journals/ctmc/10.2174/0115680266405632250929122554&mimeType=html&fmt=ahah

References

  1. Eker F. Duman H. Akdaşçi E. Bolat E. Sarıtaş S. Karav S. A comprehensive review of nanoparticles: From classification to application and toxicity. Molecules 2024 29 15 3482 10.3390/molecules29153482 39124888
    [Google Scholar]
  2. Zahra Z. Habib Z. Chung S. Badshah M.A. Exposure route of TiO2 nps from industrial applications to wastewater treatment and their impacts on the agro-environment. Nanomaterials 2020 10 8 1469 10.3390/nano10081469 32727126
    [Google Scholar]
  3. Rassaei L. Marken F. Sillanpää M. Amiri M. Cirtiu C.M. Sillanpää M. Nanoparticles in electrochemical sensors for environmental monitoring. Trends Analyt. Chem. 2011 30 11 1704 1715 10.1016/j.trac.2011.05.009
    [Google Scholar]
  4. Chen J. Guo Y. Zhang X. Liu J. Gong P. Su Z. Emerging nanoparticles in food: Sources, application, and safety. J. Agric. Food Chem. 2023 71 3564 3582
    [Google Scholar]
  5. Islam F. Shohag S. Uddin M.J. Islam M.R. Nafady M.H. Akter A. Mitra S. Roy A. Emran T.B. Cavalu S. Exploring the Journey of Zinc Oxide Nanoparticles (ZnO-NPs) toward Biomedical Applications. Materials 2022 15 6 2160 10.3390/ma15062160
    [Google Scholar]
  6. Haleem A. Javaid M. Singh R.P. Rab S. Suman R. Applications of nanotechnology in medical field: a brief review. Glob. Health. J. 2023 7 2 70 77 10.1016/j.glohj.2023.02.008
    [Google Scholar]
  7. Zheludkevich M.L. Gusakov A.G. Voropaev A.G. Vecher A.A. Kozyrski E.N. Raspopov S.A. Oxidation of silver by atomic oxygen. Oxid. Met. 2004 61 1-2 39 48 10.1023/B:OXID.0000016275.96500.24
    [Google Scholar]
  8. Abou El-Nour K.M.M. Eftaiha A. Al-Warthan A. Ammar R.A.A. Synthesis and applications of silver nanoparticles. Arab. J. Chem. 2010 3 3 135 140 10.1016/j.arabjc.2010.04.008
    [Google Scholar]
  9. Salleh A. Naomi R. Utami N.D. Mohammad A.W. Mahmoudi E. Mustafa N. The potential of silver nanoparticles for antiviral and antibacterial applications: A mechanism of action. Nanomaterials 2020 10 1 20
    [Google Scholar]
  10. Hajishoreh N.K. Jamalpoor Z. Rasouli R. Asl A.N. Sheervalilou R. Akbarzadeh A. The recent development of carbon-based nanoparticles as a novel approach to skin tissue care and management - A review. Exp. Cell Res. 2023 433 2 113821 10.1016/j.yexcr.2023.113821 37858837
    [Google Scholar]
  11. Ahmed F. Santos C.M. Vergara R.A.M.V. Tria M.C.R. Advincula R. Rodrigues D.F. Antimicrobial applications of electroactive PVK-SWNT nanocomposites. Environ. Sci. Technol. 2012 46 3 1804 1810 10.1021/es202374e 22091864
    [Google Scholar]
  12. McLamore E.S. Diggs A. Calvo Marzal P. Shi J. Blakeslee J.J. Peer W.A. Murphy A.S. Porterfield D.M. Non-invasive quantification of endogenous root auxin transport using an integrated flux microsensor technique. Plant J. 2010 63 6 1004 1016 10.1111/j.1365‑313X.2010.04300.x 20626658
    [Google Scholar]
  13. Uchechi O. Ogbonna J.D.N. Attama A.A. Nanoparticles for dermal and transdermal drug delivery. In:Application of Nanotechnology in Drug Delivery. Tech 2014 10.5772/58672
    [Google Scholar]
  14. Moser Katrin Kriwet Katrin Naik Aarti Kalia Yogeshvar N Guy Richard H Passive skin penetration enhancement and its quantification in vitro. Eur J. Pharm. Biopharm 2001 52 (2) 103 112 0939-6411 10.1016/S0939‑6411(01)00166‑7
    [Google Scholar]
  15. Barry B.W. Drug delivery routes in skin: a novel approach. Advanced. Drug Delivery. Reviews. 2002 54 Suppl. 1 S31 S40 10.1016/s0169‑409x(02)00113‑8 12460714
    [Google Scholar]
  16. Dang TMD. Le TTT. Fribourg-Blanc E. Dang MC. Influence of surfactant on the preparation of silver nanoparticles by polyol method. Adv. Nat. Sci.: Nanosci Nanotechnol. 2012 3 3 035004 10.1088/2043‑6262/3/3/035004
    [Google Scholar]
  17. Ealias Anu Mary. Saravanakumar, M P A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conference. Series Materials Science and Engineering, 2017 263 3 032019 10.1088/1757‑899X/263/3/032019
    [Google Scholar]
  18. Ren C. Wang Z. Zhang X. Gao J. Gao Y. Zhang Y. Liu J. Yang C. Liu J. Construction of all-in-one peptide nanomedicine with photoacoustic imaging guided mild hyperthermia for enhanced cancer chemotherapy. Chem. Eng. J. 2021 405 127008 10.1016/j.cej.2020.127008
    [Google Scholar]
  19. Huang B. Chen F. Shen Y. Qian K. Wang Y. Sun C. Zhao X. Cui B. Gao F. Zeng Z. Cui H. Advances in targeted pesticides with environmentally responsive controlled release by nanotechnology. Nanomaterials 2018 8 2 102 10.3390/nano8020102
    [Google Scholar]
  20. Nam K.T. Lee Y.J. Krauland E.M. Kottmann S.T. Belcher A.M. Peptide-mediated reduction of silver ions on engineered biological scaffolds. ACS Nano 2008 2 7 1480 1486 10.1021/nn800018n 19206318
    [Google Scholar]
  21. Zhang X.F. Liu Z.G. Shen W. Gurunathan S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 2016 17 9 1534 10.3390/ijms17091534
    [Google Scholar]
  22. Katas H. Moden N.Z. Lim C.S. Celesistinus T. Chan J.Y. Ganasan P. Biosynthesis and potential applications of silver and gold nanoparticles and their chitosan-based nanocomposites in nanomedicine. J. Nanotechnol. 2018 2018 2 1 13 10.1155/2018/4290705
    [Google Scholar]
  23. Khumaeni A. Arifin Z. Setiawati E. Synthesis of colloidal nanosilver as active agent of disinfectant using pulse laser ablation. AIP Conference Proceedings 2022 2391 (1) 090005 10.1063/5.0072890
    [Google Scholar]
  24. Niu Y. Omurzak E. Cai R. Syrgakbek kyzy, D.; Zhasnakunov, Z.; Satyvaldiev, A.; Palmer, R.E. Eco-Friendly synthesis of silver nanoparticles using pulsed plasma in liquid: effect of surfactants. Surfaces 2022 5 1 202 208 10.3390/surfaces5010013
    [Google Scholar]
