Skip to content
2000
image of Breast Cancer Exploration: Naringenin-Loaded Nano-Formulations as a Potential Future Therapeutic

Abstract

Breast cancer remains the second leading cause of cancer-related deaths worldwide, with mortality rates continuing to rise annually. While conventional treatments, such as surgery, chemotherapy, and radiotherapy, are available, they are not 100% effective and often damage healthy tissues, negatively impacting patients' quality of life. Naringenin, a promising phytonutrient, has demonstrated anti-cancer properties through various mechanisms that inactivate carcinogens. However, its therapeutic potential is limited by poor bioavailability and hydrophobic nature. Nanocarrier-based drug delivery systems, an application of nanotechnology, offer a promising solution to overcome these limitations. These systems enhance the solubility, circulatory half-life, and biodistribution of bioactive compounds like naringenin while reducing side effects. This innovative approach shows significant potential in improving breast cancer treatment outcomes.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266358569250903102940
2026-01-06
2026-01-31
Loading full text...

Full text loading...

References

  1. Kapur B.N. The fruits of long endeavors – 200 years of oncology. Med. J. Armed Forces India 2014 70 2 95 97 10.1016/j.mjafi.2014.03.013 26937066
    [Google Scholar]
  2. Bhat A. Yadav J. Thakur K. Aggarwal N. Tripathi T. Chhokar A. Singh T. Jadli M. Bharti A.C. Exosomes from cervical cancer cells facilitate pro-angiogenic endothelial reconditioning through transfer of Hedgehog–GLI signaling components. Cancer Cell Int. 2021 21 1 319 10.1186/s12935‑021‑02026‑3 34167524
    [Google Scholar]
  3. WHO international agency for research on cancer. 2020 Available from: https://gco.iarc.fr/today/online-analysis-pi
  4. Tagde P. Najda A. Nagpal K. Kulkarni G.T. Shah M. Ullah O. Balant S. Rahman M.H. Nanomedicine-based delivery strategies for breast cancer treatment and management. Int. J. Mol. Sci. 2022 23 5 2856 10.3390/ijms23052856 35269998
    [Google Scholar]
  5. Aggarwal N. Yadav J. Thakur K. Bibban R. Chhokar A. Tripathi T. Bhat A. Singh T. Jadli M. Singh U. Kashyap M.K. Bharti A.C. Human papillomavirus infection in head and neck squamous cell carcinomas: Transcriptional triggers and changed disease patterns. Front. Cell. Infect. Microbiol. 2020 10 537650 10.3389/fcimb.2020.537650 33344262
    [Google Scholar]
  6. Mehrotra R. Yadav K. Breast cancer in India: Present scenario and the challenges ahead. World J. Clin. Oncol. 2022 13 3 209 218 10.5306/wjco.v13.i3.209 35433294
    [Google Scholar]
  7. Ly D. Forman D. Ferlay J. Brinton L.A. Cook M.B. An international comparison of male and female breast cancer incidence rates. Int. J. Cancer 2013 132 8 1918 1926 10.1002/ijc.27841 22987302
    [Google Scholar]
  8. Rizzolo P. Silvestri V. Tommasi S. Pinto R. Danza K. Falchetti M. Gulino M. Frati P. Ottini L. Male breast cancer: Genetics, epigenetics, and ethical aspects. Ann. Oncol. 2013 24 8 viii75 viii82 10.1093/annonc/mdt316 24131976
    [Google Scholar]
  9. Danaei G. Vander Hoorn S. Lopez A.D. Murray C.J.L. Ezzati M. Causes of cancer in the world: Comparative risk assessment of nine behavioural and environmental risk factors. Lancet 2005 366 9499 1784 1793 10.1016/S0140‑6736(05)67725‑2 16298215
    [Google Scholar]
  10. Harbeck N. Penault-Llorca F. Cortes J. Gnant M. Houssami N. Poortmans P. Ruddy K. Tsang J. Cardoso F. Breast cancer. Nat. Rev. Dis. Primers 2019 5 1 66 10.1038/s41572‑019‑0111‑2 31548545
    [Google Scholar]
  11. Senkus E. Kyriakides S. Ohno S. Penault-Llorca F. Poortmans P. Rutgers E. Zackrisson S. Cardoso F. Primary breast cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2015 26 Suppl. 5 v8 v30 10.1093/annonc/mdv298 26314782
    [Google Scholar]
  12. Carels N. Spinassé L.B. Tilli T.M. Tuszynski J.A. Toward precision medicine of breast cancer. Theor. Biol. Med. Model. 2016 13 1 7 10.1186/s12976‑016‑0035‑4 26925829
    [Google Scholar]
  13. Galmarini D. Galmarini C.M. Galmarini F.C. Cancer chemotherapy: A critical analysis of its 60 years of history. Crit. Rev. Oncol. Hematol. 2012 84 2 181 199 10.1016/j.critrevonc.2012.03.002 22542531
    [Google Scholar]
  14. Israel B. Tilghman S. Parker-Lemieux K. Payton-Stewart F. Phytochemicals: Current strategies for treating breast cancer.(Review) Oncol. Lett. 2018 15 5 7471 7478 10.3892/ol.2018.8304 29755596
    [Google Scholar]
  15. Braden A. Stankowski R. Engel J. Onitilo A. Breast cancer biomarkers: Risk assessment, diagnosis, prognosis, prediction of treatment efficacy and toxicity, and recurrence. Curr. Pharm. Des. 2013 20 30 4879 4898 10.2174/1381612819666131125145517
    [Google Scholar]
  16. Park M. Kim D. Ko S. Kim A. Mo K. Yoon H. Breast cancer metastasis: Mechanisms and therapeutic implications. Int. J. Mol. Sci. 2022 23 12 6806 10.3390/ijms23126806 35743249
    [Google Scholar]
  17. Subhan M.A. Parveen F. Shah H. Yalamarty S.S.K. Ataide J.A. Torchilin V.P. Recent advances with precision medicine treatment for breast cancer including triple-negative sub-type. Cancers 2023 15 8 2204 10.3390/cancers15082204 37190133
    [Google Scholar]
  18. Yu J. Mu Q. Fung M. Xu X. Zhu L. Ho R.J.Y. Challenges and opportunities in metastatic breast cancer treatments: Nano-drug combinations delivered preferentially to metastatic cells may enhance therapeutic response. Pharmacol. Ther. 2022 236 108108 10.1016/j.pharmthera.2022.108108 34999182
    [Google Scholar]
  19. Newman D.J. Cragg G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020 83 3 770 803 10.1021/acs.jnatprod.9b01285 32162523
    [Google Scholar]
  20. Wink M. Modes of action of herbal medicines and plant secondary metabolites. Medicines 2015 2 3 251 286 10.3390/medicines2030251 28930211
    [Google Scholar]
  21. Ayaz M. Sadiq A. Junaid M. Ullah F. Ovais M. Ullah I. Ahmed J. Shahid M. Flavonoids as prospective neuroprotectants and their therapeutic propensity in aging associated neurological disorders. Front. Aging Neurosci. 2019 11 155 10.3389/fnagi.2019.00155 31293414
    [Google Scholar]
