Skip to content
2000
image of Viral Vertical Transmission through the Placenta: The Potential of Natural Products as Therapeutic and Prophylactic Antiviral Agents

Abstract

Pregnant women are among the most vulnerable groups in human populations. The human placenta, consisting of fetal chorionic villi and maternal basal decidua, is a specialized and transient organ crucial for supporting pregnancy and ensuring the well-being of both the mother and the fetus. Although the placenta has a developed, robust defense system, some pathogens can overcome it and cause a fetal infection that may be lethal. This review examines the defense mechanisms in the placenta against viral infections, how microorganisms bypass these defense barriers to cause illness, and the potential use of natural products in treating viral infections during pregnancy. Research on natural products has shown their promise to serve as an alternative to antiviral therapy, particularly for pregnant women.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266366044250901094542
2025-09-25
2025-11-08
Loading full text...

Full text loading...

References

  1. O’Kelly B. Lambert J.S. Vector-borne diseases in pregnancy. Ther. Adv. Infect. Dis. 2020 7 2049936120941725 10.1177/2049936120941725 32944240
    [Google Scholar]
  2. Balasundaram P. Farhana A. Immunology at the maternal-fetal interface. StatPearls. Treasure Island StatPearls Publishing 2025
    [Google Scholar]
  3. Megli C.J. Coyne C.B. Infections at the maternal–fetal interface: an overview of pathogenesis and defence. Nat. Rev. Microbiol. 2022 20 2 67 82 10.1038/s41579‑021‑00610‑y 34433930
    [Google Scholar]
  4. Ander S.E. Diamond M.S. Coyne C.B. Immune responses at the maternal-fetal interface. Sci. Immunol. 2019 4 31 eaat6114 10.1126/sciimmunol.aat6114 30635356
    [Google Scholar]
  5. Chen Z. Zhang Y. Kwak-Kim J. Wang W. Memory regulatory T cells in pregnancy. Front. Immunol. 2023 14 1209706 10.3389/fimmu.2023.1209706 37954599
    [Google Scholar]
  6. Heerema-McKenney A. Defense and infection of the human placenta. Acta. Pathol. Microbiol. Scand Suppl 2018 126 7 570 588 10.1111/apm.12847 30129129
    [Google Scholar]
  7. McCluskey J.M. Sato A.I. In: Vertical transplacental infections. StatPearls. StatPearls Publishing 2024
    [Google Scholar]
  8. Semmes E.C. Coyne C.B. Innate immune defenses at the maternal-fetal interface. Curr. Opin. Immunol. 2022 74 60 67 10.1016/j.coi.2021.10.007 34768027
    [Google Scholar]
  9. Lee S. Yoo I. Cheon Y. Choi E. Kim S. Ka H. Function of immune cells and effector molecules of the innate immune system in the establishment and maintenance of pregnancy in mammals — A review. Anim. Biosci 2024 37 11 1821 1833 10.5713/ab.24.0257 39210819
    [Google Scholar]
  10. Robbins J.R. Skrzypczynska K.M. Zeldovich V.B. Kapidzic M. Bakardjiev A.I. Placental syncytiotrophoblast constitutes a major barrier to vertical transmission of Listeria monocytogenes. PLoS Pathog. 2010 6 1 e1000732 10.1371/journal.ppat.1000732 20107601
    [Google Scholar]
  11. Khullar P. Hon J.D. Sethi S. Kim J. Iqbal M. Chavez M.R. Placental infections. Clin. Obstet. Gynecol. 2025 68 1 119 129 10.1097/GRF.0000000000000919 39690484
    [Google Scholar]
  12. Ribeiro I.M. Souto P.C.S. Borbely A.U. Tanabe E.L.L. Cadavid A. Alvarez A.M. Bueno J. Agudelo O. Robles R.G. Ayala-Ramírez P. Sacerdoti F. Szasz T. Damiano A.E. Ibarra C. Escudero C. Lima V.V. Giachini F.R. The limited knowledge of placental damage due to neglected infections: ongoing problems in Latin America. Syst Biol Reprod Med 2020 66 3 151 169 10.1080/19396368.2020.1753850 32482148
    [Google Scholar]
  13. Carvajal A. Vigil-De Gracia P. Monkeypox and pregnancy. Am. J. Obstet. Gynecol. MFM 2022 4 6 100746 10.1016/j.ajogmf.2022.100746 36084787
    [Google Scholar]
  14. Kwok M. McGeorge S. Mayer-Coverdale J. Graves B. Paterson D.L. Harris P.N.A. Esler R. Dowling C. Britton S. Roberts M.J. Guideline of guidelines: Management of recurrent urinary tract infections in women. BJU Int. 2022 130 S3 11 22 10.1111/bju.15756 35579121
    [Google Scholar]
  15. Harris K. Proctor L.K. Shinar S. Philippopoulos E. Yudin M.H. Murphy K.E. Outcomes and management of pregnancy and puerperal group A streptococcal infections: A systematic review. Acta Obstet. Gynecol. Scand. 2023 102 2 138 157 10.1111/aogs.14500 36636775
    [Google Scholar]
  16. de Rossi P. Cimerman S. Truzzi J.C. Cunha C.A. Mattar R. Martino M.D.V. Hachul M. Andriolo A. Vasconcelos Neto J.A. Pereira-Correia J.A. Machado A.M.O. Gales A.C. Joint report of SBI (Brazilian Society of Infectious Diseases), FEBRASGO (Brazilian Federation of Gynecology and Obstetrics Associations), SBU (Brazilian Society of Urology) and SBPC/ML (Brazilian Society of Clinical Pathology/Laboratory Medicine): Recommendations for the clinical management of lower urinary tract infections in pregnant and non-pregnant women. Braz. J. Infect. Dis. 2020 24 2 110 119 10.1016/j.bjid.2020.04.002 32360431
    [Google Scholar]
  17. Xavier J. Santos J. Vila Nova M. Gonçalves C. Borbely K. Pires K. dos Santos F. Valentim I. Barbosa J. da Silva F. Santos J. Pinho D. Lopes N. Borbely A. Goulart M. Anti-Zika virus effects, placenta protection and chemical composition of Passiflora edulis seeds ethanolic extract. J. Braz. Chem. Soc. 2022 33 7 701 714 10.21577/0103‑5053.20220003
