Skip to content
2000
image of Formononetin-Celecoxib Conjugate as Matrix Metalloproteinase 9 Inhibitor for Osteoarthritis Therapy

Abstract

Introduction

The objective of this study was to synthesize and characterize the Formononetin-Celecoxib Conjugate, evaluate its efficacy both and , and ascertain its potential as a medicinal agent for osteoarthritis (OA).

Methods

Phytoconstituents from Glycine max and FDA-approved drugs were meticulously curated and subjected to computational analyses for target identification and molecular docking. The Formononetin-Celecoxib Conjugate was subsequently synthesized and characterized using spectroscopic techniques. assessments included MTT viability assays and ELISA analyses. efficacy was evaluated using an MIA-induced OA mouse model.

Results

Molecular Formononetin-Celecoxib Conjugate has high binding affinity towards MMP-9. , the conjugate was non-toxic and significantly reduced MMP-9 expression. , it attenuated paw volume (p < 0.05) and prevented body weight loss in OA-induced mice, especially at 200 mg/kg. Statistical analysis (Mean ± SD; two-way ANOVA with Tukey’s test) confirmed significant therapeutic benefits.

Discussion

The study validates the conjugate's anti-inflammatory and disease-modifying potential through both computational and experimental approaches. Its effects on MMP-9 inhibition suggest translational relevance for human OA. However, small sample size and lack of blinding remain limitations requiring further investigation.

Conclusion

Our study demonstrates the promising potential of the Formononetin-Celecoxib Conjugate as a novel therapeutic intervention for OA. By integrating computational predictions with experimental validations, this approach represents a step toward precision medicine in managing OA.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266377273251010093254
2026-01-09
2026-01-31
Loading full text...

Full text loading...