  22. Bellik Y. Boukraâ L. Alzahrani H. Bakhotmah B. Abdellah F. Hammoudi S. Iguer-Ouada M. Molecular mechanism underlying anti-inflammatory and anti-allergic activities of phytochemicals: An update. Molecules 2012 18 1 322 353 10.3390/molecules18010322 23271469
    [Google Scholar]
  23. Bulzomi P. Bolli A. Galluzzo P. Leone S. Acconcia F. Marino M. Naringenin and 17β‐estradiol coadministration prevents hormone‐induced human cancer cell growth. IUBMB Life 2010 62 1 51 60 10.1002/iub.279 19960539
    [Google Scholar]
  24. Harmon A.W. Patel Y.M. Naringenin inhibits glucose uptake in MCF-7 breast cancer cells: A mechanism for impaired cellular proliferation. Breast Cancer Res. Treat. 2004 85 2 103 110 10.1023/B:BREA.0000025397.56192.e2 15111768
    [Google Scholar]
  25. Helle J. Kräker K. Bader M.I. Keiler A.M. Zierau O. Vollmer G. Welsh J. Kretzschmar G. Assessment of the proliferative capacity of the flavanones 8-prenylnaringenin, 6-(1.1-dimethylallyl)naringenin and naringenin in MCF-7 cells and the rat mammary gland. Mol. Cell. Endocrinol. 2014 392 1-2 125 135 10.1016/j.mce.2014.05.014 24859648
    [Google Scholar]
  26. Bhia M. Motallebi M. Abadi B. Zarepour A. Pereira-Silva M. Saremnejad F. Santos A.C. Zarrabi A. Melero A. Jafari S.M. Shakibaei M. Naringenin nano-delivery systems and their therapeutic applications. Pharmaceutics 2021 13 2 291 10.3390/pharmaceutics13020291 33672366
    [Google Scholar]
  27. Li J.J. Lu Z.L. Kou W.R. Chen Z. Wu Y.F. Yu X.H. Zhao Y.C. Long-term effects of Xuezhikang on blood pressure in hypertensive patients with previous myocardial infarction: Data from the Chinese Coronary Secondary Prevention Study (CCSPS). Clin. Exp. Hypertens. 2010 32 8 491 498 10.3109/10641961003686427 21091365
    [Google Scholar]
  28. Sun R. Liu C. Liu J. Yin S. Song R. Ma J. Cao G. Lu Y. Zhang G. Wu Z. Chen A. Wang Y. Integrated network pharmacology and experimental validation to explore the mechanisms underlying naringenin treatment of chronic wounds. Sci. Rep. 2023 13 1 132 10.1038/s41598‑022‑26043‑y 36599852
    [Google Scholar]
  29. Elsori D. Pandey P. Ramniwas S. Kumar R. Lakhanpal S. Rab S.O. Siddiqui S. Singh A. Saeed M. Khan F. Naringenin as potent anticancer phytocompound in breast carcinoma: From mechanistic approach to nanoformulations based therapeutics. Front. Pharmacol. 2024 15 1406619 10.3389/fphar.2024.1406619 38957397
    [Google Scholar]
  30. Cai J. Wen H. Zhou H. Zhang D. Lan D. Liu S. Li C. Dai X. Song T. Wang X. He Y. He Z. Tan J. Zhang J. Naringenin: A flavanone with anti-inflammatory and anti-infective properties. Biomed. Pharmacother. 2023 164 114990 10.1016/j.biopha.2023.114990 37315435
    [Google Scholar]
  31. Adetunji J.A. Fasae K.D. Awe A.I. Paimo O.K. Adegoke A.M. Akintunde J.K. Sekhoacha M.P. The protective roles of citrus flavonoids, naringenin, and naringin on endothelial cell dysfunction in diseases. Heliyon 2023 9 6 17166 10.1016/j.heliyon.2023.e17166 37484296
    [Google Scholar]
  32. Fraguas-Sánchez A.I. Martín-Sabroso C. Fernández-Carballido A. Torres-Suárez A.I. Current status of nanomedicine in the chemotherapy of breast cancer. Cancer Chemother. Pharmacol. 2019 84 4 689 706 10.1007/s00280‑019‑03910‑6 31367789
    [Google Scholar]
  33. Singh R. Lillard J.W. Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol. 2009 86 3 215 223 10.1016/j.yexmp.2008.12.004 19186176
    [Google Scholar]
  34. Yang Y. Trevethan M. Wang S. Zhao L. Beneficial effects of citrus flavanones naringin and naringenin and their food sources on lipid metabolism: An update on bioavailability, pharmacokinetics, and mechanisms. J. Nutr. Biochem. 2022 104 108967 10.1016/j.jnutbio.2022.108967 35189328
    [Google Scholar]
  35. Joshi R. Kulkarni Y.A. Wairkar S. Pharmacokinetic, pharmacodynamic and formulations aspects of Naringenin: An update. Life Sci. 2018 215 43 56 10.1016/j.lfs.2018.10.066 30391464
    [Google Scholar]
  36. Ahmed S. Khan H. Aschner M. Hasan M.M. Hassan S.T.S. Therapeutic potential of naringin in neurological disorders. Food Chem. Toxicol. 2019 132 110646 10.1016/j.fct.2019.110646 31252025
    [Google Scholar]
  37. Berson D.S. Natural antioxidants. J. Drugs Dermatol. 2008 7 7 s7 s12 18681153
    [Google Scholar]
  38. Kumar R. Bhan Tiku A. Naringenin suppresses chemically induced skin cancer in two-stage skin carcinogenesis mouse model. Nutr. Cancer 2020 72 6 976 983 10.1080/01635581.2019.1656756 31474152
    [Google Scholar]
  39. Salehi B. Fokou P.V.T. Sharifi-Rad M. Zucca P. Pezzani R. Martins N. Sharifi-Rad J. The therapeutic potential of naringenin: A review of clinical trials. Pharmaceuticals 2019 12 1 11 10.3390/ph12010011 30634637
    [Google Scholar]
  40. Martini M. De Santis M.C. Braccini L. Gulluni F. Hirsch E. PI3K/AKT signaling pathway and cancer: An updated review. Ann. Med. 2014 46 6 372 383 10.3109/07853890.2014.912836 24897931
    [Google Scholar]
  41. Noori S. Rezaei Tavirani M. Deravi N. Mahboobi Rabbani M.I. Zarghi A. Naringenin enhances the anti-cancer effect of cyclophosphamide against mda-mb-231 breast cancer cells via targeting the STAT3 signaling pathway. Iran. J. Pharm. Res. 2020 19 3 122 133 10.22037/ijpr.2020.113103.14112 33680016
    [Google Scholar]
  42. Zhao Z. Jin G. Ge Y. Guo Z. Naringenin inhibits migration of breast cancer cells via inflammatory and apoptosis cell signaling pathways. Inflammopharmacology 2019 27 5 1021 1036 10.1007/s10787‑018‑00556‑3 30941613
    [Google Scholar]
  43. Den Hartogh D.J. Tsiani E. Antidiabetic properties of naringenin: A citrus fruit polyphenol. Biomolecules 2019 9 3 99 10.3390/biom9030099 30871083
    [Google Scholar]
  44. Arafah A. Rehman M.U. Mir T.M. Wali A.F. Ali R. Qamar W. Multi-therapeutic potential of naringenin (4′,5,7-trihydroxyflavonone): Experimental evidence and mechanisms. Plants 2020 9 12 1784 10.3390/plants9121784
    [Google Scholar]
  45. Kay C.D. Pereira-Caro G. Ludwig I.A. Clifford M.N. Crozier A. Anthocyanins and flavanones are more bioavailable than previously perceived: A review of recent evidence. Annu. Rev. Food Sci. Technol. 2017 8 1 155 180 10.1146/annurev‑food‑030216‑025636 28125348
    [Google Scholar]
  46. Hsiu S.L. Huang T.Y. Hou Y.C. Chin D.H. Chao P.D.L. Comparison of metabolic pharmacokinetics of naringin and naringenin in rabbits. Life Sci. 2002 70 13 1481 1489 10.1016/S0024‑3205(01)01491‑6 11895099