    [Google Scholar]
  18. Sadeer N.B. El Kalamouni C. Khalid A. Abdalla A.N. Zengin G. Khoa Bao L.V. Mahomoodally M.F. Secondary metabolites as potential drug candidates against Zika virus, an emerging looming human threat: Current landscape, molecular mechanism and challenges ahead. J. Infect. Public Health 2023 16 5 754 770 10.1016/j.jiph.2023.03.008 36958171
    [Google Scholar]
  19. Oliveira M.B.S. Valentim I.B. Rocha T.S. Santos J.C. Pires K.S.N. Tanabe E.L.L. Borbely K.S.C. Borbely A.U. Goulart M.O.F. Schinus terebenthifolius Raddi extracts: From sunscreen activity toward protection of the placenta to Zika virus infection, new uses for a well-known medicinal plant. Ind. Crops Prod. 2020 152 112503 10.1016/j.indcrop.2020.112503 32346222
    [Google Scholar]
  20. Atanasov A.G. Zotchev S.B. Dirsch V.M. Orhan I.E. Banach M. Rollinger J.M. Barreca D. Weckwerth W. Bauer R. Bayer E.A. Majeed M. Bishayee A. Bochkov V. Bonn G.K. Braidy N. Bucar F. Cifuentes A. D’Onofrio G. Bodkin M. Diederich M. Dinkova-Kostova A.T. Efferth T. El Bairi K. Arkells N. Fan T-P. Fiebich B.L. Freissmuth M. Georgiev M.I. Gibbons S. Godfrey K.M. Gruber C.W. Heer J. Huber L.A. Ibanez E. Kijjoa A. Kiss A.K. Lu A. Macias F.A. Miller M.J.S. Mocan A. Müller R. Nicoletti F. Perry G. Pittalà V. Rastrelli L. Ristow M. Russo G.L. Silva A.S. Schuster D. Sheridan H. Skalicka-Woźniak K. Skaltsounis L. Sobarzo-Sánchez E. Bredt D.S. Stuppner H. Sureda A. Tzvetkov N.T. Vacca R.A. Aggarwal B.B. Battino M. Giampieri F. Wink M. Wolfender J-L. Xiao J. Yeung A.W.K. Lizard G. Popp M.A. Heinrich M. Berindan-Neagoe I. Stadler M. Daglia M. Verpoorte R. Supuran C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021 20 3 200 216 10.1038/s41573‑020‑00114‑z 33510482
    [Google Scholar]
  21. Yu W. Zhang B. Hong X. Cai H. Wang Y. Lu J. Hu X. Cao B. Identification of desoxyrhapontigenin as a novel antiviral agent against congenital Zika virus infection. Antiviral Res. 2023 211 105542 10.1016/j.antiviral.2023.105542 36646387
    [Google Scholar]
  22. Ferrari R. Writing narrative style literature reviews. Med. Writ 2015 24 4 230 235 10.1179/2047480615Z.000000000329
    [Google Scholar]
  23. Baethge C. Goldbeck-Wood S. Mertens S. SANRA—a scale for the quality assessment of narrative review articles. Res. Integr. Peer Rev. 2019 4 1 5 10.1186/s41073‑019‑0064‑8 30962953
    [Google Scholar]
  24. Burton GJ Jauniaux E What is the placenta? Am J Obstet. Gynecol 2015 213 4 S6.e1-S6-8 10.1016/j.ajog.2015.07.050 26428504
    [Google Scholar]
  25. Cindrova-Davies T. Sferruzzi-Perri A.N. Human placental development and function. Semin. Cell Dev. Biol. 2022 131 66 77 10.1016/j.semcdb.2022.03.039 35393235
    [Google Scholar]
  26. Turco M.Y. Moffett A. Development of the human placenta. Development 2019 146 22 dev163428 10.1242/dev.163428 31776138
    [Google Scholar]
  27. James J.L. Lissaman A. Nursalim Y.N.S. Chamley L.W. Modelling human placental villous development: Designing cultures that reflect anatomy. Cell. Mol. Life Sci. 2022 79 7 384 10.1007/s00018‑022‑04407‑x 35753002
    [Google Scholar]
  28. Baergen R.N. Burton G.J. Kaplan C.G. Benirschke’s pathology of the human placenta. Springer 2021 10.1242/dev.163428
    [Google Scholar]
  29. Burton G.J. Jauniaux E. Placentation in the Human and Higher Primates. Adv. Anat. Embryol. Cell Biol. 2021 234 223 254 10.1007/978‑3‑030‑77360‑1_11 34694484
    [Google Scholar]
  30. Soares M.J. Varberg K.M. Iqbal K. Hemochorial placentation: development, function, and adaptations. Biol. Reprod. 2018 99 1 196 211 10.1093/biolre/ioy049 29481584
    [Google Scholar]
  31. Moser G. Guettler J. Forstner D. Gauster M. Maternal platelets—friend or foe of the human placenta? Int. J. Mol. Sci. 2019 20 22 5639 10.3390/ijms20225639 31718032
    [Google Scholar]
  32. Gauster M. Moser G. Wernitznig S. Kupper N. Huppertz B. Early human trophoblast development: From morphology to function. Cell. Mol. Life Sci. 2022 79 6 345 10.1007/s00018‑022‑04377‑0 35661923
    [Google Scholar]
  33. Xiao Z. Yan L. Liang X. Wang H. Progress in deciphering trophoblast cell differentiation during human placentation. Curr. Opin. Cell Biol. 2020 67 86 91 10.1016/j.ceb.2020.08.010 32957014
    [Google Scholar]
  34. Illsley N.P. DaSilva-Arnold S.C. Zamudio S. Alvarez M. Al-Khan A. Trophoblast invasion: Lessons from abnormally invasive placenta (placenta accreta). Placenta 2020 102 61 66 10.1016/j.placenta.2020.01.004 33218581
    [Google Scholar]
  35. Karvas R.M. Khan S.A. Verma S. Yin Y. Kulkarni D. Dong C. Park K. Chew B. Sane E. Fischer L.A. Kumar D. Ma L. Boon A.C.M. Dietmann S. Mysorekar I.U. Theunissen T.W. Stem-cell-derived trophoblast organoids model human placental development and susceptibility to emerging pathogens. Cell Stem Cell 2022 29 5 810 825.e8 10.1016/j.stem.2022.04.004 35523141
    [Google Scholar]
  36. Willis D.M. O’Grady J.P. Faber J.J. Thornburg K.L. Diffusion permeability of cyanocobalamin in human placenta. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1986 250 3 R459 R464 10.1152/ajpregu.1986.250.3.R459 3953855
    [Google Scholar]
  37. Thornburg K.L. Burry K.J. Adams A.K. Paul Kirk E. Faber J.J. Permeability of placenta to inulin. Am. J. Obstet. Gynecol. 1988 158 5 1165 1169 10.1016/0002‑9378(88)90246‑3 3369499
    [Google Scholar]
