Skip to content
2000
image of Recent Advances in Boswellic Acids as Anticancer Agents: Therapeutic Effects, SAR, and Computational Approaches

Abstract

The employment of phytomolecules to treat cancer has become widespread in recent decades. Boswellic acids (BAs) are pentacyclic triterpenoids obtained from oleo-gum resins. BAs are the primary active constituents of Boswellia resins and exhibit potent anticancer activity against numerous cancer cell lines. Consequently, they have garnered considerable attention as prominent anti-cancer agents. However, the pharmacokinetic characteristics of BAs, such as their low bioavailability and poor water solubility, pose significant barriers that limit their medicinal use. The aim of this review is to provide a thorough overview of the anticancer effects of BAs, along with their physiochemical parameters, pharmacokinetic profile, and structure–activity relationship (SAR). Furthermore, computational studies conducted on BAs to improve their therapeutic efficacy, relevant clinical studies evaluating BAs, the associated challenges, and future prospects have also been discussed. A systematic review of the literature was conducted to identify the effects of BAs in various cancers. The following databases were searched: PubMed, Web of Science, and Scopus, for prospective studies published between 2012 and 2025. Although BAs exhibit significant therapeutic potential, their clinical utility is limited by their pharmacokinetic profile. Focused studies on improved isolation techniques, the development of synthetic derivatives, and hybrid molecules are required to address these challenges. In addition, advancements in nanodrug delivery systems and computational studies are vital to overcome these barriers. Collectively, these strategies could prove helpful in establishing BAs as privileged scaffolds for developing anticancer drugs.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266400791251112120120
2026-01-19
2026-01-31
Loading full text...

Full text loading...

References

  1. Upadhyay H.C. Exploring nature’s treasure for drug discovery. Lett. Drug Des. Discov. 2023 20 4 373 374 10.2174/157018082004230113144404
    [Google Scholar]
  2. Fatima A. Khan M.S. Ahmad M.W. Therapeutic potential of equol: A comprehensive review. Curr. Pharm. Des. 2020 26 45 5837 5843 10.2174/1381612826999201117122915 33208061
    [Google Scholar]
  3. Nasim N. Sandeep I.S. Mohanty S. Plant-derived natural products for drug discovery: Current approaches and prospects. Nucleus 2022 65 3 399 411 10.1007/s13237‑022‑00405‑3 36276225
    [Google Scholar]
  4. Fatima A. Gupta V.K. Luqman S. Negi A.S. Kumar J.K. Shanker K. Saikia D. Srivastava S. Darokar M.P. Khanuja S.P.S. Antifungal activity of Glycyrrhiza glabra extracts and its active constituent glabridin. Phytother. Res. 2009 23 8 1190 1193 10.1002/ptr.2726 19170157
    [Google Scholar]
  5. Asma S.T. Acaroz U. Imre K. Morar A. Shah S.R.A. Hussain S.Z. Arslan-Acaroz D. Demirbas H. Hajrulai-Musliu Z. Istanbullugil F.R. Soleimanzadeh A. Morozov D. Zhu K. Herman V. Ayad A. Athanassiou C. Ince S. Natural products/bioactive compounds as a source of anticancer drugs. Cancers 2022 14 24 6203 10.3390/cancers14246203 36551687
    [Google Scholar]
  6. Upadhyay H.C. Srivastava S.K. Natural products inspired drug discovery for infectious diseases. Med. Chem. 2024 20 6 555 556 10.2174/157340642006240507100418 39105420
    [Google Scholar]
  7. Rodríguez-Yoldi M.J. Anti-inflammatory and antioxidant properties of plant extracts. Antioxidants 2021 10 6 921 10.3390/antiox10060921 34200199
    [Google Scholar]
  8. Ullah A. Mostafa N.M. Halim S.A. Elhawary E.A. Ali A. Bhatti R. Shareef U. Al Naeem W. Khalid A. Kashtoh H. Khan A. Al-Harrasi A. Phytoconstituents with cardioprotective properties: A pharmacological overview on their efficacy against myocardial infarction. Phytother. Res. 2024 38 9 4467 4501 10.1002/ptr.8292 39023299
    [Google Scholar]
  9. Zieneldien T. Kim J. Cao C. The multifaceted role of neuroprotective plants in Alzheimer’s disease treatment. Geriatrics 2022 7 2 24 10.3390/geriatrics7020024 35314596
    [Google Scholar]