    [Google Scholar]
  47. Bhat A. Yadav J. Thakur K. Aggarwal N. Chhokar A. Tripathi T. Singh T. Jadli M. Veerapandian V. Bharti A.C. Transcriptome analysis of cervical cancer exosomes and detection of HPVE6*I transcripts in exosomal RNA. BMC Cancer 2022 22 1 164 10.1186/s12885‑022‑09262‑4 35148692
    [Google Scholar]
  48. Manach C. Scalbert A. Morand C. Rémésy C. Jiménez L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004 79 5 727 747 10.1093/ajcn/79.5.727 15113710
    [Google Scholar]
  49. Chabane M.N. Ahmad A.A. Peluso J. Muller C.D. Ubeaud-Séquier G. Quercetin and naringenin transport across human intestinal Caco-2 cells. J. Pharm. Pharmacol. 2009 61 11 1473 1483 10.1211/jpp.61.11.0006 19903372
    [Google Scholar]
  50. Bai Y. Peng W. Yang C. Zou W. Liu M. Wu H. Fan L. Li P. Zeng X. Su W. Pharmacokinetics and metabolism of naringin and active metabolite naringenin in rats, dogs, humans, and the differences between species. Front. Pharmacol. 2020 11 364 10.3389/fphar.2020.00364 32292344
    [Google Scholar]
  51. Xu H. Kulkarni K.H. Singh R. Yang Z. Wang S.W.J. Tam V.H. Hu M. Disposition of naringenin via glucuronidation pathway is affected by compensating efflux transporters of hydrophilic glucuronides. Mol. Pharm. 2009 6 6 1703 1715 10.1021/mp900013d 19736994
    [Google Scholar]
  52. Zeng X. Su W. Zheng Y. He Y. He Y. Rao H. Peng W. Yao H. Pharmacokinetics, tissue distribution, metabolism, and excretion of naringin in aged rats. Front. Pharmacol. 2019 10 34 10.3389/fphar.2019.00034 30761003
    [Google Scholar]
  53. Yáñez J.A. Remsberg C.M. Miranda N.D. Vega-Villa K.R. Andrews P.K. Davies N.M. Pharmacokinetics of selected chiral flavonoids: Hesperetin, naringenin and eriodictyol in rats and their content in fruit juices. Biopharm. Drug Dispos. 2008 29 2 63 82 10.1002/bdd.588 18058792
    [Google Scholar]
  54. Koopman F. Beekwilder J. Crimi B. van Houwelingen A. Hall R.D. Bosch D. van Maris A.J.A. Pronk J.T. Daran J.M. De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae. Microb. Cell Fact. 2012 11 1 155 10.1186/1475‑2859‑11‑155 23216753
    [Google Scholar]
  55. De Stefani E. Ronco A. Mendilaharsu M. Deneo-Pellegrini H. Diet and risk of cancer of the upper aerodigestive tract--II. Nutrients. Oral Oncol. 1999 35 1 22 26 10.1016/s1368‑8375(98)00061‑x
    [Google Scholar]
  56. Friedman M. Mushroom polysaccharides: Chemistry and antiobesity, antidiabetes, anticancer, and antibiotic properties in cells, rodents, and humans. Foods 2016 5 4 80 10.3390/foods5040080
    [Google Scholar]
  57. Ravishankar D. Rajora A.K. Greco F. Osborn H.M.I. Flavonoids as prospective compounds for anti-cancer therapy. Int. J. Biochem. Cell Biol. 2013 45 12 2821 2831 10.1016/j.biocel.2013.10.004 24128857
    [Google Scholar]
  58. Sudhakar A. History of cancer, ancient and modern treatment methods. J. Cancer Sci. Ther. 2009 1 2 i iv 10.4172/1948‑5956.100000e2 20740081
    [Google Scholar]
  59. Varghese F. Kabasakal B.V. Cotton C.A.R. Schumacher J. Rutherford A.W. Fantuzzi A. Murray J.W. A low-potential terminal oxidase associated with the iron-only nitrogenase from the nitrogen-fixing bacterium Azotobacter vinelandii. J. Biol. Chem. 2019 294 24 9367 9376 10.1074/jbc.RA118.007285 31043481
    [Google Scholar]
  60. De Stefani E. Dietary antioxidants and lung cancer risk: A case-control study in Uruguay. Nutr. Cancer 1999 34 1 100 110 10.1207/S15327914NC340114
    [Google Scholar]
  61. Li H. Yang B. Huang J. Xiang T. Yin X. Wan J. Luo F. Zhang L. Li H. Ren G. Naringin inhibits growth potential of human triple-negative breast cancer cells by targeting β-catenin signaling pathway. Toxicol. Lett. 2013 220 3 219 228 10.1016/j.toxlet.2013.05.006 23694763
    [Google Scholar]
  62. Zhang F. Dong W. Zeng W. Zhang L. Zhang C. Qiu Y. Wang L. Yin X. Zhang C. Liang W. Naringenin prevents TGF-β1 secretion from breast cancer and suppresses pulmonary metastasis by inhibiting PKC activation. Breast Cancer Res. 2016 18 1 38 10.1186/s13058‑016‑0698‑0 27036297
    [Google Scholar]
  63. Singh T. Aggarwal N. Thakur K. Chhokar A. Yadav J. Tripathi T. Jadli M. Bhat A. Kumar A. Narula R.H. Gupta P. Khurana A. Bharti A.C. Evaluation of therapeutic potential of selected plant-derived homeopathic medicines for their action against cervical cancer. Homeopathy 2023 112 4 262 274 10.1055/s‑0042‑1756436 36858077
    [Google Scholar]
  64. Jadli M. Thakur K. Aggarwal N. Chhokar A. Bibban R. Singh T. Bhat A. Bharti A.C. Delineating role of NF‐κB and interacting cytokines during prostate cancer‐induced osteoclastogenesis. J. Cell. Biochem. 2021 122 2 259 276 10.1002/jcb.29856 33053226
    [Google Scholar]
  65. Madureira M.B. Concato V.M. Cruz E.M.S. Bitencourt de Morais J.M. Inoue F.S.R. Concimo Santos N. Gonçalves M.D. Cremer de Souza M. Basso Scandolara T. Fontana Mezoni M. Galvani M. Rodrigues Ferreira Seiva F. Panis C. Miranda-Sapla M.M. Pavanelli W.R. Naringenin and hesperidin as promising alternatives for prevention and co-adjuvant therapy for breast cancer. Antioxidants 2023 12 3 586 10.3390/antiox12030586 36978836
    [Google Scholar]
  66. Vishnoi K. Mahata S. Tyagi A. Pandey A. Verma G. Jadli M. Singh T. Singh S.M. Bharti A.C. Cross-talk between human papillomavirus oncoproteins and hedgehog signaling synergistically promotes stemness in cervical cancer cells. Sci. Rep. 2016 6 1 34377 10.1038/srep34377 27678330
    [Google Scholar]
  67. Abaza M.S.I. Orabi K.Y. Al-Quattan E. Al-Attiyah R.J. Growth inhibitory and chemo-sensitization effects of naringenin, a natural flavanone purified from Thymus vulgaris, on human breast and colorectal cancer. Cancer Cell Int. 2015 15 1 46 10.1186/s12935‑015‑0194‑0 26074733
    [Google Scholar]
  68. Chen Y.Y. Chang Y.M. Wang K.Y. Chen P.N. Hseu Y.C. Chen K.M. Yeh K.T. Chen C.J. Hsu L.S. Naringenin inhibited migration and invasion of glioblastoma cells through multiple mechanisms. Environ. Toxicol. 2019 34 3 233 239 10.1002/tox.22677 30431227
    [Google Scholar]
  69. Kim S. Park T.I. Naringenin: A partial agonist on estrogen receptor in T47D-KBluc breast cancer cells. Int. J. Clin. Exp. Med. 2013 6 10 890 899 24260594