  38. Bain M.D. Copas D.K. Taylor A. Landon M.J. Stacey T.E. Permeability of the human placenta in vivo to four non‐metabolized hydrophilic molecules. J. Physiol. 1990 431 1 505 513 10.1113/jphysiol.1990.sp018343 2129229
    [Google Scholar]
  39. Laundon D. Gostling N.J. Sengers B.G. Chavatte-Palmer P. Lewis R.M. Placental evolution from a three-dimensional and multiscale structural perspective. Evolution 2024 78 1 13 25 10.1093/evolut/qpad209 37974468
    [Google Scholar]
  40. Lewis R.M. Volume electron microscopy reveals placental ultrastructure in 3D. Placenta 2023 141 78 83 10.1016/j.placenta.2023.07.015 37487796
    [Google Scholar]
  41. Petroff M.G. Nguyen S.L. Ahn S.H. Fetal‐placental antigens and the maternal immune system: Reproductive immunology comes of age. Immunol. Rev. 2022 308 1 25 39 10.1111/imr.13090 35643905
    [Google Scholar]
  42. True H. Blanton M. Sureshchandra S. Messaoudi I. Monocytes and macrophages in pregnancy: The good, the bad, and the ugly. Immunol. Rev. 2022 308 1 77 92 10.1111/imr.13080 35451089
    [Google Scholar]
  43. Li Q. Sharkey A. Sheridan M. Magistrati E. Arutyunyan A. Huhn O. Sancho-Serra C. Anderson H. McGovern N. Esposito L. Fernando R. Gardner L. Vento-Tormo R. Turco M.Y. Moffett A. Human uterine natural killer cells regulate differentiation of extravillous trophoblast early in pregnancy. Cell Stem Cell 2024 31 2 181 195.e9 10.1016/j.stem.2023.12.013 38237587
    [Google Scholar]
  44. Wu H. Huang X.Y. Sun M.X. Wang Y. Zhou H.Y. Tian Y. He B. Li K. Li D.Y. Wu A.P. Wang H. Qin C.F. Zika virus targets human trophoblast stem cells and prevents syncytialization in placental trophoblast organoids. Nat. Commun. 2023 14 1 5541 10.1038/s41467‑023‑41158‑0 37684223
    [Google Scholar]
  45. Vento-Tormo R. Efremova M. Botting R.A. Turco M.Y. Vento-Tormo M. Meyer K.B. Park J.E. Stephenson E. Polański K. Goncalves A. Gardner L. Holmqvist S. Henriksson J. Zou A. Sharkey A.M. Millar B. Innes B. Wood L. Wilbrey-Clark A. Payne R.P. Ivarsson M.A. Lisgo S. Filby A. Rowitch D.H. Bulmer J.N. Wright G.J. Stubbington M.J.T. Haniffa M. Moffett A. Teichmann S.A. Single-cell reconstruction of the early maternal–fetal interface in humans. Nature 2018 563 7731 347 353 10.1038/s41586‑018‑0698‑6 30429548
    [Google Scholar]
  46. Jiang X. Du M.R. Li M. Wang H. Three macrophage subsets are identified in the uterus during early human pregnancy. Cell. Mol. Immunol. 2018 15 12 1027 1037 10.1038/s41423‑018‑0008‑0 29618777
    [Google Scholar]
  47. Thomas J.R. Appios A. Zhao X. Dutkiewicz R. Donde M. Lee C.Y.C. Naidu P. Lee C. Cerveira J. Liu B. Ginhoux F. Burton G. Hamilton R.S. Moffett A. Sharkey A. McGovern N. Phenotypic and functional characterization of first-trimester human placental macrophages, Hofbauer cells. J. Exp. Med. 2021 218 1 e20200891 10.1084/jem.20200891 33075123
    [Google Scholar]
  48. Thomas J.R. Naidu P. Appios A. McGovern N. The ontogeny and function of placental macrophages. Front. Immunol. 2021 12 771054 10.3389/fimmu.2021.771054 34745147
    [Google Scholar]
  49. Moffett A. Shreeve N. Local immune recognition of trophoblast in early human pregnancy: controversies and questions. Nat. Rev. Immunol. 2023 23 4 222 235 10.1038/s41577‑022‑00777‑2 36192648
    [Google Scholar]
  50. Knöfler M. Haider S. Saleh L. Pollheimer J. Gamage T.K.J.B. James J. Human placenta and trophoblast development: Key molecular mechanisms and model systems. Cell. Mol. Life Sci. 2019 76 18 3479 3496 10.1007/s00018‑019‑03104‑6 31049600
    [Google Scholar]
  51. Khorami-Sarvestani S. Vanaki N. Shojaeian S. Zarnani K. Stensballe A. Jeddi-Tehrani M. Zarnani A.H. Placenta: An old organ with new functions. Front. Immunol. 2024 15 1385762 10.3389/fimmu.2024.1385762 38707901
    [Google Scholar]
  52. Bayer A. Lennemann N.J. Ouyang Y. Bramley J.C. Morosky S. Marques E.T.D.A. Cherry S. Sadovsky Y. Coyne C.B. Type III interferons produced by human placental trophoblasts confer protection against Zika virus infection. Cell Host Microbe 2016 19 5 705 712 10.1016/j.chom.2016.03.008 27066743
    [Google Scholar]
  53. Amaral M.S. Goulart E. Caires-Júnior L.C. Morales-Vicente D.A. Soares-Schanoski A. Gomes R.P. Olberg G.G.O. Astray R.M. Kalil J.E. Zatz M. Verjovski-Almeida S. Differential gene expression elicited by ZIKV infection in trophoblasts from congenital Zika syndrome discordant twins. PLoS Negl. Trop. Dis. 2020 14 8 e0008424 10.1371/journal.pntd.0008424 32745093
    [Google Scholar]
  54. Yong H.E.J. Chan S.Y. Chakraborty A. Rajaraman G. Ricardo S. Benharouga M. Alfaidy N. Staud F. Murthi P. Significance of the placental barrier in antenatal viral infections. Biochim. Biophys. Acta Mol. Basis Dis. 2021 1867 12 166244 10.1016/j.bbadis.2021.166244 34411716
    [Google Scholar]
  55. Reyes L. Wolfe B. Golos T. Hofbauer Cells: Placental Macrophages of Fetal Origin. In: Results and Problems in Cell. Differentiation. Maltepe E. Fisher S.J. Cham Springer 2017 45 60 10.1007/978‑3‑319‑54090‑0_3
    [Google Scholar]
  56. Dedloff M.R. Lazear H.M. Antiviral and immunomodulatory effects of interferon lambda at the maternal-fetal interface. Annu. Rev. Virol. 2024 11 1 363 379 10.1146/annurev‑virology‑111821‑101531 38848605
    [Google Scholar]
  57. Merriel A. Fitzgerald B. O’Donoghue K. SARS‐CoV‐2—Placental effects and association with stillbirth. BJOG 2024 131 4 385 400 10.1111/1471‑0528.17698 37984971