  10. Alam S. Sarker M.M.R. Sultana T.N. Chowdhury M.N.R. Rashid M.A. Chaity N.I. Zhao C. Xiao J. Hafez E.E. Khan S.A. Mohamed I.N. Antidiabetic phytochemicals from medicinal plants: Prospective candidates for new drug discovery and development. Front. Endocrinol. 2022 13 800714 10.3389/fendo.2022.800714
    [Google Scholar]
  11. Upadhyay H.C. Mishra K.N. Singh S. Sanket S. Kumar M. Yashmeen U. Kant R. Dwivedi G.R. Synergy potential of ursolic acid-based hybrid molecules. Lett. Drug Des. Discov. 2023 20 4 469 478 10.2174/1570180819666220929143234
    [Google Scholar]
  12. Alibi S. Crespo D. Navas J. Plant-derivatives small molecules with antibacterial activity. Antibiotics 2021 10 3 231 10.3390/antibiotics10030231 33668943
    [Google Scholar]
  13. Srivastava V. Darokar M.P. Fatima A. Kumar J.K. Chowdhury C. Saxena H.O. Dwivedi G.R. Shrivastava K. Gupta V. Chattopadhyay S.K. Luqman S. Gupta M.M. Negi A.S. Khanuja S.P. Synthesis of diverse analogues of Oenostacin and their antibacterial activities. Bioorg. Med. Chem. 2007 15 1 518 525 10.1016/j.bmc.2006.09.034 17035037
    [Google Scholar]
  14. Mishra K.N. Mohapatra D. Chaubey P. Sahu A.N. Kumar S. Upadhyay H.C. Bio‐fabrication of silver nanoparticles using alysicarpus vaginalis extract: Preparation, characterization and comparative in vitro antibacterial evaluations. ChemistrySelect 2023 8 24 202301113 10.1002/slct.202301113
    [Google Scholar]
  15. Ul-Islam M. Alhajaim W. Fatima A. Yasir S. Kamal T. Abbas Y. Khan S. Khan A.H. Manan S. Ullah M.W. Yang G. Development of low-cost bacterial cellulose-pomegranate peel extract-based antibacterial composite for potential biomedical applications. Int. J. Biol. Macromol. 2023 231 123269 10.1016/j.ijbiomac.2023.123269 36649873
    [Google Scholar]
  16. Fatima A. Ul-Islam M. Yasir S. Khan S. Manan S. Shehzad A. Ahmad M.W. Al-Shannaq R. Islam S.U. Abbas Y. Subhan F. Sabour A.A.A. Alshiekheid M.A. Ullah M.W. Ex situ fabrication and bioactivity characterization of Neem and Sage-infused bacterial cellulose membranes for sustainable antimicrobial applications. Int. J. Biol. Macromol. 2025 287 138433 10.1016/j.ijbiomac.2024.138433 39647734
    [Google Scholar]
  17. Newman D.J. Cragg G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020 83 3 770 803 10.1021/acs.jnatprod.9b01285 32162523
    [Google Scholar]
  18. Rashan L. White A. Haulet M. Favelin N. Das P. Cock I.E. Chemical composition, antibacterial activity, and antibiotic potentiation of Boswellia sacra Flueck. oleoresin extracts from the Dhofar region of Oman. Evid. Based Complement. Alternat. Med. 2021 2021 1 1 23 10.1155/2021/9918935 34122610
    [Google Scholar]
  19. Roy N.K. Parama D. Banik K. Bordoloi D. Devi A.K. Thakur K.K. Padmavathi G. Shakibaei M. Fan L. Sethi G. Kunnumakkara A.B. An update on pharmacological potential of boswellic acids against chronic diseases. Int. J. Mol. Sci. 2019 20 17 4101 10.3390/ijms20174101 31443458
    [Google Scholar]
  20. Calabrese V. Osakabe N. Khan F. Wenzel U. Modafferi S. Nicolosi L. Fritsch T. Jacob U.M. Abdelhameed A.S. Rashan L. Frankincense: A neuronutrient to approach Parkinson’s disease treatment. Open Med. 2024 19 1 20240988 10.1515/med‑2024‑0988 38911256
    [Google Scholar]
  21. Al-Matubsi H. Rashan L. Aburayyan W. Al Hanbali O. Abuarqoub D. Efferth T. Antidiabetic and antioxidant properties of Boswellia sacra oleo-gum in streptozotocin-induced diabetic rats. J. Ayurveda Integr. Med. 2024 15 4 101014 10.1016/j.jaim.2024.101014 39167989
    [Google Scholar]
  22. Schmiech M. Lang S.J. Werner K. Rashan L.J. Syrovets T. Simmet T. Comparative analysis of pentacyclic triterpenic acid compositions in oleogum resins of different Boswellia species and their in vitro cytotoxicity against treatment-resistant human breast cancer cells. Molecules 2019 24 11 2153 10.3390/molecules24112153 31181656
    [Google Scholar]
  23. Trivedi V.L. Soni R. Dhyani P. Sati P. Tejada S. Sureda A. Setzer W.N. Faizal Abdull Razis A. Modu B. Butnariu M. Sharifi-Rad J. Anti-cancer properties of boswellic acids: Mechanism of action as anti-cancerous agent. Front. Pharmacol. 2023 14 1187181 10.3389/fphar.2023.1187181 37601048
    [Google Scholar]