    [Google Scholar]
  70. Lim W. Park S. Bazer F.W. Song G. Naringenin‐induced apoptotic cell death in prostate cancer cells is mediated via the PI3K/AKT and MAPK signaling pathways. J. Cell. Biochem. 2017 118 5 1118 1131 10.1002/jcb.25729 27606834
    [Google Scholar]
  71. Memariani Z. Abbas S.Q. ul Hassan, S.S.; Ahmadi, A.; Chabra, A. Naringin and naringenin as anticancer agents and adjuvants in cancer combination therapy: Efficacy and molecular mechanisms of action, a comprehensive narrative review. Pharmacol. Res. 2021 171 105264 10.1016/j.phrs.2020.105264 33166734
    [Google Scholar]
  72. Zhang J. Wang N. Zheng Y. Yang B. Wang S. Wang X. Pan B. Wang Z. Naringenin in Si-Ni-San formula inhibits chronic psychological stress-induced breast cancer growth and metastasis by modulating estrogen metabolism through FXR/EST pathway. J. Adv. Res. 2023 47 189 207 10.1016/j.jare.2022.06.006 35718080
    [Google Scholar]
  73. Onodera Y. Motohashi H. Takagi K. Miki Y. Shibahara Y. Watanabe M. Ishida T. Hirakawa H. Sasano H. Yamamoto M. Suzuki T. NRF2 immunolocalization in human breast cancer patients as a prognostic factor. Endocr. Relat. Cancer 2014 21 2 241 252 10.1530/ERC‑13‑0234 24302665
    [Google Scholar]
  74. Zhao H. Eguchi S. Alam A. Ma D. The role of nuclear factor-erythroid 2 related factor 2 (Nrf-2) in the protection against lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 2017 312 2 L155 L162 10.1152/ajplung.00449.2016 27864288
    [Google Scholar]
  75. Kozal K. Krześlak A. The role of hypoxia-inducible factor isoforms in breast cancer and perspectives on their inhibition in therapy. Cancers 2022 14 18 4518 10.3390/cancers14184518
    [Google Scholar]
  76. Zhi S. Chen C. Huang H. Zhang Z. Zeng F. Zhang S. Hypoxia-inducible factor in breast cancer: Role and target for breast cancer treatment. Front. Immunol. 2024 15 1370800 10.3389/fimmu.2024.1370800 38799423
    [Google Scholar]
  77. Collins S.E. Wiegand M.E. Werner A.N. Brown I.N. Mundo M.I. Swango D.J. Mouneimne G. Charest P.G. Ras-mediated activation of mTORC2 promotes breast epithelial cell migration and invasion. Mol. Biol. Cell 2023 34 2 ar9 10.1091/mbc.E22‑06‑0236 36542482
    [Google Scholar]
  78. Bahar M.E. Kim H.J. Kim D.R. Targeting the RAS/RAF/MAPK pathway for cancer therapy: From mechanism to clinical studies. Signal Transduct. Target. Ther. 2023 8 1 455 10.1038/s41392‑023‑01705‑z 38105263
    [Google Scholar]
  79. Dillon M. Lopez A. Lin E. Sales D. Perets R. Jain P. Progress on Ras/MAPK signaling research and targeting in blood and solid cancers. Cancers 2021 13 20 5059 10.3390/cancers13205059
    [Google Scholar]
  80. Wang R. Wang J. Dong T. Shen J. Gao X. Zhou J. Naringenin has a chemoprotective effect in MDA MB 231 breast cancer cells via inhibition of caspase 3 and 9 activities. Oncol. Lett. 2018 17 1 1217 1222 10.3892/ol.2018.9704 30655887
    [Google Scholar]
  81. Hatkevich T. Ramos J. Santos-Sanchez I. Patel Y.M. A naringenin–tamoxifen combination impairs cell proliferation and survival of MCF-7 breast cancer cells. Exp. Cell Res. 2014 327 2 331 339 10.1016/j.yexcr.2014.05.017 24881818
    [Google Scholar]
  82. Sun Y. Gu J. Study on effect of naringenin in inhibiting migration and invasion of breast cancer cells and its molecular mechanism Zhongguo Zhongyao Zazhi 2015 40 6 1144 1150 26226761
    [Google Scholar]
  83. Xiong H. Chen Z. Lin B. Xie B. Liu X. Chen C. Li Z. Jia Y. Wu Z. Yang M. Jia Y. Wang L. Zhou J. Meng X. Naringenin regulates FKBP4/NR3C1/NRF2 axis in autophagy and proliferation of breast cancer and differentiation and maturation of dendritic cell. Front. Immunol. 2022 12 745111 10.3389/fimmu.2021.745111 35087512
    [Google Scholar]
  84. Sindhu R.K. Verma R. Salgotra T. Rahman M.H. Shah M. Akter R. Murad W. Mubin S. Bibi P. Qusti S. Alshammari E.M. Batiha G.E.S. Tomczyk M. Al-kuraishy H.M. Impacting the remedial potential of nano delivery-based flavonoids for breast cancer treatment. Molecules 2021 26 17 5163 10.3390/molecules26175163 34500597
    [Google Scholar]
  85. Ke J.Y. Banh T. Hsiao Y.H. Cole R.M. Straka S.R. Yee L.D. Belury M.A. Citrus flavonoid naringenin reduces mammary tumor cell viability, adipose mass, and adipose inflammation in obese ovariectomized mice. Mol. Nutr. Food Res. 2017 61 9 1600934 10.1002/mnfr.201600934 28370954
    [Google Scholar]
  86. Bhatia K. Bhumika; Das, A. Combinatorial drug therapy in cancer - New insights. Life Sci. 2020 258 118134 10.1016/j.lfs.2020.118134 32717272
    [Google Scholar]
  87. Bayat Mokhtari R. Homayouni T.S. Baluch N. Morgatskaya E. Kumar S. Das B. Yeger H. Combination therapy in combating cancer. Oncotarget 2017 8 23 38022 38043 10.18632/oncotarget.16723
    [Google Scholar]
  88. Guardascione M. Toffoli G. Immune checkpoint inhibitors as monotherapy or within a combinatorial strategy in advanced hepatocellular carcinoma. Int. J. Mol. Sci. 2020 21 17 6302 10.3390/ijms21176302
    [Google Scholar]
  89. Oguz M. Bhatti A.A. Dogan B. Karakurt S. Durdagi S. Yilmaz M. Formation of the inclusion complex of water soluble fluorescent calix[4]arene and naringenin: Solubility, cytotoxic effect and molecular modeling studies. J. Biomol. Struct. Dyn. 2020 38 13 3801 3813 10.1080/07391102.2019.1668301 31526236
    [Google Scholar]
  90. Prabhu J.S. Korlimarla A. Desai K. Alexander A. Raghavan R. Anupama C. Dendukuri N. Manjunath S. Correa M. Raman N. Kalamdani A. Prasad M. Gopinath K.S. Srinath B.S. Sridhar T.S. A majority of low (1-10%) ER positive breast cancers behave like hormone receptor negative tumors. J. Cancer 2014 5 2 156 165 10.7150/jca.7668 24563670
    [Google Scholar]
  91. Chang M.S. Tamoxifen resistance in breast cancer. Biomol. Ther. 2012 20 3 256 267 10.4062/biomolther.2012.20.3.256 24130921
    [Google Scholar]
  92. Mir I.A. Tiku A.B. Chemopreventive and therapeutic potential of “naringenin,” a flavanone present in citrus fruits. Nutr. Cancer 2015 67 1 27 42 10.1080/01635581.2015.976320 25514618
    [Google Scholar]
  93. Dewanjee S. Dua T. Bhattacharjee N. Das A. Gangopadhyay M. Khanra R. Joardar S. Riaz M. Feo V. Zia-Ul-Haq M. Natural products as alternative choices for p-glycoprotein (P-gp) inhibition. Molecules 2017 22 6 871 10.3390/molecules22060871 28587082