References

  1. Yao Q. Wu X. Tao C. Gong W. Chen M. Qu M. Zhong Y. He T. Chen S. Xiao G. Osteoarthritis: Pathogenic signaling pathways and therapeutic targets. Signal Transduct. Target. Ther. 2023 8 1 56 10.1038/s41392‑023‑01330‑w 36737426
    [Google Scholar]
  2. Katsoula G. Steinberg J. Tuerlings M. Coutinho de Almeida R. Southam L. Swift D. Meulenbelt I. Wilkinson J.M. Zeggini E. A molecular map of long non-coding RNA expression, isoform switching and alternative splicing in osteoarthritis. Hum. Mol. Genet. 2022 31 12 2090 2105 10.1093/hmg/ddac017 35088088
    [Google Scholar]
  3. Chow Y.Y. Chin K.Y. The role of inflammation in the pathogenesis of osteoarthritis. Mediators Inflamm. 2020 2020 1 19 10.1155/2020/8293921 32189997
    [Google Scholar]
  4. Hootman J.M. Helmick C.G. Barbour K.E. Theis K.A. Boring M.A. Updated projected prevalence of self‐reported doctor‐diagnosed arthritis and arthritis‐attributable activity limitation among US adults, 2015–2040. Arthritis Rheumatol. 2016 68 7 1582 1587 10.1002/art.39692 27015600
    [Google Scholar]
  5. Tezuka H. Imai S. Immunomodulatory effects of soybeans and processed soy food compounds. Recent Pat. Food Nutr. Agric. 2015 7 2 92 99 10.2174/2212798407666150629123957 26118769
    [Google Scholar]
  6. Hendrich S. Nutritional, nutraceutical and functional properties of soybeans Suzanne Hendrich, Iowa State University, USA. In: Achieving sustainable cultivation of soybeans; Burleigh Dodds Science Publishing 2018
    [Google Scholar]
  7. Lin Y. Wu S. Vegetable soybean (Glycine max (L.) Merr.) leaf extracts: Functional components and antioxidant and anti‐inflammatory activities. J. Food Sci. 2021 86 6 2468 2480 10.1111/1750‑3841.15765 34028011
    [Google Scholar]
  8. The link between soy and reduced joint pain 2024 Available from: https://www.nasabone.com/blog/the-link-between-soy-and-reduced-joint-pain
  9. Song X. Zhang Y. Dai E. Wang L. Du H. Prediction of triptolide targets in rheumatoid arthritis using network pharmacology and molecular docking. Int. Immunopharmacol. 2020 80 106179 10.1016/j.intimp.2019.106179 31972422
    [Google Scholar]
  10. Li L. Yang L. Yang L. He C. He Y. Chen L. Dong Q. Zhang H. Chen S. Li P. Network pharmacology: A bright guiding light on the way to explore the personalized precise medication of traditional Chinese medicine. Chin. Med. 2023 18 1 146 10.1186/s13020‑023‑00853‑2 37941061
    [Google Scholar]
  11. Noor F. Tahir ul Qamar, M.; Ashfaq, U.A.; Albutti, A.; Alwashmi, A.S.S.; Aljasir, M.A. Network pharmacology approach for medicinal plants: Review and assessment. Pharmaceuticals 2022 15 5 572 10.3390/ph15050572 35631398
    [Google Scholar]
  12. Mohanraj K. Karthikeyan B.S. Chand R.B.P. IMPPAT: A curated database of indian medicinal plants, phytochemistry and therapeutics. Sci. Rep 2018 8 1 10.1038/s41598‑018‑22631‑z
    [Google Scholar]
  13. Download OpenBabel-2.4.0.exe 2025 Available from: https://sourceforge.net/projects/openbabel/files/openbabel/2.4.0/OpenBabel-2.4.0.exe/download
  14. Find my Compound’s targets 2024 Available from: https://www.bindingdb.org/bind/chemsearch/marvin/BatchStructures.jsp
  15. Uniprot E. MBL-EBI 2024 Available from: https://www.ebi.ac.uk/uniprot/index
  16. DisGeNET DisGeNET: A database of gene-disease associations. 2024 Available from: https://www.disgenet.org/dbinfo
    [Google Scholar]
  17. Venn Diagrams - Genomics biotools 2024 Available from: https://www.biotools.fr/misc/venny
  18. STRING STRING: Functional protein association networks. 2024 Available from: https://string-db.org/
  19. Gao Q. Tian D. Han Z. Lin J. Chang Z. Zhang D. Ma D. Network pharmacology and molecular docking analysis on molecular targets and mechanisms of buyang huanwu decoction in the treatment of ischemic stroke. Evid. Based Complement. Alternat. Med. 2021 2021 1 15 10.1155/2021/8815447 33727944
    [Google Scholar]
  20. PubChem PubChem 2024 Available from: https://pubchem.ncbi.nlm.nih.gov/
  21. RCSB PDB RCSB PDB: Homepage 2024 Available from: https://www.rcsb.org/
  22. Adasme Michael F. Linnemann Katja L. Bolz Sebastian N. Kaiser Florian Salentin Sebastian Haupt Volker J. Schroeder, Michael PLIP 2021: Expanding the scope of the protein-ligand interaction profiler to DNA and RNA. Nucleic Acids Res. 2021 49 W1 W530 W534 10.1093/nar/gkab294 33950214
    [Google Scholar]
  23. PyRx - Virtual screening tool download. 2024 https://sourceforge.net/projects/pyrx/
  24. Weng L.H. Wang C.J. Ko J.Y. Sun Y.C. Su Y.S. Wang F.S. Inflammation induction of Dickkopf-1 mediates chondrocyte apoptosis in osteoarthritic joint. Osteoarthritis Cartilage 2009 17 7 933 943 10.1016/j.joca.2008.12.008 19217321
    [Google Scholar]
  25. Genheden S. Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov. 2015 10 5 449 461 10.1517/17460441.2015.1032936 25835573
    [Google Scholar]
  26. Krishna Swaroop A. Nagarjuna P. Naresh P. Shyam Sundar P. Jubie S. Natarajan J. Vasanth P. Discovery of immunomodulators from plant kingdom targeting IL-6 for the effective management therapy of SARS-CoV-2. J. Nat. Rem. 2022 22 2 249 260 10.18311/jnr/2022/28798
    [Google Scholar]
  27. Jerard Chinniah Michael Babu P. Chenicheri, Sakthisekaran Rosmarinic acid-rich fraction from Mentha arvensis synchronizes Bcl/Bax expression and induces G0/G1 arrest in hepatocarcinoma cells. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 2020 90 515 522 10.1007/s40011‑019‑01122‑9
    [Google Scholar]
  28. Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 2022 65 1 55 63 10.1016/0022‑1759(83)90303‑4
    [Google Scholar]
  29. Buranaamnuay K. The MTT assay application to measure the viability of spermatozoa: A variety of the assay protocols. Open Vet. J. 2021 11 2 251 269 10.5455/OVJ.2021.v11.i2.9 34307082
    [Google Scholar]
  30. Butler J.E. Feldbush T.L. McGivern P.L. Stewart N. The enzyme-linked immunosorbent assay (ELISA): A measure of antibody concentration or affinity? Immunochemistry 1978 15 2 131 136 10.1016/0161‑5890(78)90053‑6 344194
    [Google Scholar]
  31. Udo M. Muneta T. Tsuji K. Ozeki N. Nakagawa Y. Ohara T. Saito R. Yanagisawa K. Koga H. Sekiya I. Monoiodoacetic acid induces arthritis and synovitis in rats in a dose- and time-dependent manner: Proposed model-specific scoring systems. Osteoarthritis Cartilage 2016 24 7 1284 1291 10.1016/j.joca.2016.02.005 26915639
    [Google Scholar]
  32. Wu S.S. Hao L.J. Shi Y.Y. Lu Z.J. Yu J.L. Jiang S.Q. Liu Q.L. Wang T. Guo S.Y. Li P. Li F. Network pharmacology-based analysis on the effects and mechanism of the wang-bi capsule for rheumatoid arthritis and osteoarthritis. ACS Omega 2022 7 9 7825 7836 10.1021/acsomega.1c06729 35284738
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266377273251010093254
Loading
/content/journals/ctmc/10.2174/0115680266377273251010093254
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test