    [Google Scholar]
  58. Li A. Schwartz D.A. Vo A. VanAbel R. Coler C. Li E. Lukman B. Del Rosario B. Vong A. Li M. Adams Waldorf K.M. Impact of SARS-CoV-2 infection during pregnancy on the placenta and fetus. Semin. Perinatol. 2024 48 4 151919 10.1016/j.semperi.2024.151919 38897829
    [Google Scholar]
  59. Jamieson D.J. Rasmussen S.A. An update on COVID-19 and pregnancy. Am. J. Obstet. Gynecol. 2022 226 2 177 186 10.1016/j.ajog.2021.08.054 34534497
    [Google Scholar]
  60. Villar J. Ariff S. Gunier R.B. Thiruvengadam R. Rauch S. Kholin A. Roggero P. Prefumo F. do Vale M.S. Cardona-Perez J.A. Maiz N. Cetin I. Savasi V. Deruelle P. Easter S.R. Sichitiu J. Soto Conti C.P. Ernawati E. Mhatre M. Teji J.S. Liu B. Capelli C. Oberto M. Salazar L. Gravett M.G. Cavoretto P.I. Nachinab V.B. Galadanci H. Oros D. Ayede A.I. Sentilhes L. Bako B. Savorani M. Cena H. García-May P.K. Etuk S. Casale R. Abd-Elsalam S. Ikenoue S. Aminu M.B. Vecciarelli C. Duro E.A. Usman M.A. John-Akinola Y. Nieto R. Ferrazzi E. Bhutta Z.A. Langer A. Kennedy S.H. Papageorghiou A.T. Maternal and neonatal morbidity and mortality among pregnant women with and without COVID-19 infection. JAMA Pediatr. 2021 175 8 817 826 10.1001/jamapediatrics.2021.1050 33885740
    [Google Scholar]
  61. Gostomczyk K. Borowczak J. Siekielska-Domanowska M. Szczerbowski K. Maniewski M. Dubiel M. Szylberg Ł. Bodnar M. Mechanisms of SARS-CoV-2 placental transmission. Arch. Immunol. Ther. Exp. (Warsz.) 2024 72 1 20240001 10.2478/aite‑2024‑0001 38299561
    [Google Scholar]
  62. Mourad M. Jacob T. Sadovsky E. Bejerano S. Simone G.S.D. Bagalkot T.R. Zucker J. Yin M.T. Chang J.Y. Liu L. Debelenko L. Shawber C.J. Firestein M. Ouyang Y. Gyamfi-Bannerman C. Penn A. Sorkin A. Wapner R. Sadovsky Y. Placental response to maternal SARS-CoV-2 infection. Sci. Rep. 2021 11 1 14390 10.1038/s41598‑021‑93931‑0 34257394
    [Google Scholar]
  63. Kreis N.N. Ritter A. Louwen F. Yuan J. A Message from the Human Placenta: Structural and Immunomodulatory Defense against SARS-CoV-2. Cells 2020 9 8 1777 10.3390/cells9081777 32722449
    [Google Scholar]
  64. Colaco S. Chhabria K. Singh N. Bhide A. Singh D. Singh A. Expression of SARS-CoV-2 Receptor ACE2 and the Spike Protein Processing Enzymes in Developing Human Embryos. 2020
    [Google Scholar]
  65. Cui D. Liu Y. Jiang X. Ding C. Poon L.C. Wang H. Yang H. Single‐cell RNA expression profiling of SARS‐CoV‐2‐related ACE2 and TMPRSS2 in human trophectoderm and placenta. Ultrasound Obstet. Gynecol. 2021 57 2 248 256 10.1002/uog.22186 32851697
    [Google Scholar]
  66. Zheng Q.L. Duan T. Jin L.P. Single-Cell RNA Expression Profiling of ACE2 and AXL in the Human Maternal-Fetal Interface. Reprod. Dev. Med. 2020 4 1 7 10 10.4103/2096‑2924.278679
    [Google Scholar]
  67. Constantino F.B. Cury S.S. Nogueira C.R. Carvalho R.F. Justulin L.A. Prediction of Non-canonical routes for SARS-CoV-2 infection in human placenta cells. Front. Mol. Biosci. 2021 8 614728 10.3389/fmolb.2021.614728 34820418
    [Google Scholar]
  68. Ouyang Y. Bagalkot T. Fitzgerald W. Sadovsky E. Chu T. Martínez-Marchal A. Brieño-Enríquez M. Su E.J. Margolis L. Sorkin A. Sadovsky Y. Term human placental trophoblasts express SARS-CoV-2 entry factors ACE2, TMPRSS2, and Furin. MSphere 2021 6 2 e00250 e21 10.1128/mSphere.00250‑21 33853873
    [Google Scholar]
  69. Chen S. Huang B. Luo D.J. Li X. Yang F. Zhao Y. Nie X. Huang B.X. Pregnancy with new coronavirus infection: Clinical characteristics and placental pathological analysis of three cases. Zhonghua Bing Li Xue Za Zhi 2020 49 5 418 423 10.3760/cma.j.cn112151‑20200225‑00138 32114744
    [Google Scholar]
  70. Baergen R.N. Heller D.S. Placental pathology in Covid-19 positive mothers: Preliminary findings. Pediatr. Dev. Pathol. 2020 23 3 177 180 10.1177/1093526620925569 32397896
    [Google Scholar]
  71. Shanes E.D. Mithal L.B. Otero S. Azad H.A. Miller E.S. Goldstein J.A. Placental Pathology in COVID-19. Am. J. Clin. Pathol. 2020 154 1 23 32 10.1093/ajcp/aqaa089 32441303
    [Google Scholar]
  72. Huang Y. Wang S. Liu H. Atoni E. Wang F. Chen W. Li Z. Rodriguez S. Yuan Z. Ming Z. Xia H. A global dataset of sequence, diversity and biosafety recommendation of arbovirus and arthropod-specific virus. Sci. Data 2023 10 1 305 10.1038/s41597‑023‑02226‑8 37208388
    [Google Scholar]
  73. Evans-Gilbert T. Vertically transmitted chikungunya, Zika and dengue virus infections. Int. J. Pediatr. Adolesc. Med. 2020 7 3 107 111 10.1016/j.ijpam.2019.05.004 33094137
    [Google Scholar]
  74. Patiño L. Benítez A.D. Carrazco-Montalvo A. Regato-Arrata M. Genomics for Arbovirus Surveillance: Considerations for routine use in public health laboratories. Viruses 2024 16 8 1242 10.3390/v16081242 39205216
    [Google Scholar]
  75. de Andrade Vieira Alves F. Nunes P.C.G. Arruda L.V. Salomão N.G. Rabelo K. The innate immune response in DENV- and CHIKV-Infected placentas and the consequences for the fetuses: A minireview. Viruses 2023 15 9 1885 10.3390/v15091885 37766291
    [Google Scholar]
  76. Parums D.V. A review of emerging viral pathogens and current concerns for vertical transmission of infection. Med. Sci. Monit. 2024 30 e947335 10.12659/MSM.947335 39578400
    [Google Scholar]