  25. Zeng H. Du X.W. Singh S.C. Kulinich S.A. Yang S. He J. Cai W. Nanomaterials via laser ablation/irradiation in liquid: A review. Vol. 22. Adv. Funct. Mater. 2012 22 7 1333 1353 10.1002/adfm.201102295
    [Google Scholar]
  26. Filipovic Trickovic J. Momcilovic M. Joksic G. Zivkovic S. Ilic B. Ognjanovic M. Novakovic M. Valenta Sobot A. 2023 Laser ablated citrate-stabilized silver nanoparticles display size and concentration dependant biological effects. Nanomaterials and Nanotechnology 10.1155/2023/9854356,
    [Google Scholar]
  27. Soria-Aguilar Ma De Jesús Zamarripa, G G; Sanchez Castillo, Marco Antonio; García-Cerda, L A Synthesis and characterization of Ag nanoparticles supported in blast furnace dust microspheres. Revista. Latinoamericana de Metalurgia Materiales. 2018 38 1 2 8
    [Google Scholar]
  28. Wang C. Liang B. Gao H. Yang T. Li T. Ma Y. Abo-Dief H.M. Roymahapatra G. Zhang J. Abualnaja K.M. El-Bahy Z.M. Guo Z. Efficiently removing four cationic dyes from aqueous solution by magnetite@polypyrrole@2-acrylamido-2-methyl-1-propanesulfonic acid microspheres. Colloids Surf. A Physicochem. Eng. Asp. 2024 700 134659 10.1016/j.colsurfa.2024.134659
    [Google Scholar]
  29. Zhang D. Choi W. Jakobi J. Kalus M.R. Barcikowski S. Cho S.H. Sugioka K. Spontaneous shape alteration and size separation of surfactant-free silver particles synthesized by laser ablation in acetone during long-period storage. Nanomaterials 2018 8 7 529 10.3390/nano8070529 30011881
    [Google Scholar]
  30. Alagiri M. Ponnusamy S. Muthamizhchelvan C. Synthesis and characterization of NiO nanoparticles by sol–gel method. J. Mater. Sci. Mater. Electron. 2012 23 3 728 732 10.1007/s10854‑011‑0479‑6
    [Google Scholar]
  31. Gangwar C. Yaseen B. Kumar I. Singh N.K. Naik R.M. Growth kinetic study of tannic acid mediated monodispersed silver nanoparticles synthesized by chemical reduction method and its characterization. ACS Omega 2021 6 34 22344 22356 10.1021/acsomega.1c03100 34497923
    [Google Scholar]
  32. Gasaymeh S.S. Radiman S. Heng L.Y. Saion E. Saeed G.H.M. Synthesis and Characterization of Silver/Polyvinilpirrolidone (Ag/PVP) Nanoparticles Using Gamma Irradiation Techniques. Am. J. Appl. Sci. 2010 7 7 892 901 10.3844/ajassp.2010.892.901
    [Google Scholar]
  33. Zulkarnain; Khan, I.M.; Ahmad, A.; Miyan, L.; Ahmad, M.; Azizc, N. Synthesis of charge transfer complex of chloranilic acid as acceptor with p-nitroaniline as donor: Crystallographic, UV–visible spectrophotometric and antimicrobial studies. J. Mol. Struct. 2017 1141 687 697 10.1016/j.molstruc.2017.03.050
    [Google Scholar]
  34. Aziz N. Faraz M. Pandey R. Shakir M. Fatma T. Varma A. Barman I. Prasad R. Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial, and photocatalytic properties. Langmuir 2015 31 42 11605 11612 10.1021/acs.langmuir.5b03081 26447769
    [Google Scholar]
  35. Bansod S.D. Bawaskar M.S. Gade A.K. Rai M.K. Development of shampoo, soap and ointment formulated by green synthesised silver nanoparticles functionalised with antimicrobial plants oils in veterinary dermatology: treatment and prevention strategies. IET Nanobiotechnol. 2015 9 4 165 171 10.1049/iet‑nbt.2014.0042 26224344
    [Google Scholar]
  36. Prasad TNVK V Subba, V; Kambala, R; Naidu, R A critical review on biogenic silver nanoparticles and their antimicrobial activity. Current Nanoscience 2011 ••• 7
    [Google Scholar]
  37. Giri A.K. Jena B. Biswal B. Pradhan A.K. Arakha M. Acharya S. Acharya L. Green synthesis and characterization of silver nanoparticles using Eugenia roxburghii DC. extract and activity against biofilm-producing bacteria. Sci. Rep. 2022 12 1 8383 10.1038/s41598‑022‑12484‑y 35589849
    [Google Scholar]
  38. Alahmad A. Al-Zereini W.A. Hijazin T.J. Al-Madanat O.Y. Alghoraibi I. Al-Qaralleh O. Al-Qaraleh S. Feldhoff A. Walter J.G. Scheper T. Green synthesis of silver nanoparticles using Hypericum perforatum L. aqueous extract with the evaluation of its antibacterial activity against clinical and food pathogens. Pharmaceutics 2022 14 5 1104 10.3390/pharmaceutics14051104 35631691
    [Google Scholar]
  39. Güzel R. Erdal G. Synthesis of Silver Nanoparticles. In:Silver Nanoparticles - Fabrication, Characterization and Applications. Khan Maaz,Ed IntechOpen 2018 10.5772/intechopen.75363
    [Google Scholar]
  40. Gour A. Jain NK. Advances in green synthesis of nanoparticles. Artificial. Cells, Nanomedicine, and. Biotechnology 2019 47 1 844 851 10.1080/21691401.2019.1577878 30879351
    [Google Scholar]
  41. Tang B. Zhang M. Hou X. Li J. Sun L. Wang X. Coloration of cotton fibers with anisotropic silver nanoparticles. Ind. Eng. Chem. Res. 2012 51 39 12807 12813 10.1021/ie3015704
    [Google Scholar]
  42. Barbir D. Dabić P. Meheš M. The use of PWHM and Mie methods in estimation of colloidal silver particle size obtained by chemical precipitation with sodium borohydride. Hem. Ind. 2019 73 6 397 404 10.2298/HEMIND190719031B
    [Google Scholar]
  43. Salayová A. Bedlovičová Z. Daneu N. Baláž M. Lukáčová Bujňáková Z. Balážová Ľ. Tkáčiková Ľ. Green synthesis of silver nanoparticles with antibacterial activity using various medicinal plant extracts: Morphology and antibacterial efficacy. Nanomaterials 2021 11 4 1005 10.3390/nano11041005 33919801
    [Google Scholar]
  44. Čuk N. Šala M. Gorjanc M. Development of antibacterial and UV protective cotton fabrics using plant food waste and alien invasive plant extracts as reducing agents for the in-situ synthesis of silver nanoparticles. Cellulose 2021 28 5 3215 3233 10.1007/s10570‑021‑03715‑y
    [Google Scholar]
  45. Yousaf H. Mehmood A. Ahmad K.S. Raffi M. Green synthesis of silver nanoparticles and their applications as an alternative antibacterial and antioxidant agents. Mater. Sci. Eng. C 2020 112 110901 10.1016/j.msec.2020.110901 32409057