  24. Kirste S. Treier M. Wehrle S.J. Becker G. Abdel-Tawab M. Gerbeth K. Hug M.J. Lubrich B. Grosu A.L. Momm F. Boswellia serrata acts on cerebral edema in patients irradiated for brain tumors. Cancer 2011 117 16 3788 3795 10.1002/cncr.25945 21287538
    [Google Scholar]
  25. Lee D.H. Kim S.S. Seong S. Woo C.R. Han J.B. A case of metastatic bladder cancer in both lungs treated with korean medicine therapy alone. Case Rep. Oncol. 2014 7 2 534 540 10.1159/000365884 25232323
    [Google Scholar]
  26. Togni S. Maramaldi G. Bonetta A. Giacomelli L. Di Pierro F. Clinical evaluation of safety and efficacy of Boswellia-based cream for prevention of adjuvant radiotherapy skin damage in mammary carcinoma: A randomized placebo controlled trial. Eur. Rev. Med. Pharmacol. Sci. 2015 19 8 1338 1344 25967706
    [Google Scholar]
  27. Roy N.K. Deka A. Bordoloi D. Mishra S. Kumar A.P. Sethi G. Kunnumakkara A.B. The potential role of boswellic acids in cancer prevention and treatment. Cancer Lett. 2016 377 1 74 86 10.1016/j.canlet.2016.04.017 27091399
    [Google Scholar]
  28. Hussain H. Ali I. Wang D. Hakkim F.L. Westermann B. Rashan L. Ahmed I. Green I.R. Boswellic acids: Privileged structures to develop lead compounds for anticancer drug discovery. Expert Opin. Drug Discov. 2021 16 8 851 867 10.1080/17460441.2021.1892640 33650441
    [Google Scholar]
  29. Du Z. Liu Z. Ning Z. Liu Y. Song Z. Wang C. Lu A. Prospects of boswellic acids as potential pharmaceutics. Planta Med. 2015 81 4 259 271 10.1055/s‑0034‑1396313 25714728
    [Google Scholar]
  30. Sterk V. Büchele B. Simmet T. Effect of food intake on the bioavailability of boswellic acids from a herbal preparation in healthy volunteers. Planta Med. 2004 70 12 1155 1160 10.1055/s‑2004‑835844 15643550
    [Google Scholar]
  31. Sharma T. Jana S. Investigation of molecular properties that influence the permeability and oral bioavailability of major β-boswellic acids. Eur. J. Drug Metab. Pharmacokinet. 2020 45 2 243 255 10.1007/s13318‑019‑00599‑z 31786725
    [Google Scholar]
  32. Al-Harrasi A. Khan A.L. Rehman N.U. Csuk R. Biosynthetic diversity in triterpene cyclization within the Boswellia genus. Phytochemistry 2021 184 112660 10.1016/j.phytochem.2021.112660 33524859
    [Google Scholar]
  33. Shah B.A. Qazi G.N. Taneja S.C. Boswellic acids: A group of medicinally important compounds. Nat. Prod. Rep. 2009 26 1 72 89 10.1039/B809437N 19374123
    [Google Scholar]
  34. Büchele B. Zugmaier W. Simmet T. Analysis of pentacyclic triterpenic acids from frankincense gum resins and related phytopharmaceuticals by high-performance liquid chromatography. Identification of lupeolic acid, a novel pentacyclic triterpene. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2003 791 1-2 21 30 10.1016/S1570‑0232(03)00160‑0 12798161
    [Google Scholar]
  35. Al-Harrasi A. Ali L. Ur Rehman N. Hussain J. Hussain H. Al-Rawahi A. Shamim Rizvi T. 11α-Ethoxy-β-boswellic acid and nizwanone, a new boswellic acid derivative and a new triterpene, respectively, from Boswellia sacra. Chem. Biodivers. 2013 10 8 1501 1506 10.1002/cbdv.201200231 23939798
    [Google Scholar]
  36. Mahajan B. Taneja S.C. Sethi V.K. Dhar K.L. Two triterpenoids from Boswellia serrata gum resin. Phytochemistry 1995 39 2 453 455 10.1016/0031‑9422(95)99386‑3
    [Google Scholar]
  37. Allan G.G. The stereochemistry of the boswellic acids. Phytochemistry 1968 7 6 963 973 10.1016/S0031‑9422(00)82183‑4
    [Google Scholar]
  38. Hussain H. Al-Harrasi A. Csuk R. Shamraiz U. Green I.R. Ahmed I. Khan I.A. Ali Z. Therapeutic potential of boswellic acids: A patent review (1990-2015). Expert Opin. Ther. Pat. 2017 27 1 81 90 10.1080/13543776.2017.1235156 27646163
    [Google Scholar]
  39. Glaser T. Winter S. Groscurth P. Safayhi H. Sailer E-R. Ammon H.P.T. Schabet M. Weller M. Boswellic acids and malignant glioma: Induction of apoptosis but no modulation of drug sensitivity. Br. J. Cancer 1999 80 5-6 756 765 10.1038/sj.bjc.6690419 10360653
    [Google Scholar]
  40. Sailer E.R. Subramanian L.R. Rall B. Hoernlein R.F. Ammon H.P.T. Safayhi H. Acetyl‐11‐keto‐β‐boswellic acid (AKBA): Structure requirements for binding and 5‐lipoxygenase inhibitory activity. Br. J. Pharmacol. 1996 117 4 615 618 10.1111/j.1476‑5381.1996.tb15235.x 8646405