    [Google Scholar]
  94. Noori S. Nourbakhsh M. Imani H. Deravi N. Salehi N. Abdolvahabi Z. Naringenin and cryptotanshinone shift the immune response towards Th1 and modulate T regulatory cells via JAK2/STAT3 pathway in breast cancer. BMC Complement Med. Therap. 2022 22 1 145 10.1186/s12906‑022‑03625‑x 35606804
    [Google Scholar]
  95. Effat H. Abosharaf H.A. Radwan A.M. Combined effects of naringin and doxorubicin on the JAK/STAT signaling pathway reduce the development and spread of breast cancer cells. Sci. Rep. 2024 14 1 2824 10.1038/s41598‑024‑53320‑9 38310190
    [Google Scholar]
  96. Askar M.A. El Shawi O.E. Abou Zaid O.A.R. Mansour N.A. Hanafy A.M. Breast cancer suppression by curcumin-naringenin-magnetic-nano-particles: In vitro and in vivo studies. Tumour Biol. 2021 43 1 225 247 10.3233/tub‑211506
    [Google Scholar]
  97. Pateliya B. Burade V. Goswami S. Combining naringenin and metformin with doxorubicin enhances anticancer activity against triple-negative breast cancer in vitro and in vivo. Eur. J. Pharmacol. 2021 891 173725 10.1016/j.ejphar.2020.173725 33157041
    [Google Scholar]
  98. Bulzomi P. Bolli A. Galluzzo P. Acconcia F. Ascenzi P. Marino M. The naringenin‐induced proapoptotic effect in breast cancer cell lines holds out against a high bisphenol a background. IUBMB Life 2012 64 8 690 696 10.1002/iub.1049 22692793
    [Google Scholar]
  99. Eanes L. Patel Y.M. Inhibition of the MAPK pathway alone is insufficient to account for all of the cytotoxic effects of naringenin in MCF-7 breast cancer cells. Biochim. Open 2016 3 64 71 10.1016/j.biopen.2016.09.004 29450133
    [Google Scholar]
  100. Rhman M.A. Devnarain N. Khan R. Owira P.M.O. Synergism potentiates oxidative antiproliferative effects of naringenin and quercetin in MCF-7 breast cancer cells. Nutrients 2022 14 16 3437 10.3390/nu14163437
    [Google Scholar]
  101. Choupanan J.M. Shahbazi S. Reiisi S. Naringenin in combination with quercetin/fisetin shows synergistic anti-proliferative and migration reduction effects in breast cancer cell lines. Mol. Biol. Rep. 2023 50 9 7489 7500 10.1007/s11033‑023‑08664‑2 37480513
    [Google Scholar]
  102. Zhao Y. Tan H. Zhang J. Zhan D. Yang B. Hong S. Pan B. Wang N. Chen T. Shi Y. Wang Z. Developing liver-targeted naringenin nanoparticles for breast cancer endocrine therapy by promoting estrogen metabolism. J. Nanobiotechnology 2024 22 1 122 10.1186/s12951‑024‑02356‑0 38504208
    [Google Scholar]
  103. Polito L. Shim J. Hurvitz S.A. Dang C.T. Knott A. Du Toit Y. Restuccia E. Sanglier T. Swain S.M. Real-world first-line use of pertuzumab with different taxanes for human epidermal growth factor receptor 2–positive metastatic breast cancer: A comparative effectiveness study using us electronic health records. JCO Oncol. Pract. 2023 19 7 435 445 10.1200/OP.22.00565 37167571
    [Google Scholar]
  104. Piezzo M. Chiodini P. Riemma M. Cocco S. Caputo R. Cianniello D. Di Gioia G. Di Lauro V. Rella F.D. Fusco G. Iodice G. Nuzzo F. Pacilio C. Pensabene M. Laurentiis M.D. Progression-free survival and overall survival of CDK 4/6 inhibitors plus endocrine therapy in metastatic breast cancer: A systematic review and meta-analysis. Int. J. Mol. Sci. 2020 21 17 6400 10.3390/ijms21176400 32899139
    [Google Scholar]
  105. Pu D. Xu D. Wu Y. Chen H. Shi G. Feng D. Zhang M. Liu Z. Li J. Efficacy of CDK4/6 inhibitors combined with endocrine therapy in HR+/HER2− breast cancer: An umbrella review. J. Cancer Res. Clin. Oncol. 2024 150 1 16 10.1007/s00432‑023‑05516‑1 38240835
    [Google Scholar]
  106. Schmid P. Cortes J. Pusztai L. McArthur H. Kümmel S. Bergh J. Denkert C. Park Y.H. Hui R. Harbeck N. Takahashi M. Foukakis T. Fasching P.A. Cardoso F. Untch M. Jia L. Karantza V. Zhao J. Aktan G. Dent R. O’Shaughnessy J. Pembrolizumab for early triple-negative breast cancer. N. Engl. J. Med. 2020 382 9 810 821 10.1056/NEJMoa1910549 32101663
    [Google Scholar]
  107. Fares J. Kanojia D. Rashidi A. Ulasov I. Lesniak M.S. Landscape of combination therapy trials in breast cancer brain metastasis. Int. J. Cancer 2020 147 7 1939 1952 10.1002/ijc.32937 32086955
    [Google Scholar]
  108. Downs-Canner S. Mittendorf E.A. Preoperative immunotherapy combined with chemotherapy for triple-negative breast cancer: Perspective on the KEYNOTE-522 study. Ann. Surg. Oncol. 2023 30 6 3166 3169 10.1245/s10434‑023‑13267‑z 36897418
    [Google Scholar]
  109. Hurvitz S. bstract PO2-20-02: A Phase 3 study of gedatolisib plus fulvestrant with and without palbociclib in patients with HR+/HER2-advanced breast cancer previously treated with a CDK4/6 inhibitor plus a non-steroidal aromatase inhibitor (VIKTORIA-1). 2024 Available from: https://aacrjournals.org/cancerres/article/84/9_Supplement/PO2-20-02/744828/Abstract-PO2-20-02-A-Phase-3-study-of-gedatolisib
  110. Nanda R. A phase Ib study of pembrolizumab (MK-3475) in patients with advanced triple-negative breast cancer. San Ant Bre Cancer Symp 2014 9 13
    [Google Scholar]
  111. Ghezzi P. Impact of follow-up testing on survival and health-related quality of life in breast cancer patients. A multicenter randomized controlled trial. JAMA 1994 271 20 1587 1592 10.1001/jama.1994.03510440047031 8182811
    [Google Scholar]
  112. Wilcock P. Webster R.M. The breast cancer drug market. Nat. Rev. Drug Discov. 2021 20 5 339 340 10.1038/d41573‑021‑00018‑6 33483705
    [Google Scholar]
  113. Gatti-Mays M.E. Gameiro S.R. Ozawa Y. Knudson K.M. Hicks K.C. Palena C. Cordes L.M. Steinberg S.M. Francis D. Karzai F. Lipkowitz S. Donahue R.N. Jochems C. Schlom J. Gulley J.L. Improving the odds in advanced breast cancer with combination immunotherapy: Stepwise addition of vaccine, immune checkpoint inhibitor, chemotherapy, and HDAC inhibitor in advanced stage breast cancer. Front. Oncol. 2021 10 581801 10.3389/fonc.2020.581801 33747894
    [Google Scholar]
  114. Ge T.T. Pan X.J. Zuo X.M. Shi X.G. Wang Y.K. Sun P. Gao X. Feng X. Gao S. Wang T.S. A new strategy for the treatment of heavily pretreated metastatic breast cancer: A case report and review of the literature. Medicine 2023 102 48 36297 10.1097/MD.0000000000036297 38050208