    [Google Scholar]
  46. Hemlata; Meena, P.R.; Singh, A.P.; Tejavath, K.K. Biosynthesis of silver nanoparticles using cucumis prophetarum aqueous leaf extract and their antibacterial and antiproliferative activity against cancer cell lines. ACS Omega 2020 5 10 5520 5528 10.1021/acsomega.0c00155 32201844
    [Google Scholar]
  47. Potbhare A.K. Chaudhary R.G. Chouke P.B. Yerpude S. Mondal A. Sonkusare V.N. Rai A.R. Juneja H.D. Phytosynthesis of nearly monodisperse CuO nanospheres using Phyllanthus reticulatus/Conyza bonariensis and its antioxidant/antibacterial assays. Mater. Sci. Eng. C 2019 99 783 793 10.1016/j.msec.2019.02.010 30889753
    [Google Scholar]
  48. Haldar A.G.M. Mahapatra D.K. Dadure K.M. Chaudhary R.G. Natural Extracts-mediated Biosynthesis of Zinc Oxide Nanoparticles and Their Multiple Pharmacotherapeutic Perspectives. Jordan Journal of Physics 2022 15 1 67 79
    [Google Scholar]
  49. Sulistyarti H. Utama M.M. Fadhila A.M. Cahyaningrum A. Murti R.J. Febriyanti A. Green synthesis of silver nanoparticles using Coffea canephora fruit skin extract and its application for mercury detection in face cream samples. Anal. Sci. 2023 39 3 335 346 10.1007/s44211‑022‑00237‑w 36580077
    [Google Scholar]
  50. Simon S. Sibuyi NR S. Fadaka AO. Meyer S. Josephs J. Onani MO. Meyer M. Madiehe AM. Biomedical applications of plant extract-synthesized silver nanoparticles. Biomedicines 2022 10 11 2792 10.3390/biomedicines10112792 36359308
    [Google Scholar]
  51. Li J.F. Liu Y.C. Chokkalingam M. Rupa E.J. Mathiyalagan R. Hurh J. Ahn J.C. Park J.K. Pu Y. J.; Yang, D.C. Phytosynthesis of silver nanoparticles using rhizome extract of Alpinia officinarum and their photocatalytic removal of dye under UV and visible light irradiation. Optik (Stuttg.) 2020 208 164521 10.1016/j.ijleo.2020.164521
    [Google Scholar]
  52. Rakib-Uz-Zaman S.M. Hoque Apu E. Muntasir M.N. Mowna S.A. Khanom M.G. Jahan S.S. Biosynthesis of silver nanoparticles from cymbopogon citratus leaf extract and evaluation of their antimicrobial properties. Challenges 2022 13 1 18 10.3390/challe13010018
    [Google Scholar]
  53. Chinni S.V. Gopinath S.C.B. Anbu P. Fuloria N.K. Fuloria S. Mariappan P. Krusnamurthy K. Veeranjaneya Reddy L. Ramachawolran G. Sreeramanan S. Samuggam S. Characterization and antibacterial response of silver nanoparticles biosynthesized using an ethanolic extract of coccinia indica leaves. Crystals 2021 11 2 97 10.3390/cryst11020097
    [Google Scholar]
  54. Mavaei M. Chahardoli A. Shokoohinia Y. Khoshroo A. Fattahi A. One-step synthesized silver nanoparticles using isoimperatorin: evaluation of photocatalytic, and electrochemical activities. Sci. Rep. 2020 10 1 1762 10.1038/s41598‑020‑58697‑x 32020015
    [Google Scholar]
  55. Shaikh W.A. Chakraborty S. Islam R.U. Photocatalytic degradation of rhodamine B under UV irradiation using Shorea robusta leaf extract-mediated bio-synthesized silver nanoparticles. Int. J. Environ. Sci. Technol. 2020 17 4 2059 2072 10.1007/s13762‑019‑02473‑6
    [Google Scholar]
  56. Hemmati S. Rashtiani A. Zangeneh M.M. Mohammadi P. Zangeneh A. Veisi H. Green synthesis and characterization of silver nanoparticles using Fritillaria flower extract and their antibacterial activity against some human pathogens. Polyhedron 2019 158 8 14 10.1016/j.poly.2018.10.049
    [Google Scholar]
  57. Dangi S. Gupta A. Gupta D.K. Singh S. Parajuli N. Green synthesis of silver nanoparticles using aqueous root extract of Berberis asiatica and evaluation of their antibacterial activity. Chem. Data Collect 2020 28 100411 10.1016/j.cdc.2020.100411
    [Google Scholar]
  58. Nasr H.A. Nassar O.M. El-Sayed M.H. Kobisi A.A. Characterization and antimicrobial activity of lemon peel mediated green synthesis of silver nanoparticles. Int. J. Biol. Chem. 2019 12 2 10.26577/ijbch‑2019‑v2‑7
    [Google Scholar]
  59. Ebrahimzadeh M.A. Naghizadeh A. Amiri O. Shirzadi-Ahodashti M. Mortazavi-Derazkola S. Green and facile synthesis of Ag nanoparticles using Crataegus pentagyna fruit extract (CP-AgNPs) for organic pollution dyes degradation and antibacterial application. Bioorg. Chem. 2020 94 103425 10.1016/j.bioorg.2019.103425 31740048
    [Google Scholar]
  60. Jebril S. Khanfir Ben Jenana R. Dridi C. Green synthesis of silver nanoparticles using Melia azedarach leaf extract and their antifungal activities: In vitro and in vivo. Mater. Chem. Phys. 2020 248 122898 10.1016/j.matchemphys.2020.122898
    [Google Scholar]
  61. Mehata M.S. Green route synthesis of silver nanoparticles using plants/ginger extracts with enhanced surface plasmon resonance and degradation of textile dye. Mater. Sci. Eng. B 2021 273 115418 10.1016/j.mseb.2021.115418
    [Google Scholar]
  62. Saini H. Yadav R. Kumar D. Kumar G. Agrawal V. Cullen corylifolium (L.) Medik. Seed extract, an excellent system for fabrication of silver nanoparticles and their multipotency validation against different mosquito vectors and human cervical cancer cell line. J. Cluster Sci. 2020 31 1 161 175 10.1007/s10876‑019‑01630‑8
    [Google Scholar]
  63. Hashemi S.F. Tasharrofi N. Saber M.M. Green synthesis of silver nanoparticles using Teucrium polium leaf extract and assessment of their antitumor effects against MNK45 human gastric cancer cell line. J. Mol. Struct. 2020 1208 127889 10.1016/j.molstruc.2020.127889
    [Google Scholar]
  64. Amaliyah S. Sabarudin A. Masruri M. Sumitro S.B. Characterization and antibacterial application of biosynthesized silver nanoparticles using Piper retrofractum Vahl fruit extract as bioreductor. J. Appl. Pharm. Sci. 2022 12 3 103 114
    [Google Scholar]