  77. Salomão N. Rabelo K. Avvad-Portari E. Basílio-de-Oliveira C. Basílio-de-Oliveira R. Ferreira F. Ferreira L. de Souza T.M. Nunes P. Lima M. Sales A.P. Fernandes R. de Souza L.J. Dias L. Brasil P. dos Santos F. Paes M. Histopathological and immunological characteristics of placentas infected with chikungunya virus. Front. Microbiol. 2022 13 1055536 10.3389/fmicb.2022.1055536 36466642
    [Google Scholar]
  78. Reyes Ballista J.M. Hoover A.J. Noble J.T. Acciani M.D. Miazgowicz K.L. Harrison S.A. Tabscott G.A.L. Duncan A. Barnes D.N. Jimenez A.R. Brindley M.A. Chikungunya virus release is reduced by TIM-1 receptors through binding of envelope phosphatidylserine. J. Virol. 2024 98 8 e00775 e24 10.1128/jvi.00775‑24 39007616
    [Google Scholar]
  79. Kirui J. Abidine Y. Lenman A. Islam K. Gwon Y.D. Lasswitz L. Evander M. Bally M. Gerold G. The Phosphatidylserine Receptor TIM-1 enhances authentic chikungunya virus cell entry. Cells 2021 10 7 1828 10.3390/cells10071828 34359995
    [Google Scholar]
  80. Ferreira F.C.P.A.D.M. da Silva A.S.V. Recht J. Guaraldo L. Moreira M.E.L. de Siqueira A.M. Gerardin P. Brasil P. Correction: Vertical transmission of chikungunya virus: A systematic review. PLoS One 2022 17 8 e0272761 10.1371/journal.pone.0272761 35921358
    [Google Scholar]
  81. Molás R.B. Ribeiro M.R. Ramalho dos Santos M.J.C. Borbely A.U. Oliani D.V. Oliani A.H. Nadkarni S. Nogueira M.L. Moreli J.B. Oliani S.M. The involvement of annexin A1 in human placental response to maternal Zika virus infection. Antiviral Res. 2020 179 104809 10.1016/j.antiviral.2020.104809 32360947
    [Google Scholar]
  82. Vats A. Ho T.C. Puc I. Chen Y.J. Chang C.H. Chien Y.W. Perng G.C. Evidence that hematopoietic stem cells in human umbilical cord blood is infectable by dengue virus: Proposing a vertical transmission candidate. Heliyon 2021 7 4 e06785 10.1016/j.heliyon.2021.e06785 33981874
    [Google Scholar]
  83. Ribeiro C.F. Lopes V.G.S. Brasil P. Pires A.R.C. Rohloff R. Nogueira R.M.R. Dengue infection in pregnancy and its impact on the placenta. Int. J. Infect. Dis. 2017 55 109 112 10.1016/j.ijid.2017.01.002 28088588
    [Google Scholar]
  84. Nunes P. Nogueira R. Coelho J. Rodrigues F. Salomão N. José C. de Carvalho J. Rabelo K. de Azeredo E. Basílio-de-Oliveira R. Basílio-de-Oliveira C. dos Santos F. Paes M. A Stillborn Multiple Organs’ investigation from a maternal denv-4 infection: Histopathological and inflammatory mediators Characterization. Viruses 2019 11 4 319 10.3390/v11040319 30986974
    [Google Scholar]
  85. Tougma S.A. Dengue virus infection and pregnancy outcomes during the 2017 outbreak in Ouagadougou, Burkina Faso: A retrospective cohort study. PLoS One 2020 15 e0238431 10.1371/journal.pone.0238431 32886677
    [Google Scholar]
  86. Chye J.K. Lim C.T. Ng K.B. Lim J.M.H. George R. Lam S.K. Vertical transmission of dengue. Clin. Infect. Dis. 1997 25 6 1374 1377 10.1086/516126 9431381
    [Google Scholar]
  87. Petdachai W. Sila’on J. Nimmannitya S. Nisalak A. Neonatal dengue infection: Report of dengue fever in a 1-day-old infant. Southeast Asian J. Trop. Med. Public Health 2004 35 2 403 407 15691146
    [Google Scholar]
  88. Kumar A. Kumar D. Jose J. Giri R. Mysorekar I.U. Drugs to limit Zika virus infection and implication for maternal-fetal health. Front Virol. 2022 2 928599 10.3389/fviro.2022.928599 37064602
    [Google Scholar]
  89. Pielnaa P. Al-Saadawe M. Saro A. Dama M.F. Zhou M. Huang Y. Huang J. Xia Z. Zika virus-spread, epidemiology, genome, transmission cycle, clinical manifestation, associated challenges, vaccine and antiviral drug development. Virology 2020 543 34 42 10.1016/j.virol.2020.01.015 32056845
    [Google Scholar]
  90. Azamor T. Cunha D.P. Nobre Pires K.S. Lira Tanabe E.L. Melgaço J.G. Vieira da Silva A.M. Ribeiro-Alves M. Calvo T.L. Tubarão L.N. da Silva J. Fernandes C.B. Fonseca de Souza A. Torrentes de Carvalho A. Avvad-Portari E. da Cunha Guida L. Gomes L. Lopes Moreira M.E. Dinis Ano Bom A.P. Cristina da Costa Neves P. Missailidis S. Vasconcelos Z. Borbely A.U. Moraes M.O. Decidual production of interferon lambda in response to ZIKV persistence: Clinical evidence and in vitro modelling. Heliyon 2024 10 9 e30613 10.1016/j.heliyon.2024.e30613 38737240
    [Google Scholar]
  91. Parker E.L. Silverstein R.B. Verma S. Mysorekar I.U. Viral-immune cell interactions at the maternal-fetal interface in human pregnancy. Front. Immunol. 2020 11 522047 10.3389/fimmu.2020.522047 33117336
    [Google Scholar]
  92. Borges-Vélez G. Arroyo J.A. Cantres-Rosario Y.M. Rodriguez de Jesus A. Roche-Lima A. Rosado-Philippi J. Rosario-Rodríguez L.J. Correa-Rivas M.S. Campos-Rivera M. Meléndez L.M. Decreased CSTB, RAGE, and Axl receptor are associated with Zika infection in the human placenta. Cells 2022 11 22 3627 10.3390/cells11223627 36429055
    [Google Scholar]
  93. Robinson N. Mayorquin Galvan E.E. Zavala Trujillo I.G. Zavala-Cerna M.G. Congenital Zika syndrome: Pitfalls in the placental barrier. Rev. Med. Virol. 2018 28 5 e1985 10.1002/rmv.1985 29761581
    [Google Scholar]
  94. Mazzetto E. Bortolami A. Bovo D. Stocchero M. Mazzacan E. Napolitan A. Panzarin V. Tran M.R. Zamperin G. Milani A. Fortin A. Bigolaro M. Pirillo P. Pagliari M. Zanardello C. Giordano G. Gervasi M.T. Baraldi E. Terregino C. Giaquinto C. Bonfante F. Infectivity in full-term placenta of Zika viruses with different lipid profiles. Virus Res. 2025 352 199518 10.1016/j.virusres.2024.199518 39733819