    [Google Scholar]
  115. Fan S. He L. Sang D. Combination therapy with antibody drug conjugate RC48 (disitamab vedotin) and zimberelimab (PD 1 inhibitor) successfully controlled recurrent HER2 positive breast cancer resistant to trastuzumab emtansine: A case report. Oncol. Lett. 2023 26 2 359 10.3892/ol.2023.13945 37545624
    [Google Scholar]
  116. Chavda V.P. Nalla L.V. Balar P. Bezbaruah R. Apostolopoulos V. Singla R.K. Khadela A. Vora L. Uversky V.N. Advanced Phytochemical-Based Nanocarrier Systems for the Treatment of Breast Cancer. Cancers 2023 15 4 1023 10.3390/cancers15041023 36831369
    [Google Scholar]
  117. Ravetti S. Garro A.G. Gaitán A. Murature M. Galiano M. Brignone S.G. Palma S.D. Naringin: Nanotechnological strategies for potential pharmaceutical applications. Pharmaceutics 2023 15 3 863 10.3390/pharmaceutics15030863
    [Google Scholar]
  118. Gupta D. Singh A. Khan A.U. Nanoparticles as efflux pump and biofilm inhibitor to rejuvenate bactericidal effect of conventional antibiotics. Nanoscale Res. Lett. 2017 12 1 454 10.1186/s11671‑017‑2222‑6 28709374
    [Google Scholar]
  119. Alrushaid N. Khan F.A. Al-Suhaimi E.A. Elaissari A. Nanotechnology in cancer diagnosis and treatment. Pharmaceutics 2023 15 3 1025 10.3390/pharmaceutics15031025
    [Google Scholar]
  120. Bhattacharjee H. Balabathula P. Wood G.C. Targeted nanoparticulate drug-delivery systems for treatment of solid tumors: A review. Ther. Deliv. 2010 1 5 713 734 10.4155/tde.10.47 22833959
    [Google Scholar]
  121. Schiffman J.D. Fisher P.G. Gibbs P. Early detection of cancer: Past, present, and future. Am. Soc. Clin. Oncol. Educ. Book 2015 35 57 65 10.14694/EdBook_AM.2015.35.57 25993143
    [Google Scholar]
  122. Cai Z. Chattopadhyay N. Yang K. Kwon Y.L. Yook S. Pignol J.P. Reilly R.M. 111In-labeled trastuzumab-modified gold nanoparticles are cytotoxic in vitro to HER2-positive breast cancer cells and arrest tumor growth in vivo in athymic mice after intratumoral injection. Nucl. Med. Biol. 2016 43 12 818 826 10.1016/j.nucmedbio.2016.08.009 27788375
    [Google Scholar]
  123. Dykman L.A. Khlebtsov N.G. Uptake of engineered gold nanoparticles into mammalian cells. Chem. Rev. 2014 114 2 1258 1288 10.1021/cr300441a 24279480
    [Google Scholar]
  124. Plaza-Oliver M. Santander-Ortega M.J. Lozano M.V. Current approaches in lipid-based nanocarriers for oral drug delivery. Drug Deliv. Transl. Res. 2021 11 2 471 497 10.1007/s13346‑021‑00908‑7 33528830
    [Google Scholar]
  125. Shahiwala A. Misra A. In-vitro and in-vivo tools in drug delivery research for optimum clinical outcomes. 2018 Available from: https://www.routledge.com/In-Vitro-and-In-Vivo-Tools-in-Drug-Delivery-Research-for-Optimum-Clinical-Outcomes/Misra-Shahiwala/p/book/9780367657215?srsltid=AfmBOoppE3ovvwDtmFYWE7oNdrJ-pqDjCclEGw8Vh_y0KLBiZk0QRGi-
    [Google Scholar]
  126. Tagde P. Tagde P. Islam F. Tagde S. Shah M. Hussain Z.D. Rahman M.H. Najda A. Alanazi I.S. Germoush M.O. Mohamed H.R.H. Algandaby M.M. Nasrullah M.Z. Kot N. Abdel-Daim M.M. The multifaceted role of curcumin in advanced nanocurcumin form in the treatment and management of chronic disorders. Molecules 2021 26 23 7109 10.3390/molecules26237109 34885693
    [Google Scholar]
  127. Vanneman M. Dranoff G. Combining immunotherapy and targeted therapies in cancer treatment. Nat. Rev. Cancer 2012 12 4 237 251 10.1038/nrc3237 22437869
    [Google Scholar]
  128. Zhang H. Hu H. Zhang H. Dai W. Wang X. Wang X. Zhang Q. Effects of PEGylated paclitaxel nanocrystals on breast cancer and its lung metastasis. Nanoscale 2015 7 24 10790 10800 10.1039/C4NR07450E 26038337
    [Google Scholar]
  129. Kumari S. Sarkar L.H. A review on nanoparticles: Structure, classification, synthesis & applications. J. Scient Res. 2021 65 8 1 8 10.37398/JSR.2021.650809
    [Google Scholar]
  130. Akbari-Alavijeh S. Shaddel R. Jafari S.M. Encapsulation of food bioactives and nutraceuticals by various chitosan-based nanocarriers. Food Hydrocoll. 2020 105 105774 10.1016/j.foodhyd.2020.105774
    [Google Scholar]
  131. Cheng M. Zeng G. Huang D. Yang C. Lai C. Zhang C. Liu Y. Advantages and challenges of Tween 80 surfactant-enhanced technologies for the remediation of soils contaminated with hydrophobic organic compounds. Chem. Eng. J. 2017 314 98 113 10.1016/j.cej.2016.12.135
    [Google Scholar]
  132. Domínguez-Delgado C.L. Fuentes-Prado E. Escobar-Chávez J.J. Vidal-Romero G. Rodríguez-Cruz I.M. Díaz-Torres R. Chitosan and pluronic® F-127: Pharmaceutical applications. In: ncyclopedia of Biomedical Polymers and Polymeric Biomaterials; Taylor and Francis Group LLC: Milton Park, in Oxfordshire, 2016 1513 1535
    [Google Scholar]
  133. George A. Shah P.A. Shrivastav P.S. Natural biodegradable polymers based nano-formulations for drug delivery: A review. Int. J. Pharm. 2019 561 244 264 10.1016/j.ijpharm.2019.03.011 30851391
    [Google Scholar]
  134. Jahangiri A. Barghi L. Polymeric nanoparticles: Review of synthesis methods and applications in drug delivery. 2018 Available from: https://www.advchempharm.ir/journal/index.php/JACPM/article/view/26/42
  135. Song I.S. Cha J.S. Choi M.K. Enhanced oral bioavailability of naringenin administered in a mixed micelle formulation with Pluronic F127 and Tween 80 in rats. J. Pharm. Investig. 2015 45 7 633 640 10.1007/s40005‑015‑0216‑x
    [Google Scholar]
  136. Abbasi E. Akbarzadeh A. Kouhi M. Milani M. Graphene: Synthesis, bio-applications, and properties. Artif. Cells Nanomed. Biotechnol. 2016 44 1 150 156 10.3109/21691401.2014.927880 24978443
    [Google Scholar]
  137. Dias A.P. da Silva Santos S. da Silva J.V. Parise-Filho R. Igne Ferreira E. Seoud O.E. Giarolla J. Dendrimers in the context of nanomedicine. Int. J. Pharm. 2020 573 118814 10.1016/j.ijpharm.2019.118814 31759101
    [Google Scholar]
  138. Mahmoudi A. Sadi K.S. Malaekeh-Nikouei B. Surface engineered dendrimers as novel option for enhanced pharmaceutical and biomedical potential. In: ImDendrimer-Based Nanotherapeutics. Amsterdam, Netherlands Elsevier 2021 225 252 10.1016/B978‑0‑12‑821250‑9.00013‑5
    [Google Scholar]
  139. Mohammadi-Samani S. Ghasemiyeh P. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Res. Pharm. Sci. 2018 13 4 288 303 10.4103/1735‑5362.235156 30065762