  65. Fahim Mohd. Shahzaib Adnan. Nishat Nahid. Jahan, Afroz Green synthesis of silver nanoparticles: A comprehensive review of methods, influencing factors, and applications. JCIS Open 2024 16 100125 10.1016/j.jciso.2024.100125
    [Google Scholar]
  66. Esmail R. Afshar A. Morteza M. Abolfazl A. Akhondi E. Synthesis of silver nanoparticles with high efficiency and stability by culture supernatant of Bacillus ROM6 isolated from Zarshouran gold mine and evaluating its antibacterial effects. BMC Microbiol. 2022 22 1 97 10.1186/s12866‑022‑02490‑5 35410116
    [Google Scholar]
  67. El-Belely EF. Farag MMS. Said HA Amin AS Azab E. Gobouri AA Green synthesis of zinc oxide nanoparticles (ZnO-NPs) using Arthrospira platensis (Class: Cyanophyceae) and evaluation of their biomedical activities. Nanomaterials 2021 11 1 95 10.3390/nano11010095
    [Google Scholar]
  68. Ibrahim S. Ahmad Z. Manzoor M.Z. Mujahid M. Faheem Z. Adnan A. Optimization for biogenic microbial synthesis of silver nanoparticles through response surface methodology, characterization, their antimicrobial, antioxidant, and catalytic potential. Sci. Rep. 2021 11 1 770 10.1038/s41598‑020‑80805‑0 33436966
    [Google Scholar]
  69. Kumar M. Upadhyay L.S.B. Kerketta A. Vasanth D. Extracellular synthesis of silver nanoparticles using a novel bacterial strain kocuria rhizophila br-1: process optimization and evaluation of antibacterial activity. Bionanoscience 2022 12 2 423 438 10.1007/s12668‑022‑00968‑0
    [Google Scholar]
  70. Naseer Q.A. Xue X. Wang X. Dang S. Din S.U. Kalsoom; Jamil, J. Synthesis of silver nanoparticles using Lactobacillus bulgaricus and assessment of their antibacterial potential. Braz. J. Biol. 2022 82 e232434 10.1590/1519‑6984.232434 33681895
    [Google Scholar]
  71. Valero A. Roy S. Sharma S. Utilization of novel bacteriocin synthesized silver nanoparticles (AgNPs) for their application in antimicrobial packaging for preservation of tomato fruit. Front. Sustain. Food Syst. 2023 7 1072738 10.3389/fsufs.2023.1072738
    [Google Scholar]
  72. Doman K.M. Gharieb M.M. Abd El-Monem A.M. Morsi H.H. Synthesis of silver and copper nanoparticle using Spirulina platensis and evaluation of their anticancer activity. Int. J. Environ. Health Res. 2024 34 2 661 673 10.1080/09603123.2022.2163987 36603148
    [Google Scholar]
  73. Ovais M. Khalil A.T. Raza A. Khan M.A. Ahmad I. Islam N.U. Saravanan M. Ubaid M.F. Ali M. Shinwari Z.K. Green synthesis of silver nanoparticles via plant extracts: beginning a new era in cancer theranostics. Nanomedicine (Lond.) 2016 11 23 3157 3177 10.2217/nnm‑2016‑0279 27809668
    [Google Scholar]
  74. Chauhan N. Tyagi A.K. Kumar P. Malik A. Antibacterial potential of Jatropha curcas synthesized silver nanoparticles against food borne pathogens. Front. Microbiol. 2016 7 NOV 1748 10.3389/fmicb.2016.01748 27877160
    [Google Scholar]
  75. Dakal T.C. Kumar A. Majumdar R.S. Yadav V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front. Microbiol. 2016 7 NOV 1831 10.3389/fmicb.2016.01831 27899918
    [Google Scholar]
  76. Khairnar S.V. Das A. Oupický D. Sadykov M. Romanova S. Strategies to overcome antibiotic resistance: silver nanoparticles and vancomycin in pathogen eradication. RSC Pharmaceutics 2025 2 Vol. 2, pp 455-479
    [Google Scholar]
  77. Wei S. Wang Y. Wang M. Su S. Hao M. Wang Y. Fabrication of photothermal silver nanoparticles for accelerating MRSA-infected wound healing. New J. Chem. 2025 49 11 4647 4657 10.1039/D4NJ05492J
    [Google Scholar]
  78. Rodrigues A.S. Batista J.G.S. Rodrigues M.Á.V. Thipe V.C. Minarini L.A.R. Lopes P.S. Lugão A.B. Advances in silver nanoparticles: a comprehensive review on their potential as antimicrobial agents and their mechanisms of action elucidated by proteomics. Front. Microbiol. 2024 15 1440065 10.3389/fmicb.2024.1440065
    [Google Scholar]
  79. Singh R.P. Ramarao P. Cellular uptake, intracellular trafficking and cytotoxicity of silver nanoparticles. Toxicol. Lett. 2012 213 2 249 259 10.1016/j.toxlet.2012.07.009 22820426
    [Google Scholar]
  80. Sukirtha R. Priyanka K.M. Antony J.J. Kamalakkannan S. Thangam R. Gunasekaran P. Krishnan M. Achiraman S. Cytotoxic effect of Green synthesized silver nanoparticles using Melia azedarach against in vitroitalic> HeLa cell lines and lymphoma mice model. Process Biochem. 2012 47 2 273 279 10.1016/j.procbio.2011.11.003
    [Google Scholar]
  81. Beik J. Khateri M. Khosravi Z. Kamrava S.K. Kooranifar S. Ghaznavi H. Shakeri-Zadeh A. Gold nanoparticles in combinatorial cancer therapy strategies. Coord. Chem. Rev. 2019 387 299 324 10.1016/j.ccr.2019.02.025
    [Google Scholar]
  82. Siegel R.L. Miller K.D. Jemal A. Cancer statistics, 2016. CA Cancer J. Clin. 2016 66 1 7 30 10.3322/caac.21332 26742998
    [Google Scholar]
  83. Zeng H. Chen W. Zheng R. Zhang S. Ji J.S. Zou X. Xia C. Sun K. Yang Z. Li H. Wang N. Han R. Liu S. Li H. Mu H. He Y. Xu Y. Fu Z. Zhou Y. Jiang J. Yang Y. Chen J. Wei K. Fan D. Wang J. Fu F. Zhao D. Song G. Chen J. Jiang C. Zhou X. Gu X. Jin F. Li Q. Li Y. Wu T. Yan C. Dong J. Hua Z. Baade P. Bray F. Jemal A. Yu X.Q. He J. Changing cancer survival in China during 2003–15: a pooled analysis of 17 population-based cancer registries. Lancet Glob. Health 2018 6 5 e555 e567 [May;] 10.1016/S2214‑109X(18)30127‑X 29653628
    [Google Scholar]
  84. Balakumaran M.D. Ramachandran R. Kalaichelvan P.T. Exploitation of endophytic fungus, Guignardia mangiferae for extracellular synthesis of silver nanoparticles and their in vitroitalic> biological activities. Microbiol. Res. 2015 178 9 17 10.1016/j.micres.2015.05.009 26302842
    [Google Scholar]
  85. Chen HHW. Kuo MT Improving radiotherapy in cancer treatment: Promises and challenges. Oncotarget 2017 8 37 62742 62758 10.18632/oncotarget.18409 28977985