    [Google Scholar]
  41. Vo N.N.Q. Nomura Y. Muranaka T. Fukushima E.O. Structure–activity relationships of pentacyclic triterpenoids as inhibitors of cyclooxygenase and lipoxygenase enzymes. J. Nat. Prod. 2019 82 12 3311 3320 10.1021/acs.jnatprod.9b00538 31774676
    [Google Scholar]
  42. Csuk R. Niesen-Barthel A. Barthel A. Kluge R. Ströhl D. Synthesis of an antitumor active endoperoxide from 11-keto-β-boswellic acid. Eur. J. Med. Chem. 2010 45 9 3840 3843 10.1016/j.ejmech.2010.05.036 20538386
    [Google Scholar]
  43. Kaur R. Khan S. Chib R. Kaur T. Sharma P.R. Singh J. Shah B.A. Taneja S.C. A comparative study of proapoptotic potential of cyano analogues of boswellic acid and 11-keto-boswellic acid. Eur. J. Med. Chem. 2011 46 4 1356 1366 10.1016/j.ejmech.2011.01.061 21334793
    [Google Scholar]
  44. Wolfram R.K. Fischer L. Kluge R. Ströhl D. Al-Harrasi A. Csuk R. Homopiperazine-rhodamine B adducts of triterpenoic acids are strong mitocans. Eur. J. Med. Chem. 2018 155 869 879 10.1016/j.ejmech.2018.06.051 29960206
    [Google Scholar]
  45. Shah B.A. Kumar A. Gupta P. Sharma M. Sethi V.K. Saxena A.K. Singh J. Qazi G.N. Taneja S.C. Cytotoxic and apoptotic activities of novel amino analogues of boswellic acids pp 6411–6416. Bioorg. Med. Chem. Lett. 2007 17 23 10.1016/j.bmcl.2007.10.011 17950603
    [Google Scholar]
  46. Chashoo G. Singh S.K. Mondhe D.M. Sharma P.R. Andotra S.S. Shah B.A. Taneja S.C. Saxena A.K. Potentiation of the antitumor effect of 11-keto-β-boswellic acid by its 3-α-hexanoyloxy derivative. Eur. J. Pharmacol. 2011 668 3 390 400 10.1016/j.ejphar.2011.07.024 21821018
    [Google Scholar]
  47. Poeckel D. Werz O. Boswellic acids: Biological actions and molecular targets. Curr. Med. Chem. 2006 13 28 3359 3369 10.2174/092986706779010333 17168710
    [Google Scholar]
  48. Safayhi H. Mack T. Sabieraj J. Anazodo M.I. Subramanian L.R. Ammon H.P. Boswellic acids: Novel, specific, nonredox inhibitors of 5-lipoxygenase. J. Pharmacol. Exp. Ther. 1992 261 3 1143 1146 10.1016/S0022‑3565(25)11130‑0 1602379
    [Google Scholar]
  49. Kumar A. Shah B.A. Singh S. Hamid A. Singh S.K. Sethi V.K. Saxena A.K. Singh J. Taneja S.C. Acyl derivatives of boswellic acids as inhibitors of NF-κB and STATs. Bioorg. Med. Chem. Lett. 2012 22 1 431 435 10.1016/j.bmcl.2011.10.112 22123322
    [Google Scholar]
  50. Iram F. Khan S.A. Husain A. Phytochemistry and potential therapeutic actions of Boswellic acids: A mini-review. Asian Pac. J. Trop. Biomed. 2017 7 6 513 523 10.1016/j.apjtb.2017.05.001
    [Google Scholar]
  51. Efferth T. Oesch F. Anti-inflammatory and anti-cancer activities of frankincense: Targets, treatments and toxicities. Semin. Cancer Biol. 2022 80 39 57 10.1016/j.semcancer.2020.01.015 32027979
    [Google Scholar]
  52. Pang X. Yi Z. Zhang X. Sung B. Qu W. Lian X. Aggarwal B.B. Liu M. Acetyl-11-keto-β-boswellic acid inhibits prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis. Cancer Res. 2009 69 14 5893 5900 10.1158/0008‑5472.CAN‑09‑0755 19567671
    [Google Scholar]
  53. Wang C. Wang R. Wang H. Zang L. Xu H. Huang C. Chen Y. Wang L. A link between chemical structure and biological activity in triterpenoids. Recent Patents Anticancer Drug Discov. 2022 17 2 145 161 10.2174/1574892816666210512031635 33982656
    [Google Scholar]
  54. Xia L. Chen D. Han R. Fang Q. Waxman S. Jing Y. Boswellic acid acetate induces apoptosis through caspase-mediated pathways in myeloid leukemia cells. Mol. Cancer Ther. 2005 4 3 381 388 10.1158/1535‑7163.MCT‑03‑0266 15767547
    [Google Scholar]
  55. Suhail M.M. Wu W. Cao A. Mondalek F.G. Fung K.M. Shih P.T. Fang Y.T. Woolley C. Young G. Lin H.K. Boswellia sacra essential oil induces tumor cell-specific apoptosis and suppresses tumor aggressiveness in cultured human breast cancer cells. BMC Complement. Altern. Med. 2011 11 1 129 10.1186/1472‑6882‑11‑129 22171782
    [Google Scholar]
  56. Hoernlein R.F. Orlikowsky T. Zehrer C. Niethammer D. Sailer E.R. Simmet T. Dannecker G.E. Ammon H.P.T. Acetyl-11-keto-β-boswellic acid induces apoptosis in HL-60 and CCRF-CEM cells and inhibits topoisomerase I. J. Pharmacol. Exp. Ther. 1999 288 2 613 619 10.1016/S0022‑3565(24)37997‑2 9918566