    [Google Scholar]
  140. Gordillo-Galeano A. Mora-Huertas C.E. Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release. Eur. J. Pharm. Biopharm. 2018 133 285 308 10.1016/j.ejpb.2018.10.017 30463794
    [Google Scholar]
  141. Katouzian I. Faridi Esfanjani A. Jafari S.M. Akhavan S. Formulation and application of a new generation of lipid nano-carriers for the food bioactive ingredients. Trends Food Sci. Technol. 2017 68 14 25 10.1016/j.tifs.2017.07.017
    [Google Scholar]
  142. Raeisi S. Chavoshi H. Mohammadi M. Ghorbani M. Sabzichi M. Ramezani F. Naringenin-loaded nano-structured lipid carrier fortifies oxaliplatin-dependent apoptosis in HT-29 cell line. Process Biochem. 2019 83 168 175 10.1016/j.procbio.2019.05.013
    [Google Scholar]
  143. Wang Y. Wang S. Firempong C.K. Zhang H. Wang M. Zhang Y. Zhu Y. Yu J. Xu X. Enhanced solubility and bioavailability of naringenin via liposomal nanoformulation: Preparation and in vitro and in vivo evaluations. AAPS PharmSciTech 2017 18 3 586 594 10.1208/s12249‑016‑0537‑8 27151135
    [Google Scholar]
  144. Antimisiaris S.G. Marazioti A. Kannavou M. Natsaridis E. Gkartziou F. Kogkos G. Mourtas S. Overcoming barriers by local drug delivery with liposomes. Adv. Drug Deliv. Rev. 2021 174 53 86 10.1016/j.addr.2021.01.019 33539852
    [Google Scholar]
  145. Deshmukh P.K. Mutha R.E. Surana S.J. Electrostatic deposition assisted preparation, characterization and evaluation of chrysin liposomes for breast cancer treatment. Drug Dev. Ind. Pharm. 2021 47 5 809 819 10.1080/03639045.2021.1934873 34039121
    [Google Scholar]
  146. Samson A.A.S. Park S. Kim S.Y. Min D.H. Jeon N.L. Song J.M. Liposomal co-delivery-based quantitative evaluation of chemosensitivity enhancement in breast cancer stem cells by knockdown of GRP78/CLU. J. Liposome Res. 2019 29 1 44 52 10.1080/08982104.2017.1420081 29262741
    [Google Scholar]
  147. Zhao Y.N. Cao Y.N. Sun J. Liang Z. Wu Q. Cui S.H. Zhi D.F. Guo S.T. Zhen Y.H. Zhang S.B. Anti-breast cancer activity of resveratrol encapsulated in liposomes. J. Mater. Chem. B Mater. Biol. Med. 2020 8 1 27 37 10.1039/C9TB02051A 31746932
    [Google Scholar]
  148. Zhu Y. Wang M. Zhang J. Peng W. Firempong C.K. Deng W. Wang Q. Wang S. Shi F. Yu J. Xu X. Zhang W. Improved oral bioavailability of capsaicin via liposomal nanoformulation: Preparation, in vitro drug release and pharmacokinetics in rats. Arch. Pharm. Res. 2015 38 4 512 521 10.1007/s12272‑014‑0481‑7 25231341
    [Google Scholar]
  149. Tsai M.J. Huang Y.B. Fang J.W. Fu Y.S. Wu P.C. Preparation and characterization of naringenin-loaded elastic liposomes for topical application. PLoS One 2015 10 7 0131026 10.1371/journal.pone.0131026 26158639
    [Google Scholar]
  150. Akrawi S.H. Gorain B. Nair A.B. Choudhury H. Pandey M. Shah J.N. Venugopala K.N. Development and optimization of naringenin-loaded chitosan-coated nanoemulsion for topical therapy in wound healing. Pharmaceutics 2020 12 9 893 10.3390/pharmaceutics12090893 32962195
    [Google Scholar]
  151. Fuior E. Deleanu M. Constantinescu C. Rebleanu D. Voicu G. Simionescu M. Calin M. Functional role of VCAM-1 targeted flavonoid-loaded lipid nanoemulsions in reducing endothelium inflammation. Pharmaceutics 2019 11 8 391 10.3390/pharmaceutics11080391 31382634
    [Google Scholar]
  152. Fuior E.V. Mocanu C.A. Deleanu M. Voicu G. Anghelache M. Rebleanu D. Simionescu M. Calin M. Evaluation of VCAM-1 targeted naringenin/indocyanine green-loaded lipid nanoemulsions as theranostic nanoplatforms in inflammation. Pharmaceutics 2020 12 11 1066 10.3390/pharmaceutics12111066 33182380
    [Google Scholar]
  153. Khan A.W. Kotta S. Ansari S.H. Sharma R.K. Ali J. Self-nanoemulsifying drug delivery system (SNEDDS) of the poorly water-soluble grapefruit flavonoid Naringenin: Design, characterization, in vitro and in vivo evaluation. Drug Deliv. 2015 22 4 552 561 10.3109/10717544.2013.878003 24512268
    [Google Scholar]
  154. Ainbinder D. Touitou E. Testosterone ethosomes for enhanced transdermal delivery. Drug Deliv. 2005 12 5 297 303 10.1080/10717540500176910 16188729
    [Google Scholar]
  155. Godin B. Touitou E. Ethosomes: New prospects in transdermal delivery. Crit. Rev. Ther. Drug Carrier Syst. 2003 20 1 63 102 10.1615/critrevtherdrugcarriersyst.v20.i1.20
    [Google Scholar]
  156. López-Pinto J.M. González-Rodríguez M.L. Rabasco A.M. Effect of cholesterol and ethanol on dermal delivery from DPPC liposomes. Int. J. Pharm. 2005 298 1 1 12 10.1016/j.ijpharm.2005.02.021 15896932
    [Google Scholar]
  157. Nasri S. Ebrahimi-Hosseinzadeh B. Rahaie M. Hatamian-Zarmi A. Sahraeian R. Thymoquinone-loaded ethosome with breast cancer potential: Optimization, in vitro and biological assessment. J. Nanostructure Chem. 2020 10 1 19 31 10.1007/s40097‑019‑00325‑w
    [Google Scholar]
  158. Touitou E. Composition for applying active substances to or through the skin. US Patent 08/563,144 1998
    [Google Scholar]
  159. Touitou E. Dayan N. Bergelson L. Godin B. Eliaz M. Ethosomes — novel vesicular carriers for enhanced delivery: Characterization and skin penetration properties. J. Control. Release 2000 65 3 403 418 10.1016/S0168‑3659(99)00222‑9 10699298
    [Google Scholar]
  160. Jaishree V. Gupta P.D. Nanotechnology: A revolution in cancer diagnosis. Indian J. Clin. Biochem. 2012 27 3 214 220 10.1007/s12291‑012‑0221‑z 26405378
    [Google Scholar]
  161. Wang J. Cao F. He S. Xia Y. Liu X. Jiang W. Yu Y. Zhang H. Chen W. FRET on lateral flow test strip to enhance sensitivity for detecting cancer biomarker. Talanta 2018 176 444 449 10.1016/j.talanta.2017.07.096 28917774
    [Google Scholar]
  162. López Ruiz A. Bartomeu Garcia C. Navarro Gallón S. Webster T.J. Novel silver-platinum nanoparticles for anticancer and antimicrobial applications. Int. J. Nanomedicine 2020 15 169 179 10.2147/IJN.S176737 32021172
    [Google Scholar]
  163. Aygun A. Gülbagca F. Ozer L.Y. Ustaoglu B. Altunoglu Y.C. Baloglu M.C. Atalar M.N. Alma M.H. Sen F. Biogenic platinum nanoparticles using black cumin seed and their potential usage as antimicrobial and anticancer agent. J. Pharm. Biomed. Anal. 2020 179 112961 10.1016/j.jpba.2019.112961 31732404