    [Google Scholar]
  95. Vota D. Torti M. Paparini D. Giovannoni F. Merech F. Hauk V. Calo G. Ramhorst R. Garcia C. Pérez Leirós C. Zika virus infection of first trimester trophoblast cells affects cell migration, metabolism and immune homeostasis control. J. Cell. Physiol. 2021 236 7 4913 4925 10.1002/jcp.30203 33305387
    [Google Scholar]
  96. Musso D. Ko A.I. Baud D. Zika Virus Infection — After the pandemic. N. Engl. J. Med. 2019 381 15 1444 1457 10.1056/NEJMra1808246 31597021
    [Google Scholar]
  97. Rabelo K. de Souza L.J. Salomão N.G. Machado L.N. Pereira P.G. Portari E.A. Basílio-de-Oliveira R. dos Santos F.B. Neves L.D. Morgade L.F. Provance D.W. Higa L.M. Tanuri A. de Carvalho J.J. Paes M.V. Zika Induces Human Placental Damage and Inflammation. Front. Immunol. 2020 11 2146 10.3389/fimmu.2020.02146 32983175
    [Google Scholar]
  98. Fortin O. DeBiasi R.L. Mulkey S.B. Congenital infectious encephalopathies from the intrapartum period to postnatal life. Semin. Fetal Neonatal Med. 2024 29 1 101526 10.1016/j.siny.2024.101526 38677956
    [Google Scholar]
  99. Auriti C. De Rose D.U. Santisi A. Martini L. Piersigilli F. Bersani I. Ronchetti M.P. Caforio L. Pregnancy and viral infections: Mechanisms of fetal damage, diagnosis and prevention of neonatal adverse outcomes from cytomegalovirus to SARS-CoV-2 and Zika virus. Biochim. Biophys. Acta Mol. Basis Dis. 2021 1867 10 166198 10.1016/j.bbadis.2021.166198 34118406
    [Google Scholar]
  100. Nahmias A.J. Schollin J. Abramowsky C. Evolutionary–developmental perspectives on immune system interactions among the pregnant woman, placenta, and fetus, and responses to sexually transmitted infectious agents. Ann. N. Y. Acad. Sci. 2011 1230 1 25 47 10.1111/j.1749‑6632.2011.06137.x 21824164
    [Google Scholar]
  101. Fan T.J. Cui J. Human Endogenous Retroviruses in Diseases. Subcellular Biochemistry. Springer 2023 403 439 10.1007/978‑3‑031‑40086‑5_15
    [Google Scholar]
  102. Dorsamy V. Vallen C. Haffejee F. Moodley J. Naicker T. The role of trophoblast cell receptor expression in HIV ‐1 passage across the placenta in pre‐eclampsia: an observational study. BJOG 2017 124 6 920 928 10.1111/1471‑0528.14311 27700010
    [Google Scholar]
  103. Pereira N.Z. Branco A.C.C.C. Manfrere K.C.G. de Lima J.F. Yoshikawa F.S.Y. Milanez H.M.B.P.M. Pereira N.V. Sotto M.N. Duarte A.J.S. Sato M.N. Increased expression on innate immune factors in placentas from HIV-infected mothers concurs with dampened systemic immune activation. Front. Immunol. 2020 11 1822 10.3389/fimmu.2020.01822 32983090
    [Google Scholar]
  104. Hindle S. Brien M.È. Pelletier F. Giguère F. Trudel M.J. Dal Soglio D. Kakkar F. Soudeyns H. Girard S. Boucoiran I. Placenta analysis of Hofbauer cell profile according to the class of antiretroviral therapy used during pregnancy in people living with HIV. Placenta 2023 139 120 126 10.1016/j.placenta.2023.06.003 37364521
    [Google Scholar]
  105. Deftereou T.E. Trypidi A. Alexiadi C.A. Theotokis P. Manthou M.E. Meditskou S. Simopoulou M. Lambropoulou M. Congenital Herpes Simplex virus: A histopathological view of the placenta. Cureus 2022 14 9 e29101 10.7759/cureus.29101 36249599
    [Google Scholar]
  106. Costa M.L. de Moraes Nobrega G. Antolini-Tavares A. Key Infections in the Placenta. Obstet. Gynecol. Clin. North Am. 2020 47 1 133 146 10.1016/j.ogc.2019.10.003 32008664
    [Google Scholar]
  107. Finger-Jardim F. Avila E.C. da Hora V.P. Gonçalves C.V. de Martinez A.M.B. Soares M.A. Prevalence of herpes simplex virus types 1 and 2 at maternal and fetal sides of the placenta in asymptomatic pregnant women. Am. J. Reprod. Immunol. 2017 78 1 e12689 10.1111/aji.12689 28440579
    [Google Scholar]
  108. Britt W.J. Maternal Immunity and the Natural History of Congenital Human Cytomegalovirus Infection. Viruses 2018 10 8 405 10.3390/v10080405 30081449
    [Google Scholar]
  109. Kirschen G.W. Burd I. Modeling of vertical transmission and pathogenesis of cytomegalovirus in pregnancy: Opportunities and challenges. Front Virol. 2023 3 1106634 10.3389/fviro.2023.1106634 36908829
    [Google Scholar]
  110. Funato Y. Higashimoto Y. Kawamura Y. Sakabe Y. Iwakura M. Ihira M. Shiogama K. Miyata M. Nishizawa H. Sekiya T. Fujii T. Kosugi I. Yoshikawa T. Retrospective immunohistochemical analysis of human cytomegalovirus infection in the placenta and its association with fetal growth restriction. Fujian Med. J. 2023 9 2 90 94 10.20407/fmj.2022‑001 37234388
    [Google Scholar]
  111. Jaan A. Rajnik M. TORCH complex. StatPearls. Treasure Island StatPearls Publishing 2025
    [Google Scholar]
  112. Leung A.K.C. Hon K.L. Leong K.F. Rubella (German measles) revisited. Hong Kong Med. J. 2019 25 2 134 141 10.12809/hkmj187785 30967519
    [Google Scholar]
  113. Schulz J. Schilling E. Fabian C. Zenclussen A.C. Stojanovska V. Claus C. Dissecting Rubella placental infection in an in vitro trophoblast model. Int. J. Mol. Sci. 2023 24 9 7894 10.3390/ijms24097894 37175600
    [Google Scholar]
  114. Trinh Q.D. Takada K. Pham N.T.K. Takano C. Namiki T. Ito S. Takeda Y. Okitsu S. Ushijima H. Hayakawa S. Komine-Aizawa S. Oxidative stress enhances rubella virus infection in immortalized human first-trimester trophoblasts. Int. J. Mol. Sci. 2025 26 3 1041 10.3390/ijms26031041 39940811