    [Google Scholar]
  57. Lv M. Shao S. Zhang Q. Zhuang X. Qiao T. Acetyl-11-Keto-β-Boswellic acid exerts the anti-cancer effects via cell cycle arrest, apoptosis induction and autophagy suppression in non-small cell lung cancer cells. OncoTargets Ther. 2020 13 733 744 10.2147/OTT.S236346 32158225
    [Google Scholar]
  58. Schmiech M. Ulrich J. Lang S.J. Büchele B. Paetz C. St-Gelais A. Syrovets T. Simmet T. 11-Keto-α-boswellic acid, a novel triterpenoid from Boswellia spp. with chemotaxonomic potential and antitumor activity against triple-negative breast cancer cells. Molecules 2021 26 2 366 10.3390/molecules26020366 33445710
    [Google Scholar]
  59. Casapullo A. Cassiano C. Capolupo A. del Gaudio F. Esposito R. Tosco A. Riccio R. Monti M.C. β‐Boswellic acid, a bioactive substance used in food supplements, inhibits protein synthesis by targeting the ribosomal machinery. J. Mass Spectrom. 2016 51 9 821 827 10.1002/jms.3819 27460774
    [Google Scholar]
  60. Thummuri D. Jeengar M.K. Shrivastava S. Areti A. Yerra V.G. Yamjala S. Komirishetty P. Naidu V.G.M. Kumar A. Sistla R. Boswellia ovalifoliolata abrogates ROS mediated NF-κB activation, causes apoptosis and chemosensitization in Triple Negative Breast Cancer cells. Environ. Toxicol. Pharmacol. 2014 38 1 58 70 10.1016/j.etap.2014.05.002 24908637
    [Google Scholar]
  61. Saraswati S. Agrawal S.S. Antiangiogenic and cytotoxic activity of boswellic acid on breast cancer MCF-7 cells. Biomed. Prev Nutr. 2012 2 1 31 37 10.1016/j.bionut.2011.09.006
    [Google Scholar]
  62. Jamshidi-adegani F. Ghaemi S. Al-Hashmi S. Vakilian S. Al-kindi J. Rehman N.U. Alam K. Al-Riyami K. Csuk R. Arefian E. Al-Harrasi A. Comparative study of the cytotoxicity, apoptotic, and epigenetic effects of Boswellic acid derivatives on breast cancer. Sci. Rep. 2022 12 1 19979 10.1038/s41598‑022‑24229‑y 36411309
    [Google Scholar]
  63. Bonucci M. Fioranelli M. Roccia M.G. Di Nardo V. Carolina J.A. Lotti T. Use of Boswellia-based cream for prevention of adjuvant radiotherapy skin damage in mammary carcinoma. Dermatol. Ther. 2016 29 6 393 10.1111/dth.12351 27003094
    [Google Scholar]
  64. Avula S.K. Rehman N.U. Khan F. Ullah O. Halim S.A. Khan A. Anwar M.U. Rahman S.M. Csuk R. Al-Harrasi A. Triazole‐tethered boswellic acid derivatives against breast cancer: Synthesis, in vitro, and in‐silico studies. J. Mol. Struct. 2023 1282 135181 10.1016/j.molstruc.2023.135181
    [Google Scholar]
  65. Avula S.K. Rehman N.U. Khan F. Alam T. Halim S.A. Khan A. Anwar M.U. Rahman S.M. Gibbons S. Csuk R. Al-Harrasi A. New 1H-1,2,3-triazole analogues of boswellic acid are potential anti-breast cancer agents. J. Mol. Struct. 2025 1319 139447 10.1016/j.molstruc.2024.139447
    [Google Scholar]
  66. Liu J.J. Huang B. Hooi S.C. Acetyl‐keto‐ β ‐boswellic acid inhibits cellular proliferation through a p21‐dependent pathway in colon cancer cells. Br. J. Pharmacol. 2006 148 8 1099 1107 10.1038/sj.bjp.0706817 16783403
    [Google Scholar]
  67. Takahashi M. Sung B. Shen Y. Hur K. Link A. Boland C.R. Aggarwal B.B. Goel A. Boswellic acid exerts antitumor effects in colorectal cancer cells by modulating expression of the let-7 and miR-200 microRNA family. Carcinogenesis 2012 33 12 2441 2449 10.1093/carcin/bgs286 22983985
    [Google Scholar]
  68. Wang D. Ge S. Bai J. Song Y. Boswellic acid exerts potent anticancer effects in HCT-116 human colon cancer cells mediated via induction of apoptosis, cell cycle arrest, cell migration inhibition and inhibition of PI3K/AKT signalling pathway. J. Balkan Union Oncol. 2018 23 2 340 345 29745074
    [Google Scholar]
  69. Yadav V.R. Prasad S. Sung B. Gelovani J.G. Guha S. Krishnan S. Aggarwal B.B. Boswellic acid inhibits growth and metastasis of human colorectal cancer in orthotopic mouse model by downregulating inflammatory, proliferative, invasive and angiogenic biomarkers. Int. J. Cancer 2012 130 9 2176 2184 10.1002/ijc.26251 21702037
    [Google Scholar]
  70. Bae Y. Seo J. Jeong W. P53 genotype-independent anticancer effects of olibanum extract and 11-keto-beta-boswellic acid on human colorectal cancer cells. Phytomed. Plus 2024 4 4 100641 10.1016/j.phyplu.2024.100641
    [Google Scholar]