    [Google Scholar]
  164. Singh P. Pandit S. Mokkapati V.R.S.S. Garg A. Ravikumar V. Mijakovic I. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int. J. Mol. Sci. 2018 19 7 1979 10.3390/ijms19071979 29986450
    [Google Scholar]
  165. Sankaranarayanan S. Hariram M. Vivekanandhan S. Ngamcharussrivichai C. Biosynthesized transition metal oxide nanostructures for photocatalytic degradation of organic dyes. Green Functionalized Nanomaterials for Environmental Applications. Amsterdam, Netherlands Elsevier 2022 417 460 10.1016/B978‑0‑12‑823137‑1.00016‑6
    [Google Scholar]
  166. Shamsipur M. Emami M. Farzin L. Saber R. A sandwich-type electrochemical immunosensor based on in situ silver deposition for determination of serum level of HER2 in breast cancer patients. Biosens. Bioelectron. 2018 103 54 61 10.1016/j.bios.2017.12.022 29278813
    [Google Scholar]
  167. Sharma M. Transdermal and intravenous nano drug delivery systems: Present and future. Applications of targeted nano drugs and delivery systems. Amsterdam, Netherlands Elsevier 2019 499 550 10.1016/B978‑0‑12‑814029‑1.00018‑1
    [Google Scholar]
  168. Asri-Rezaei S. Dalir-Naghadeh B. Nazarizadeh A. Noori-Sabzikar Z. Comparative study of cardio-protective effects of zinc oxide nanoparticles and zinc sulfate in streptozotocin-induced diabetic rats. J. Trace Elem. Med. Biol. 2017 42 129 141 10.1016/j.jtemb.2017.04.013 28595785
    [Google Scholar]
  169. Sathyanarayanan M.B. Balachandranath R. Genji Srinivasulu Y. Kannaiyan S.K. Subbiahdoss G. The effect of gold and iron-oxide nanoparticles on biofilm-forming pathogens. ISRN Microbiol. 2013 2013 1 5 10.1155/2013/272086 24187645
    [Google Scholar]
  170. Bhaviripudi S. Mile E. Steiner S.A. Zare A.T. Dresselhaus M.S. Belcher A.M. Kong J. CVD synthesis of single-walled carbon nanotubes from gold nanoparticle catalysts. J. Am. Chem. Soc. 2007 129 6 1516 1517 10.1021/ja0673332 17283991
    [Google Scholar]
  171. Maeda-Mamiya R. Noiri E. Isobe H. Nakanishi W. Okamoto K. Doi K. Sugaya T. Izumi T. Homma T. Nakamura E. In vivo gene delivery by cationic tetraamino fullerene. Proc. Natl. Acad. Sci. USA 2010 107 12 5339 5344 10.1073/pnas.0909223107 20194788
    [Google Scholar]
  172. Kroto H.W.W. Fullerene 2024 Available from: https://www.britannica.com/science/fullerene
    [Google Scholar]
  173. Mao C.C. Cai X. Nanomaterials and aging. Curr. Stem Cell Res. Ther. 2021 16 1 57 65 10.2174/1574888X15666200422103916 32321409
    [Google Scholar]
  174. Asadi M. Ghorbani S.H. Mahdavian L. Aghamohammadi M. Graphene-based hybrid composites for cancer diagnostic and therapy. J. Transl. Med. 2024 22 1 611 10.1186/s12967‑024‑05438‑7 38956651
    [Google Scholar]
  175. Lee X.J. Lim H.N. Abdul Rahman M.B. Che Abdullah C.A. Muthoosamy K. Chapter 7 functionalization of graphene for nanodelivery of drugs. In: Synthesis, Technology and Applications of Carbon Nanomaterials; Rashid, S.A.; Raja Othman, R.N.I.; Hussein, M.Z., Eds.; Elsevier: Amsterdam, Netherlands, 2019 157 176 10.1016/B978‑0‑12‑815757‑2.00007‑3
    [Google Scholar]
  176. Zou Y. Isotopic graphene–isolated-Au-nanocrystals with cellular Raman-silent signals for cancer cell pattern recognition. Chem. Sci. 2018 10 1 8 10.1039/C7SC05442D
    [Google Scholar]
  177. Amreddy N. Ahmed R.A. Munshi A. Ramesh R. Tumor-targeted dendrimer nanoparticles for combinatorial delivery of siRNA and chemotherapy for cancer treatment. Drug Delivery Systems. Jain K.K. New York, NY Springer New York 2020 167 189 10.1007/978‑1‑4939‑9798‑5_8
    [Google Scholar]
  178. Akinoglu E.M. Ozbilgin K. Sonmez P.K. Ozkut M.M. Giersig M. Biocompatibility of vertically aligned multi-walled carbon nanotube scaffolds for human breast cancer cell line MDA-MB-231. Prog. Biomater. 2017 6 4 189 196 10.1007/s40204‑017‑0078‑6
    [Google Scholar]
  179. Dhull V.A. Nafion/AChE-cSWCNT/MWCNT/Au-based amperometric biosensor for the determination of organophosphorous compounds. Environ. Technol. 2020 41 5 566 576 10.1080/09593330.2018.1505964 30052145
    [Google Scholar]
  180. Hasanzade Z. Raissi H. Carbon and boron nanotubes as a template material for adsorption of 6-Thioguanine chemotherapeutic: A molecular dynamics and density functional approach. J. Biomol. Struct. Dyn. 2020 38 3 697 707 10.1080/07391102.2019.1585951 30900530
    [Google Scholar]
  181. Lotfipanah S. Zeinali M. Yaghmaei P. Induction of caspase-2 gene expression in carboxyl-functionalized carbon nanotube-treated human T-cell leukemia (Jurkat) cell line. Drug Chem. Toxicol. 2021 44 4 394 399 10.1080/01480545.2019.1609025 31060401
    [Google Scholar]
  182. Shaki H. Raissi H. Mollania F. Hashemzadeh H. Modeling the interaction between anti-cancer drug penicillamine and pristine and functionalized carbon nanotubes for medical applications: Density functional theory investigation and a molecular dynamics simulation. J. Biomol. Struct. Dyn. 2020 38 5 1322 1334 10.1080/07391102.2019.1602080 31002028
    [Google Scholar]
  183. Yıldırım M. Acet Ö. Yetkin D. Acet B.Ö. Karakoc V. Odabası M. Anti-cancer activity of naringenin loaded smart polymeric nanoparticles in breast cancer. J. Drug Deliv. Sci. Technol. 2022 74 103552 10.1016/j.jddst.2022.103552
    [Google Scholar]
  184. Rajamani S. Radhakrishnan A. Sengodan T. Thangavelu S. Augmented anticancer activity of naringenin-loaded TPGS polymeric nanosuspension for drug resistive MCF-7 human breast cancer cells. Drug Dev. Ind. Pharm. 2018 44 11 1752 1761 10.1080/03639045.2018.1496445 29968480
    [Google Scholar]
  185. Sandhu P.S. Kumar R. Beg S. Jain S. Kushwah V. Katare O.P. Singh B. Natural lipids enriched self-nano-emulsifying systems for effective co-delivery of tamoxifen and naringenin: Systematic approach for improved breast cancer therapeutics. Nanomedicine 2017 13 5 1703 1713 10.1016/j.nano.2017.03.003 28343014
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266358569250903102940
Loading
/content/journals/ctmc/10.2174/0115680266358569250903102940
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Breast cancer ; Naringenin ; Nanoparticles ; Pharmacokinetics ; Anti-cancer ; Phytochemical
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test