    [Google Scholar]
  115. Geyer H. Bauer M. Neumann J. Lüdde A. Rennert P. Friedrich N. Claus C. Perelygina L. Mankertz A. Gene expression profiling of rubella virus infected primary endothelial cells of fetal and adult origin. Virol. J. 2016 13 1 21 10.1186/s12985‑016‑0475‑9 26837541
    [Google Scholar]
  116. Espino A. El Costa H. Tabiasco J. Al-Daccak R. Jabrane-Ferrat N. Innate immune response to viral infections at the maternal-fetal interface in human pregnancy. Front. Med. (Lausanne) 2021 8 674645 10.3389/fmed.2021.674645 34368184
    [Google Scholar]
  117. Creisher P.S. Klein S.L. Pathogenesis of viral infections during pregnancy. Clin. Microbiol. Rev. 2024 37 2 e00073 e23 10.1128/cmr.00073‑23 38421182
    [Google Scholar]
  118. Zaga-Clavellina V. Diaz L. Olmos-Ortiz A. Godínez-Rubí M. Rojas-Mayorquín A.E. Ortuño-Sahagún D. Central role of the placenta during viral infection: Immuno-competences and miRNA defensive responses. Biochim. Biophys. Acta Mol. Basis Dis. 2021 1867 10 166182 10.1016/j.bbadis.2021.166182 34058350
    [Google Scholar]
  119. Sirilert S. Khamrin P. Kumthip K. Malasao R. Maneekarn N. Tongsong T. Possible Association between genetic diversity of hepatitis B virus and its effect on the detection rate of hepatitis B Virus DNA in the placenta and fetus. Viruses 2023 15 8 1729 10.3390/v15081729 37632070
    [Google Scholar]
  120. Abdul Massih S. Eke A.C. Direct antiviral agents (DAAs) and their use in pregnant women with hepatitis C (HCV). Expert Rev. Anti Infect. Ther. 2022 20 11 1413 1424 10.1080/14787210.2022.2125868 36111676
    [Google Scholar]
  121. Statistics 2023 Available from:https://unaids.org.br/estatisticas/
    [Google Scholar]
  122. WHO Launches New Global Strategy for Influenza Control WHO Launches New Global Strategy for Influenza Control. Available from:https://bvsms.saude.gov.br/oms-lanca-nova-estrategia-mundial-para-controle-da-influenza-gripe/
  123. Meseko C. Sanicas M. Asha K. Sulaiman L. Kumar B. Antiviral options and therapeutics against influenza: history, latest developments and future prospects. Front. Cell. Infect. Microbiol. 2023 13 1269344 10.3389/fcimb.2023.1269344 38094741
    [Google Scholar]
  124. Kufa T. Woldesenbet S. Cheyip M. Ayalew K. Kularatne R. Manda S. Lombard C. Puren A. Syphilis screening coverage and positivity by HIV treatment status among South African pregnant women enrolled in the 2019 antenatal HIV sentinel survey. Sci. Rep. 2023 13 1 5322 10.1038/s41598‑023‑32456‑0 37005466
    [Google Scholar]
  125. Joseph N.T. Banga J. Badell M.L. An overview of antiviral treatments in pregnancy. Obstet. Gynecol. Clin. North Am. 2023 50 1 183 203 10.1016/j.ogc.2022.10.017 36822703
    [Google Scholar]
  126. Newman D.J. Cragg G.M. Natural products as sources of new drugs over the nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020 83 3 770 803 10.1021/acs.jnatprod.9b01285 32162523
    [Google Scholar]
  127. Chang J.Y. Balch C. Puccio J. Oh H.S. A narrative review of alternative symptomatic treatments for herpes simplex virus. Viruses 2023 15 6 1314 10.3390/v15061314 37376614
    [Google Scholar]
  128. Maggirwar S.B. Khalsa J.H. The Link between cannabis use, immune system, and viral infections. Viruses 2021 13 6 1099 10.3390/v13061099 34207524
    [Google Scholar]
  129. Khoury M. Cohen I. Bar-Sela G. “The two sides of the same coin”—medical cannabis, cannabinoids and immunity: Pros and cons explained. Pharmaceutics 2022 14 2 389 10.3390/pharmaceutics14020389 35214123
    [Google Scholar]
  130. Goh V.S.L. Mok C.K. Chu J.J.H. Antiviral natural products for arbovirus infections. Molecules 2020 25 12 2796 10.3390/molecules25122796 32560438
    [Google Scholar]
  131. Eke A.C. Olagunju A. Best B.M. Mirochnick M. Momper J.D. Abrams E. Penazzato M. Cressey T.R. Colbers A. Innovative approaches for pharmacology studies in pregnant and lactating women: A viewpoint and lessons from HIV. Clin. Pharmacokinet. 2020 59 10 1185 1194 10.1007/s40262‑020‑00915‑w 32757103
    [Google Scholar]
  132. Pavek P. Ceckova M. Staud F. Variation of drug kinetics in pregnancy. Curr. Drug Metab. 2009 10 5 520 529 10.2174/138920009788897993 19689248
    [Google Scholar]
  133. Cerveny L. Murthi P. Staud F. HIV in pregnancy: Mother-to-child transmission, pharmacotherapy, and toxicity. Biochim. Biophys. Acta Mol. Basis Dis. 2021 1867 10 166206 10.1016/j.bbadis.2021.166206 34197912
    [Google Scholar]
  134. Winter A.K. Moss W.J. Rubella. Lancet 2022 399 10332 1336 1346 10.1016/S0140‑6736(21)02691‑X 35367004
    [Google Scholar]
  135. Mounce B.C. Cesaro T. Carrau L. Vallet T. Vignuzzi M. Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding. Antiviral Res. 2017 142 148 157 10.1016/j.antiviral.2017.03.014 28343845
    [Google Scholar]
  136. Carneiro B.M. Batista M.N. Braga A.C.S. Nogueira M.L. Rahal P. The green tea molecule EGCG inhibits Zika virus entry. Virology 2016 496 215 218 10.1016/j.virol.2016.06.012 27344138
    [Google Scholar]
  137. Vázquez-Calvo Á. Jiménez de Oya N. Martín-Acebes M.A. Garcia-Moruno E. Saiz J.C. Antiviral properties of the natural polyphenols delphinidin and epigallocatechin gallate against the flaviviruses west nile virus, zika virus, and dengue virus. Front. Microbiol. 2017 8 1314 10.3389/fmicb.2017.01314 28744282