  71. Park B. Sung B. Yadav V.R. Cho S.G. Liu M. Aggarwal B.B. Acetyl‐11‐keto‐β‐boswellic acid suppresses invasion of pancreatic cancer cells through the downregulation of CXCR4 chemokine receptor expression. Int. J. Cancer 2011 129 1 23 33 10.1002/ijc.25966 21448932
    [Google Scholar]
  72. Snima K.S. Nair R.S. Nair S.V. Kamath C.R. Lakshmanan V.K. Combination of anti-diabetic drug metformin and boswellic acid nanoparticles: A novel strategy for pancreatic cancer therapy. J. Biomed. Nanotechnol. 2015 11 1 93 104 10.1166/jbn.2015.1877 26301303
    [Google Scholar]
  73. Ni X. Suhail M.M. Yang Q. Cao A. Fung K.M. Postier R.G. Woolley C. Young G. Zhang J. Lin H.K. Frankincense essential oil prepared from hydrodistillation of Boswellia sacra gum resins induces human pancreatic cancer cell death in cultures and in a xenograft murine model. BMC Complement. Altern. Med. 2012 12 1 253 10.1186/1472‑6882‑12‑253 23237355
    [Google Scholar]
  74. Yoo Y.J. Huh S.E. Kim Y. Jang H.J. Anti-cancer activity of Boswellia carterii extract alters the stress functional gene expression in the pancreatic cancer cell. Biochip J. 2019 13 2 191 201 10.1007/s13206‑019‑3210‑y
    [Google Scholar]
  75. Syrovets T. Gschwend J.E. Büchele B. Laumonnier Y. Zugmaier W. Genze F. Simmet T. Inhibition of IkappaB kinase activity by acetyl-boswellic acids promotes apoptosis in androgen-independent PC-3 prostate cancer cells in vitro and in vivo. J. Biol. Chem. 2005 280 7 6170 6180 10.1074/jbc.M409477200 15576374
    [Google Scholar]
  76. Verma M. Fatima S. Saeed M. Ansari I.A. Anti-proliferative, pro-apoptotic, and chemosensitizing potential of 3-acetyl-11-keto-β-boswellic acid (AKBA) against prostate cancer cells. Mol. Biotechnol. 2024 67 2 746 761 10.1007/s12033‑024‑01089‑7 38502429
    [Google Scholar]
  77. Verma M. Fatima S. Syed A. Elgorban A.M. Abid I. Wong L.S. Khan M.S. Ansari I.A. 3-Acetyl-11-keto-β-boswellic acid (AKBA) induced antiproliferative effect by suppressing Notch signaling pathway and synergistic interaction with cisplatin against prostate cancer cells. Naunyn Schmiedebergs Arch. Pharmacol. 2025 398 8 10379 10398 10.1007/s00210‑025‑03899‑1 39985578
    [Google Scholar]
  78. Yuan H.Q. Kong F. Wang X.L. Young C.Y.F. Hu X.Y. Lou H.X. Inhibitory effect of acetyl-11-keto-β-boswellic acid on androgen receptor by interference of Sp1 binding activity in prostate cancer cells. Biochem. Pharmacol. 2008 75 11 2112 2121 10.1016/j.bcp.2008.03.005 18430409
    [Google Scholar]
  79. Huang G. Yang J. Zhang L. Cao L. Zhang M. Niu X. Zhou Z. Zhang X. Li P. Liu J.F. Inhibitory effect of 11-carbonyl-beta-boswellic acid on non-small cell lung cancer H446 cells. Biochem. Biophys. Res. Commun. 2018 503 4 2202 2205 10.1016/j.bbrc.2018.06.137 29953860
    [Google Scholar]
  80. Bhardwaj P. Kumar M. Dhatwalia S.K. Garg M.L. Dhawan D.K. Acetyl-11-keto-β-boswellic acid modulates membrane dynamics in benzo(a)pyrene-induced lung carcinogenesis. Mol. Cell. Biochem. 2019 460 1-2 17 27 10.1007/s11010‑019‑03566‑z 31165316
    [Google Scholar]
  81. Lv M. Zhuang X. Zhang Q. Cheng Y. Wu D. Wang X. Qiao T. Acetyl-11-keto-β-boswellic acid enhances the cisplatin sensitivity of non-small cell lung cancer cells through cell cycle arrest, apoptosis induction, and autophagy suppression via p21-dependent signaling pathway. Cell Biol. Toxicol. 2021 37 2 209 228 10.1007/s10565‑020‑09541‑5 32562082
    [Google Scholar]
  82. Gong C. Li W. Wu J. Li Y.Y. Ma Y. Tang L.W. AKBA inhibits radiotherapy resistance in lung cancer by inhibiting maspin methylation and regulating the AKT/FOXO1/p21 axis. J. Radiat. Res. 2023 64 1 33 43 10.1093/jrr/rrac064 36300343
    [Google Scholar]
  83. Solanki N. Saini S. Singh S.K. Paudel K.R. Goh B.H. Dua K. Dureja H. Central composite designed boswellic acids loaded nanoparticles for enhanced cellular uptake in human lung cancer cell line A549. J. Drug Deliv. Sci. Technol. 2025 105 106591 10.1016/j.jddst.2024.106591
    [Google Scholar]
  84. Khan M.A. Singh M. Khan M.S. Najmi A.K. Ahmad S. Caspase mediated synergistic effect of Boswellia serrata extract in combination with doxorubicin against human hepatocellular carcinoma. BioMed Res. Int. 2014 2014 1 294143 10.1155/2014/294143 25177685