    [Google Scholar]
  86. Wu L. Zhang J. Watanabe W. Physical and chemical stability of drug nanoparticles. Adv. Drug Deliv. Rev. 2011 63 6 456 469 10.1016/j.addr.2011.02.001 21315781
    [Google Scholar]
  87. Charrueau C. Zandanel C. Drug delivery by polymer nanoparticles: the challenge of controlled release and evaluation. In:Polymer Nanoparticles for Nanomedicines. Springer International Publishing 2016 439 503 10.1007/978‑3‑319‑41421‑8_14
    [Google Scholar]
  88. Senapati S. Mahanta A.K. Kumar S. Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduction and Targeted. Therapy. 2018 3 7 10.1038/s41392‑017‑0004‑3 29560283
    [Google Scholar]
  89. Chen C.C. Fa Y.C. Kuo Y.Y. Liu Y.C. Lin C.Y. Wang X.H. Lu Y.H. Chiang Y.H. Yang C.M. Wu L.C. Ho J.A. Thiolated mesoporous silica nanoparticles as an immunoadjuvant to enhance efficacy of intravesical chemotherapy for bladder cancer. Adv. Sci. 2023 10 7 2204643 10.1002/advs.202204643 36638276
    [Google Scholar]
  90. Lopes C.M. Martins-Lopes P. Souto E.B. Nanoparticulate carriers (NPC) for oral pharmaceutics and nutraceutics. Pharmazie 2010 65 2 75 82 20225647
    [Google Scholar]
  91. Zauner Wolfgang Farrow Neil A Haines, Adrian M R In vitroitalic>uptake of polystyrene microspheres: effect of particle size,cell line and cell density J. Control. Release 2001 71 (1) 39 51 0168-3659 10.1016/S0168‑3659(00)00358‑8
    [Google Scholar]
  92. Ding L Agrawal P Singh S K Chhonker Y S Sun J Murry D J Polymer-based drug delivery systems for cancer therapeutics. Polymers 2024 16 (6) 843.Mar 19 10.3390/polym16060843 38543448
    [Google Scholar]
  93. Kaushik N. Borkar SB. Nandanwar SK. Panda PK. Choi EH. Kaushik N.K. Nanocarrier cancer therapeutics with functional stimuli-responsive mechanisms. J. Nanobiotechnology 2022 20 1 152 10.1186/s12951‑022‑01364‑2
    [Google Scholar]
  94. Tang L. Chen M. Wang D. He Y. Ge G. Zeng Z. Shu J. Guo W. Wu S.X. Xiong W. Doxorubicin and iron-doped mesoporous silica nanoparticles for chemodynamic therapy and chemotherapy of breast cancer. New J. Chem. 2024 48 39 17294 17309 10.1039/D4NJ03184A 40740313
    [Google Scholar]
  95. Lee Y.T. Wu S.H. Wu C.H. Lin Y.H. Lin C.K. Chen Z.A. Sun T.C. Chen Y.J. Chen P. Mou C.Y. Chen Y.P. Drug-free mesoporous silica nanoparticles enable suppression of cancer metastasis and confer survival advantages to mice with tumor xenografts. ACS Appl. Mater. Interfaces 2024 16 45 61787 61804 10.1021/acsami.4c16609 39448366
    [Google Scholar]
  96. Sadreddini S. Safaralizadeh R. Baradaran B. Aghebati-Maleki L. Hosseinpour-Feizi M.A. Shanehbandi D. Jadidi-Niaragh F. Sadreddini S. Kafil H.S. Younesi V. Yousefi M. Chitosan nanoparticles as a dual drug/siRNA delivery system for treatment of colorectal cancer. Immunol. Lett. 2017 181 79 86 10.1016/j.imlet.2016.11.013 27916629
    [Google Scholar]
  97. Sun L. Liu H. Ye Y. Lei Y. Islam R. Tan S. Tong R. Miao Y-B. Cai L. Smart nanoparticles for cancer therapy. Signal Transduct. Target. Ther. 2023 8 1 418 10.1038/s41392‑023‑01642‑x
    [Google Scholar]
  98. Lamberti M. Zappavigna S. Sannolo N. Porto S. Caraglia M. Advantages and risks of nanotechnologies in cancer patients and occupationally exposed workers. Expert Opin. Drug Deliv. 2014 11 7 1087 1101 10.1517/17425247.2014.913568 24773227
    [Google Scholar]
  99. Hooda A. Sradhanjali M. Popsy, Formulation and evaluation of novel solid lipid microparticles for the sustained release of ofloxacin. Pharm. Nanotechnol. 2017 5 4 329 341 29278216
    [Google Scholar]
  100. Poonia N. Kharb R. Lather V. Pandita, D Nanostructured lipid carriers: versatile oral delivery vehicle. Future Sci. OA 2016 2 3 FSO135 10.4155/fsoa‑2016‑0030 28031979
    [Google Scholar]
  101. Nafisi S. Maibach H.I. Nanotechnology in cosmetics. In:Cosmetic Science and Technology. Theoretical Principles and Applications 2017 337 361 10.1016/B978‑0‑12‑802005‑0.00022‑7
    [Google Scholar]
  102. Chen S. Hanning S. Falconer J. Locke M. Wen J. Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications. Eur. J. Pharm. Biopharm. 2019 144 18 39 10.1016/j.ejpb.2019.08.015 31446046
    [Google Scholar]
  103. Lahkar Sunita Das Malay K. Smart lipid nanoparticles for cosmetic use. In:Nanocosmeceuticals. Academic Press 2022 307 317 10.1016/B978‑0‑323‑91077‑4.00003‑X 9780323910774
    [Google Scholar]
  104. Karami Z. Hamidi M. Cubosomes: remarkable drug delivery potential. Drug Discov. Today 2016 21 5 789 801 10.1016/j.drudis.2016.01.004 26780385
    [Google Scholar]
  105. Aranaz I. Acosta N. Civera C. Elorza B. Mingo J. Castro C. Gandía M. Heras Caballero A. Cosmetics and cosmeceutical applications of chitin, chitosan and their derivatives. Polymers 2018 10 2 213 10.3390/polym10020213 30966249
    [Google Scholar]
  106. Blanco-Padilla A. Soto K.M. Hernández Iturriaga M. Mendoza S. Food antimicrobials nanocarriers. ScientificWorldJournal 2014 2014 1 11 10.1155/2014/837215 24995363
    [Google Scholar]
  107. Gigliobianco M.R. Casadidio C. Censi R. Di Martino P. Nanocrystals of poorly soluble drugs: Drug bioavailability and physicochemical stability. Pharmaceutics 2018 10 3 134 10.3390/pharmaceutics10030134 30134537
    [Google Scholar]
  108. Kumar N. Kumar R. Nano-based Drug Delivery and Diagnostic Systems. In:Nanotechnology and Nanomaterials in the Treatment of Life.-threatening Diseases. Elsevier 2014 53 107 10.1016/B978‑0‑323‑26433‑4.00002‑6
    [Google Scholar]
  109. Xu X. Costa A.P. Khan M.A. Burgess D.J. Application of quality by design to formulation and processing of protein liposomes. Int. J. Pharm. 2012 434 1-2 349 359 10.1016/j.ijpharm.2012.06.002 22683453
    [Google Scholar]
  110. Bocca B. Pino A. Alimonti A. Forte G. Toxic metals contained in cosmetics: A status report. Regul. Toxicol. Pharmacol. 2014 68 3 447 467 10.1016/j.yrtph.2014.02.003 24530804
    [Google Scholar]
  111. Ghasemiyeh P. Mohammadi-Samani S. Potential of nanoparticles as permeation enhancers and targeted delivery options for skin: Advantages and disadvantages. Drug Des. Devel. Ther. 2020 14 3271 3289 10.2147/DDDT.S264648 32848366
    [Google Scholar]
  112. Joseph J. B N, V.H.; D, R.D. Experimental optimization of Lornoxicam liposomes for sustained topical delivery. Eur. J. Pharm. Sci. 2018 112 38 51 10.1016/j.ejps.2017.10.032 29111151
    [Google Scholar]
  113. Kang S.J. Lee Y.J. Lee E.K. Kwak M.K. Silver nanoparticles-mediated G2/M cycle arrest of renal epithelial cells is associated with NRF2-GSH signaling. Toxicol. Lett. 2012 211 3 334 341 10.1016/j.toxlet.2012.04.016 22546375
    [Google Scholar]
  114. Kermanizadeh A. Gaiser B.K. Hutchison G.R. Stone V. An in vitroitalic> liver model - assessing oxidative stress and genotoxicity following exposure of hepatocytes to a panel of engineered nanomaterials. Part. Fibre Toxicol. 2012 9 1 28 10.1186/1743‑8977‑9‑28 22812506
    [Google Scholar]
  115. Kovács D. Szőke K. Igaz N. Spengler G. Molnár J. Tóth T. Madarász D. Rázga Z. Kónya Z. Boros I.M. Kiricsi M. Silver nanoparticles modulate ABC transporter activity and enhance chemotherapy in multidrug resistant cancer. Nanomedicine (Lond.) 2016 12 3 601 610 10.1016/j.nano.2015.10.015 26656631
    [Google Scholar]
  116. Yuan Y.G. Peng Q.L. Gurunathan S. Silver nanoparticles enhance the apoptotic potential of gemcitabine in human ovarian cancer cells: combination therapy for effective cancer treatment. Int. J. Nanomedicine 2017 12 6487 6502 10.2147/IJN.S135482 28919750
    [Google Scholar]
  117. Gurunathan S. Zhang X-F. Combination of salinomycin and silver nanoparticles enhances apoptosis and autophagy in human ovarian cancer cells: an effective anticancer therapy. Int. J. Nanomedicine 2016 11 3655 3675 10.2147/IJN.S111279 27536105
    [Google Scholar]
  118. Prasad R.Y. McGee J.K. Killius M.G. Suarez D.A. Blackman C.F. DeMarini D.M. Simmons S.O. Investigating oxidative stress and inflammatory responses elicited by silver nanoparticles using high-throughput reporter genes in HepG2 cells: Effect of size, surface coating, and intracellular uptake Toxicol. In vitroitalic>, 2013 27 (6) 2013 2021 10.1016/j.tiv.2013.07.005 23872425
    [Google Scholar]
  119. Rank Miranda R. Pereira da Fonseca M. Korzeniowska B. Skytte L. Lund Rasmussen K. Kjeldsen F. Elucidating the cellular response of silver nanoparticles as a potential combinatorial agent for cisplatin chemotherapy. J. Nanobiotechnology 2020 18 1 164 10.1186/s12951‑020‑00719‑x 33168016
    [Google Scholar]
  120. Wang Y.T. Yang P.C. Zhang J.Y. Sun J.F. Synthetic routes and clinical application of representative small-molecule egfr inhibitors for cancer therapy. Molecules 2024 29 7 1448 10.3390/molecules29071448
    [Google Scholar]
  121. A layered signalling network 2001 Available fromwww.nature.com/reviews/molcellbio
  122. Wood ER Truesdale AT McDonald OB Yuan D Hassell A Dickerson SH Ellis B Pennisi C Horne E Lackey K Alligood KJ Rusnak DW Gilmer TM Shewchuk L A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): relationships among protein conformation,inhibitor off-rate, and receptor activity in tumor cells Cancer Research 2004 6 (18) 6652 6659 Sep 15 10.1158/0008‑5472.CAN‑04‑1168 15374980
    [Google Scholar]
  123. Pao W. Chmielecki J. Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer. Nat. Rev. Cancer 2010 10 11 760 774 10.1038/nrc2947 20966921
    [Google Scholar]
  124. Heppner D.E. Wittlinger F. Beyett T.S. Shaurova T. Urul D.A. Buckley B. Pham C.D. Schaeffner I.K. Yang B. Ogboo B.C. May E.W. Schaefer E.M. Eck M.J. Laufer S.A. Hershberger P.A. Structural Basis for Inhibition of Mutant EGFR with Lazertinib (YH25448). ACS Med. Chem. Lett. 2022 13 12 1856 1863 10.1021/acsmedchemlett.2c00213 36518696
    [Google Scholar]
  125. Rolfo C. Mack P.C. Scagliotti G.V. Baas P. Barlesi F. Bivona T.G. Herbst R.S. Mok T.S. Peled N. Pirker R. Raez L.E. Reck M. Riess J.W. Sequist L.V. Shepherd F.A. Sholl L.M. Tan D.S.W. Wakelee H.A. Wistuba I.I. Wynes M.W. Carbone D.P. Hirsch F.R. Gandara D.R. Liquid Biopsy for Advanced Non-Small Cell Lung Cancer (NSCLC): A Statement Paper from the IASLC. J. Thorac. Oncol. 2018 13 9 1248 1268 10.1016/j.jtho.2018.05.030 29885479
    [Google Scholar]
  126. Lan C.C. Hsieh P.C. Huang C.Y. Yang M.C. Su W.L. Wu C.W. Wu Y.K. Review of epidermal growth factor receptor-tyrosine kinase inhibitors administration to non-small-cell lung cancer patients undergoing hemodialysis. World J. Clin. Cases 2022 10 19 6360 6369 10.12998/wjcc.v10.i19.6360 35979322
    [Google Scholar]
  127. Cheng Z. Cui H. Wang Y. Yang J. Lin C. Shi X. The advance of the third generation EGFR TKI in the treatment of non small cell lung cancer. Oncol. Rep. 2024
    [Google Scholar]
  128. Cheng Y. He Y. Li W. Zhang H. Zhou Q. Wang B. Liu C. Walding A. Saggese M. Huang X. Fan M. Wang J. Ramalingam S.S. Osimertinib Versus Comparator EGFR TKI as First-Line Treatment for EGFR-Mutated Advanced NSCLC: FLAURA China, A Randomized Study. Target. Oncol. 2021 16 2 165 176 10.1007/s11523‑021‑00794‑6 33544337
    [Google Scholar]
  129. Comfort K.K. Maurer E.I. Braydich-Stolle L.K. Hussain S.M. Interference of silver, gold, and iron oxide nanoparticles on epidermal growth factor signal transduction in epithelial cells. ACS Nano 2011 5 12 10000 10008 10.1021/nn203785a 22070748
    [Google Scholar]
  130. Daei S. Ziamajidi N. Abbasalipourkabir R. Aminzadeh Z. Vahabirad M. Silver Nanoparticles Exert Apoptotic Activity in Bladder Cancer 5637 Cells Through Alteration of Bax/Bcl-2 Genes Expression. Chonnam Med. J. 2022 58 3 102 109 10.4068/cmj.2022.58.3.102 36245767