    [Google Scholar]
  85. Zaitone S.A. Barakat B.M. Bilasy S.E. Fawzy M.S. Abdelaziz E.Z. Farag N.E. Protective effect of boswellic acids versus pioglitazone in a rat model of diet-induced non-alcoholic fatty liver disease: Influence on insulin resistance and energy expenditure. Naunyn Schmiedebergs Arch. Pharmacol. 2015 388 6 587 600 10.1007/s00210‑015‑1102‑9 25708949
    [Google Scholar]
  86. Wang S. Wang H. Sun B. Li D. Wu J. Li J. Tian X. Qin C. Chang H. Liu Y. Acetyl‐11‐keto‐β‐boswellic acid triggers premature senescence via induction of DNA damage accompanied by impairment of DNA repair genes in hepatocellular carcinoma cells in vitro and in vivo. Fundam. Clin. Pharmacol. 2020 34 1 65 76 10.1111/fcp.12488 31141202
    [Google Scholar]
  87. Saad D.E. Mansour S.Z. Kandil E.I. Hassan A. Moawed F.S.M. Elbakry M.M.M. Boswellic acid synergizes with low-dose ionizing radiation to mitigate thioacetamide-induced hepatic encephalopathy in rats. BMC Pharmacol. Toxicol. 2025 26 1 6 10.1186/s40360‑024‑00831‑w 39806460
    [Google Scholar]
  88. Shao Y. Ho C.T. Chin C.K. Badmaev V. Ma W. Huang M.T. Inhibitory activity of boswellic acids from Boswellia serrata against human leukemia HL-60 cells in culture. Planta Med. 1998 64 4 328 331 10.1055/s‑2006‑957444 9619114
    [Google Scholar]
  89. Chashoo G. Singh S.K. Sharma P.R. Mondhe D.M. Hamid A. Saxena A. Andotra S.S. Shah B.A. Qazi N.A. Taneja S.C. Saxena A.K. A propionyloxy derivative of 11-keto-β-boswellic acid induces apoptosis in HL-60 cells mediated through topoisomerase I & II inhibition. Chem. Biol. Interact. 2011 189 1-2 60 71 10.1016/j.cbi.2010.10.017 21056033
    [Google Scholar]
  90. Khan S. Kaur R. Shah B.A. Malik F. Kumar A. Bhushan S. Jain S.K. Taneja S.C. Singh J. A Novel cyano derivative of 11‐Keto‐β‐Boswellic acid causes apoptotic death by disrupting PI3K/AKT/Hsp‐90 cascade, mitochondrial integrity, and other cell survival signaling events in HL‐60 cells. Mol. Carcinog. 2012 51 9 679 695 10.1002/mc.20821 21751262
    [Google Scholar]
  91. Qurishi Y. Hamid A. Sharma P.R. Wani Z.A. Mondhe D.M. Singh S.K. Zargar M.A. Andotra S.S. Shah B.A. Taneja S.C. Saxena, AK NF-κB down-regulation and PARP cleavage by novel 3-α-butyryloxy-β-boswellic acid results in cancer cell specific apoptosis and in vivo tumor regression. Anticancer. Agents Med. Chem. 2013 13 5 777 790 10.2174/1871520611313050012 23157593
    [Google Scholar]
  92. Liang Y.H. Li P. Zhao J.X. Liu X. Huang Q.F. Acetyl-11-keto-beta-boswellic acid and arsenic trioxide regulate the productions and activities of matrix metalloproteinases in human skin fibroblasts and human leukemia cell line THP-1. J. Chin. Integr. Med. 2010 8 11 1060 1069 10.3736/jcim20101110 21078271
    [Google Scholar]
  93. Jones M.A. Borun A. Greensmith D.J. Boswellia carterii oleoresin extracts induce caspase-mediated apoptosis and G1 cell cycle arrest in human leukaemia subtypes. Front. Pharmacol. 2023 14 1282239 10.3389/fphar.2023.1282239 38155908
    [Google Scholar]
  94. Morris G.M. Huey R. Lindstrom W. Sanner M.F. Belew R.K. Goodsell D.S. Olson A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009 30 16 2785 2791 10.1002/jcc.21256 19399780
    [Google Scholar]
  95. Bolbolian S. Bozorgmehr M.R. Morsali A. Acetyl-11-keto-β-boswellic acid derivatives effects on 5-lipoxygenase: In silico viewpoint. J. Mol. Graph. Model. 2020 94 107464 10.1016/j.jmgm.2019.107464 31593921
    [Google Scholar]
  96. Liu S. Zheng Q. Wang Z. Potential covalent drugs targeting the main protease of the SARS-CoV-2 coronavirus. Bioinformatics 2020 36 11 3295 3298 10.1093/bioinformatics/btaa224 32239142
    [Google Scholar]
  97. Caliebe R.H. Scior T. Ammon H.P.T. Binding of boswellic acids to functional proteins of the SARS‐CoV‐2 virus: Bioinformatic studies. Arch. Pharm. 2021 354 11 2100160 10.1002/ardp.202100160 34427335
    [Google Scholar]
  98. Kumar A. Sharma S. Mishra S. Ojha S. Upadhyay P. ADME prediction, structure-activity relationship of boswellic acid scaffold for the aspect of anticancer & anti-inflammatory potency. Anticancer. Agents Med. Chem. 2023 23 13 1499 1505 10.2174/1871520623666230417080437 37070442
    [Google Scholar]