    [Google Scholar]
  131. Gupta P. Singh S. Rai N. Verma A. Tiwari H. Kamble S.C. Gautam H.K. Gautam V. Unveiling the cytotoxic and anti-proliferative potential of green-synthesized silver nanoparticles mediated by Colletotrichum gloeosporioides. RSC Advances 2024 14 6 4074 4088 10.1039/D3RA06145K 38292267
    [Google Scholar]
  132. Böhmert L. Niemann B. Thünemann A.F. Lampen A. Cytotoxicity of peptide-coated silver nanoparticles on the human intestinal cell line Caco-2. Arch. Toxicol. 2012 86 7 1107 1115 10.1007/s00204‑012‑0840‑4 22418598
    [Google Scholar]
  133. Miranda R.R. Sampaio I. Zucolotto V. Exploring silver nanoparticles for cancer therapy and diagnosis. Colloids Surf. B Biointerfaces 2022 210 112254 10.1016/j.colsurfb.2021.112254 34896692
    [Google Scholar]
  134. Aziz N. Faraz M. Sherwani M.A. Fatma T. Prasad R. Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis. Front Chem. 2019 7 FEB 65 10.3389/fchem.2019.00065 30800654
    [Google Scholar]
  135. Taha R.H. Green synthesis of silver and gold nanoparticles and their potential applications as therapeutics in cancer therapy; a review. Inorg. Chem. Commun. 2022 143 109610 10.1016/j.inoche.2022.109610
    [Google Scholar]
  136. Taha N.A. Hussein A.A. El-Hak H.N.G. El-Shenawy N.S. A mini-review of nanoparticle therapeutics targeting oxidative stress and inflammation in diabetes. J. Basic Appl. Zool. 2025 86 1
    [Google Scholar]
  137. Dias M. Zhang R. Lammers T. Pallares R.M. Clinical translation and landscape of silver nanoparticles. Drug Deliv. Transl. Res. 2025 15 3 789 797 10.1007/s13346‑024‑01716‑5 39377875
    [Google Scholar]
  138. Hheidari A. Mohammadi J. Ghodousi M. Mahmoodi M. Ebrahimi S. Pishbin E. Rahdar A. Metal-based nanoparticle in cancer treatment: lessons learned and challenges. Front. Bioeng. Biotechnol. 2024 12 1436297 10.3389/fbioe.2024.1436297 39055339
    [Google Scholar]
  139. Peng C. Editorial: Nanomedicine development and clinical translation. Front Chem. 2024 12 1458690 10.3389/fchem.2024.1458690
    [Google Scholar]
  140. Sánchez-Martínez A. Mínguez-García D. Díaz-García P;et,al Environmental impact of nanosilver on the biodegradability of polylactic acid nonwovens. J. Environ. Polym. Degrad. 2025 33 3897 3918 10.1007/s10924‑025‑03631‑3
    [Google Scholar]
  141. Fytianos G. Rahdar A. Kyzas G.Z. Nanomaterials in cosmetics: Recent updates. Nanomaterials 2020 10 5 979 10.3390/nano10050979
    [Google Scholar]
  142. Nguyen T.A. Rajendran S. Current commercial nanocosmetic products. In:Nanocosmetics: Fundamentals, Applications and Toxicity. Elsevier Applied Science 2020 445 453 10.1016/B978‑0‑12‑822286‑7.00019‑X
    [Google Scholar]
  143. Alaqad K. Saleh T.A. Gold and silver nanoparticles: Synthesis methods, characterization routes and applications towards drugs. J. Environ. Anal. Toxicol. 2016 6 4 10.4172/2161‑0525.1000384
    [Google Scholar]
  144. Lee H.S. Byun S.H. Cho S.W. Yang B.E. Past, present, and future of regeneration therapy in oral and periodontal tissue: A review. Appl. Sci. 2019 9 6 1046 10.3390/app9061046
    [Google Scholar]
  145. Pandey P. Dahiya M. A brief review on inorganic nanoparticles. 2016 Available from:https://www.researchgate.net/citation/308111351
    [Google Scholar]
  146. Lee J.S. Oh Y. Lee J.S. Kim H.S. Acute toxicity, oxidative stress, and apoptosis due to short-term triclosan exposure and multi- and transgenerational effects on in vivo endpoints, antioxidant defense, and DNA damage response in the freshwater water flea Daphnia magna. Sci. Total Environ. 2023 864 160925 10.1016/j.scitotenv.2022.160925 36543274
    [Google Scholar]
  147. Uddin M.N. Desai F. Asmatulu E. Engineered nanomaterials in the environment: bioaccumulation, biomagnification and biotransformation. Environ. Chem. Lett. 2020 18 4 1073 1083 10.1007/s10311‑019‑00947‑0
    [Google Scholar]
  148. Najahi-Missaoui W. Arnold R.D. Cummings B.S. Safe nanoparticles: Are we there yet? Int. J. Mol. Sci. 2020 22 1 385 10.3390/ijms22010385 33396561
    [Google Scholar]
  149. Dang F. Huang Y. Wang Y. Zhou D. Xing B. Transfer and toxicity of silver nanoparticles in the food chain. Environ. Sci. (Ruse) 2021 ••• 1519 1535
    [Google Scholar]
  150. Tortella G.R. Rubilar O. Durán N. Diez M.C. Martínez M. Parada, J Silver nanoparticles: Toxicity in model organisms as an overview of its hazard for human health and the environment. J. Hazard. Mater. 2020 390 121974 10.1016/j.jhazmat.2019.121974
    [Google Scholar]
  151. Boyle D. Goss G.G. Effects of silver nanoparticles in early life-stage zebrafish are associated with particle dissolution and the toxicity of soluble silver. NanoImpact 2018 12 1 8 10.1016/j.impact.2018.08.006
    [Google Scholar]
  152. Liu H. Wang X. Wu Y. Hou J. Zhang S. Zhou N. Wang X. Toxicity responses of different organs of zebrafish (Danio rerio) to silver nanoparticles with different particle sizes and surface coatings. Environ. Pollut. 2019 246 414 422 10.1016/j.envpol.2018.12.034 30579210
    [Google Scholar]
  153. Sørensen S.N. Baun A. Controlling silver nanoparticle exposure in algal toxicity testing – A matter of timing. Nanotoxicology 2015 9 2 201 209 10.3109/17435390.2014.913728 24842597
    [Google Scholar]
  154. Kleiven M. Macken A. Oughton D.H. Growth inhibition in Raphidocelis subcapita – Evidence of nanospecific toxicity of silver nanoparticles. Chemosphere 2019 221 785 792 10.1016/j.chemosphere.2019.01.055 30684776
    [Google Scholar]
  155. Sakka Y. Skjolding L.M. Mackevica A. Filser J. Baun A. Behavior and chronic toxicity of two differently stabilized silver nanoparticles to Daphnia magna. Aquat. Toxicol. 2016 177 526 535 10.1016/j.aquatox.2016.06.025 27449283
    [Google Scholar]
  156. Du J. Tang J. Xu S. Ge J. Dong Y. Li H. Jin M. A review on silver nanoparticles-induced ecotoxicity and the underlying toxicity mechanisms. Regul. Toxicol. Pharmacol. 2018 98 231 239 10.1016/j.yrtph.2018.08.003 30096342
    [Google Scholar]
  157. Kakakhel M.A. Wu F. Sajjad W. Zhang Q. Khan I. Ullah K. Wang W. Long-term exposure to high-concentration silver nanoparticles induced toxicity, fatality, bioaccumulation, and histological alteration in fish (Cyprinus carpio). Environ. Sci. Eur. 2021 33 1 14 10.1186/s12302‑021‑00453‑7
    [Google Scholar]
  158. Xiang Q.Q. Li Q.Q. Wang P. Yang H.C. Fu Z.H. Liang X. Chen L-Q. Metabolomics reveals the mechanism of persistent toxicity of AgNPs at environmentally relevant concentrations to Daphnia magna. Environ. Sci. Nano 2025 12 1 563 575 10.1039/D4EN00350K
    [Google Scholar]
  159. Sati A. Ranade T.N. Mali S.N. Ahmad Yasin H.K. Pratap A. Silver nanoparticles (AgNPs): Comprehensive insights into bio/synthesis, key influencing factors, multifaceted applications, and toxicity—A 2024 Update. ACS Omega 2025 10 8 7549 7582 10.1021/acsomega.4c11045 40060826
    [Google Scholar]
  160. Huang M. Wang S. Chen S. Wang J. Xu C. Liu J. Lian Z. Du X. Wang J. Pegylated liposomal mitoxantrone modulates tumor immune landscape to boost PD-L1 blockade therapy. Nano Today 2022 44 101500 10.1016/j.nantod.2022.101500
    [Google Scholar]
  161. Reza Fatemi Tabatabaei S. Ghaderi S. Najafzadeh Varzi H. Rashno M. Induced adverse effects of prenatal exposure to silver nanoparticles on neurobehavioral development of offspring of mice. J. Toxicol. Sci. 2015 40 2 263 275 [Apr;] 10.2131/jts.40.263
    [Google Scholar]
  162. Wang M. Li S. Chen Z. Zhu J. Hao W. Jia G. Chen W. Zheng Y. Qu W. Liu Y. Safety assessment of nanoparticles in food: Current status and prospective. Nano Today 2021 39 101169 10.1016/j.nantod.2021.101169
    [Google Scholar]
  163. Zhao J. Wang X. Hoang S.A. Bolan N.S. Kirkham M.B. Liu J. Xia X. Li Y. Silver nanoparticles in aquatic sediments: Occurrence, chemical transformations, toxicity, and analytical methods. J. Hazard. Mater. 2021 418 126368 10.1016/j.jhazmat.2021.126368 34329024
    [Google Scholar]
  164. Chernousova S. Epple M. Silver as antibacterial agent: Ion, nanoparticle, and metal. International Edition Angewandte Chemie 2013 Vol. 52 1636 1653
    [Google Scholar]
  165. Welz P.J. Khan N. Prins A. The effect of biogenic and chemically manufactured silver nanoparticles on the benthic bacterial communities in river sediments. Sci. Total Environ. 2018 644 1380 1390 10.1016/j.scitotenv.2018.06.283 30743850
    [Google Scholar]
  166. El-Ansary A. Al-Daihan S. On the toxicity of therapeutically used nanoparticles: an overview. J. Toxicol. 2009 2009 1 9 10.1155/2009/754810 20130771
    [Google Scholar]
  167. Recommendation of the council on oecd legal instruments 2024 Availablefrom http://legalinstruments.oecd.org
  168. Swuste P. Zalk D.M. Risk management and nanomaterials. 2013 Available from: http://www.studiumpress.in
    [Google Scholar]
  169. K, D; Tripathy S; Dureja H Cosmetics: Regulatory scenario in USA, EU and India JPTRM, 2015 3 (2) 127 139 Nov 17
    [Google Scholar]
  170. Dhapte-Pawar V. Kadam S. Saptarsi S. Kenjale P.P. Nanocosmeceuticals: Facets and Aspects. Future Sci. OA 2020 6 10 FSO613 10.2144/fsoa‑2019‑0109 33312696
    [Google Scholar]
  171. Limongi T. Susa F. An opinion on how nanobiotechnology is assisting humankind to overcome the coronavirus disease 2019. Front. Bioeng. Biotechnol. 2022 10 916165 10.3389/fbioe.2022.916165 35769099
    [Google Scholar]
  172. Eker F. Duman H. Akdaşçi E. Witkowska A.M. Bechelany M. Karav S. Silver Nanoparticles in Therapeutics and Beyond: A Review of Mechanism Insights and Applications. Nanomaterials 2024 14 20 1618 10.3390/nano14201618
    [Google Scholar]
  173. Jangid H. Singh S. Kashyap P. Singh A. Kumar G. Advancing biomedical applications: an in-depth analysis of silver nanoparticles in antimicrobial, anticancer, and wound healing roles. Front. Pharmacol. 2024 15 1438227 10.3389/fphar.2024.1438227 39175537
    [Google Scholar]
  174. Wang B. Tang D. Cui J. Jiang H. Yu J. Guo Z. RGD-based self-assembling nanodrugs for improved tumor therapy. Front. Pharmacol. 2024 15 1477409 10.3389/fphar.2024.1477409
    [Google Scholar]
  175. Khakpour Amirhossein Florescu Lucia Tilley Richard Jiang Haibo AI-Powered prediction of nanoparticle pharmacokinetics: a multi-view learning approach 2025 10.48550/arXiv.2503.13798
  176. Fei Y. Yu X. Liu P. Ren H. Wei T. Cheng Q. Simplified Lipid Nanoparticles for Tissue‐ And Cell‐Targeted mRNA Delivery Facilitate Precision Tumor Therapy in a Lung Metastasis Mouse Model. Adv. Mater. 2024 36 48 2409812 10.1002/adma.202409812 39390844
    [Google Scholar]
  177. He Shuai He Wenxuan Shi Hongxing Yu, Sheng Sono-piezodynamic therapy for drug-resistant bacteria infection. Cell Rep. Phys. Sci. 2025 6 3 102451 10.1016/j.xcrp.2025.102451
    [Google Scholar]
  178. Wang T. Wu C. Hu Y. Zhang Y. Ma J. Stimuli-responsive nanocarrier delivery systems for Pt-based antitumor complexes: a review. RSC Advances 2023 13 24 16488 16511 10.1039/D3RA00866E 37274408
    [Google Scholar]
  179. Arshad F. Naikoo GA. Hassan IU. Chava SR. El-Tanani M. Aljabali AA. Tambuwala MM. Bioinspired and green synthesis of silver nanoparticles for medical applications: A green perspective. Appl. Biochem. Biotechnol. 2024 196 6 3636 3669 10.1007/s12010‑023‑04719‑z 37668757
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266405632250929122554
Loading
/content/journals/ctmc/10.2174/0115680266405632250929122554
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test