  99. Zhang P. Duan C.B. Jin B. Ali A.S. Han X. Zhang H. Zhang M.Z. Zhang W.H. Gu Y.C. Recent advances in the natural products-based lead discovery for new agrochemicals. Advanced Agrochem 2023 2 4 324 339 10.1016/j.aac.2023.09.004
    [Google Scholar]
  100. Li C. He Q. Xu Y. Lou H. Fan P. Synthesis of 3-O-acetyl-11-keto-β-boswellic acid (AKBA)-derived amides and their mitochondria-targeted antitumor activities. ACS Omega 2022 7 11 9853 9866 10.1021/acsomega.2c00203 35350335
    [Google Scholar]
  101. Saldívar-González F.I. Aldas-Bulos V.D. Medina-Franco J.L. Plisson F. Natural product drug discovery in the artificial intelligence era. Chem. Sci. 2022 13 6 1526 1546 10.1039/D1SC04471K 35282622
    [Google Scholar]
  102. Hu G. Qiu M. Machine learning-assisted structure annotation of natural products based on MS and NMR data. Nat. Prod. Rep. 2023 40 11 1735 1753 10.1039/D3NP00025G 37519196
    [Google Scholar]
  103. Janßen G. Bode U. Breu H. Dohrn B. Engelbrecht V. Göbel U. Boswellic acids in the palliative therapy of children with progressive or relapsed brain tumors. Klin. Padiatr. 2000 212 4 189 195 10.1055/s‑2000‑9676 10994549
    [Google Scholar]
  104. Streffer J.R. Bitzer M. Schabet M. Dichgans J. Weller M. Response of radiochemotherapy-associated cerebral edema to a phytotherapeutic agent, H15. Neurology 2001 56 9 1219 1221 10.1212/WNL.56.9.1219 11342692
    [Google Scholar]
  105. Skarke C. Kuczka K. Tausch L. Werz O. Rossmanith T. Barrett J.S. Harder S. Holtmeier W. Schwarz J.A. Increased bioavailability of 11-keto-β-boswellic acid following single oral dose frankincense extract administration after a standardized meal in healthy male volunteers: Modeling and simulation considerations for evaluating drug exposures. J. Clin. Pharmacol. 2012 52 10 1592 1600 10.1177/0091270011422811 22167571
    [Google Scholar]
  106. Krüger P. Kanzer J. Hummel J. Fricker G. Schubert-Zsilavecz M. Abdel-Tawab M. Permeation of Boswellia extract in the Caco-2 model and possible interactions of its constituents KBA and AKBA with OATP1B3 and MRP2. Eur. J. Pharm. Sci. 2009 36 2-3 275 284 10.1016/j.ejps.2008.10.005 19010411
    [Google Scholar]
  107. Nakhaei K. Bagheri-Hosseini S. Sabbaghzade N. Behmadi J. Boozari M. Boswellic acid nanoparticles: Promising strategies for increasing therapeutic effects. Rev. Bras. Farmacogn. 2023 33 4 713 723 10.1007/s43450‑023‑00405‑7
    [Google Scholar]
  108. Goel A. Ahmad F.J. Singh R.M. Singh G.N. 3-Acetyl-11-keto-β-boswellic acid loaded-polymeric nanomicelles for topical anti-inflammatory and anti-arthritic activity. J. Pharm. Pharmacol. 2010 62 2 273 278 10.1211/jpp.62.02.0016 20487208
    [Google Scholar]
  109. Khalaj-Kondori M. Ahmadi-Sani K. Hosseinzadeh A. Abtin M. Dendrosome-encapsulated beta-Boswellic acid boosts expression of the memory-related genes in the B65 cell line. J. Drug Deliv. Sci. Technol. 2020 59 101881 10.1016/j.jddst.2020.101881
    [Google Scholar]
  110. Tambe A. Mokashi P. Pandita N. Ex-vivo intestinal absorption study of boswellic acid, cyclodextrin complexes and poloxamer solid dispersions using everted gut sac technique. J. Pharm. Biomed. Anal. 2019 167 66 73 10.1016/j.jpba.2018.12.018 30743157
    [Google Scholar]
  111. Hüsch J. Bohnet J. Fricker G. Skarke C. Artaria C. Appendino G. Schubert-Zsilavecz M. Abdel-Tawab M. Enhanced absorption of boswellic acids by a lecithin delivery form (Phytosome®) of Boswellia extract. Fitoterapia 2013 84 89 98 10.1016/j.fitote.2012.10.002 23092618
    [Google Scholar]
  112. Vijayarani K.R. Govindarajulu M. Ramesh S. Alturki M. Majrashi M. Fujihashi A. Almaghrabi M. Kirubakaran N. Ren J. Babu R.J. Smith F. Moore T. Dhanasekaran M. Enhanced bioavailability of boswellic acid by Piper longum: A computational and pharmacokinetic study. Front. Pharmacol. 2020 11 551911 10.3389/fphar.2020.551911 33384596
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266400791251112120120
Loading
/content/journals/ctmc/10.2174/0115680266400791251112120120
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Pharmacokinetics ; Triterpenes ; SAR ; Anticancer ; Computational studies ; Boswellic acid
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test