    [Google Scholar]
  138. Mohd A. Zainal N. Tan K.K. AbuBakar S. Resveratrol affects Zika virus replication in vitro. Sci. Rep. 2019 9 1 14336 10.1038/s41598‑019‑50674‑3 31586088
    [Google Scholar]
  139. Gaudry A. Bos S. Viranaicken W. Roche M. Krejbich-Trotot P. Gadea G. Desprès P. El-Kalamouni C. The flavonoid isoquercitrin precludes initiation of zika virus infection in human cells. Int. J. Mol. Sci. 2018 19 4 1093 10.3390/ijms19041093 29621184
    [Google Scholar]
  140. Lee J.L. Loe M.W.C. Lee R.C.H. Chu J.J.H. Antiviral activity of pinocembrin against Zika virus replication. Antiviral Res. 2019 167 13 24 10.1016/j.antiviral.2019.04.003 30959074
    [Google Scholar]
  141. Tietjen I. Williams D.E. Read S. Kuang X.T. Mwimanzi P. Wilhelm E. Markle T. Kinloch N.N. Naphen C.N. Tenney K. Mesplède T. Wainberg M.A. Crews P. Bell B. Andersen R.J. Brumme Z.L. Brockman M.A. Inhibition of NF-κB-dependent HIV-1 replication by the marine natural product bengamide A. Antiviral Res. 2018 152 94 103 10.1016/j.antiviral.2018.02.017 29476895
    [Google Scholar]
  142. Johnson T.A. Sohn J. Vaske Y.M. White K.N. Cohen T.L. Vervoort H.C. Tenney K. Valeriote F.A. Bjeldanes L.F. Crews P. Myxobacteria versus sponge-derived alkaloids: The bengamide family identified as potent immune modulating agents by scrutiny of LC–MS/ELSD libraries. Bioorg. Med. Chem. 2012 20 14 4348 4355 10.1016/j.bmc.2012.05.043 22705020
    [Google Scholar]
  143. Hezareh M. Moukil M.A. Szanto I. Pondarzewski M. Mouche S. Cherix N. Brown S.J. Carpentier J.L. Foti M. Mechanisms of HIV receptor and co-receptor down-regulation by prostratin: Role of conventional and novel PKC isoforms. Antivir. Chem. Chemother. 2004 15 4 207 222 10.1177/095632020401500404 15457682
    [Google Scholar]
  144. Jones R.B. Mueller S. O’Connor R. Rimpel K. Sloan D.D. Karel D. Wong H.C. Jeng E.K. Thomas A.S. Whitney J.B. Lim S.Y. Kovacs C. Benko E. Karandish S. Huang S.H. Buzon M.J. Lichterfeld M. Irrinki A. Murry J.P. Tsai A. Yu H. Geleziunas R. Trocha A. Ostrowski M.A. Irvine D.J. Walker B.D. A subset of latency-reversing agents expose hiv-infected resting CD4+ T-cells to recognition by cytotoxic T-lymphocytes. PLoS Pathog. 2016 12 4 e1005545 10.1371/journal.ppat.1005545 27082643
    [Google Scholar]
  145. Moulaei T. Shenoy S.R. Giomarelli B. Thomas C. McMahon J.B. Dauter Z. O’Keefe B.R. Wlodawer A. Monomerization of viral entry inhibitor griffithsin elucidates the relationship between multivalent binding to carbohydrates and anti-HIV activity. Structure 2010 18 9 1104 1115 10.1016/j.str.2010.05.016 20826337
    [Google Scholar]
  146. Akkouh O. Ng T. Singh S. Yin C. Dan X. Chan Y. Pan W. Cheung R. Lectins with anti-HIV activity: A review. Molecules 2015 20 1 648 668 10.3390/molecules20010648 25569520
    [Google Scholar]
  147. Liu Y.P. Yan G. Xie Y.T. Lin T.C. Zhang W. Li J. Wu Y.J. Zhou J.Y. Fu Y.H. Bioactive prenylated coumarins as potential anti-inflammatory and anti-HIV agents from Clausena lenis. Bioorg. Chem. 2020 97 103699 10.1016/j.bioorg.2020.103699 32146173
    [Google Scholar]
  148. Song Y.H. Kim D.W. Curtis-Long M.J. Yuk H.J. Wang Y. Zhuang N. Lee K.H. Jeon K.S. Park K.H. Papain-like protease (PLpro) inhibitory effects of cinnamic amides from Tribulus terrestris fruits. Biol. Pharm. Bull. 2014 37 6 1021 1028 10.1248/bpb.b14‑00026 24882413
    [Google Scholar]
  149. Nguyen L.C. Yang D. Nicolaescu V. Best T.J. Gula H. Saxena D. Gabbard J.D. Chen S.N. Ohtsuki T. Friesen J.B. Drayman N. Mohamed A. Dann C. Silva D. Robinson-Mailman L. Valdespino A. Stock L. Suárez E. Jones K.A. Azizi S.A. Demarco J.K. Severson W.E. Anderson C.D. Millis J.M. Dickinson B.C. Tay S. Oakes S.A. Pauli G.F. Palmer K.E. Meltzer D.O. Randall G. Rosner M.R. Cannabidiol inhibits SARS-CoV-2 replication through induction of the host ER stress and innate immune responses. Sci. Adv. 2022 8 8 eabi6110 10.1126/sciadv.abi6110 35050692
    [Google Scholar]
  150. Dupuis J. Laurin P. Tardif J.C. Hausermann L. Rosa C. Guertin M.C. Thibaudeau K. Gagnon L. Cesari F. Robitaille M. Moran J.E. Fourteen-Day evolution of COVID-19 symptoms during the third wave in nonvaccinated subjects and effects of hesperidin therapy: a randomized, double-blinded, placebo-controlled study. Evid. Based Complement. Alternat. Med. 2022 2022 1 10 10.1155/2022/3125662 36387348
    [Google Scholar]
  151. Lin S.C. Ho C.T. Chuo W.H. Li S. Wang T.T. Lin C.C. Effective inhibition of MERS-CoV infection by resveratrol. BMC Infect. Dis. 2017 17 1 144 10.1186/s12879‑017‑2253‑8 28193191
    [Google Scholar]
  152. Di Pierro F. Iqtadar S. Khan A. Ullah Mumtaz S. Masud Chaudhry M. Bertuccioli A. Derosa G. Maffioli P. Togni S. Riva A. Allegrini P. Khan S. Potential clinical benefits of quercetin in the early stage of COVID-19: Results of a second, pilot, randomized, controlled and open-label clinical trial. Int. J. Gen. Med. 2021 14 2807 2816 10.2147/IJGM.S318949 34194240
    [Google Scholar]
  153. Zupanets I.A. Holubovska O.A. Tarasenko O.O. Bezuhla N.P. Pasichnyk M.F. Karabynosh S.O. Kopcha V.S. Moroz L.V. Maksymchuk H.V. Kobrynska O.Y. Fishchuk R.M. Schulha D.I. Morochkovskyj R.S. Zoshchak M.S. Quercetin effectiveness in patients with COVID-19 associated pneumonia. Zaporozhye Medical J. 2021 23 5 636 643 10.14739/2310‑1210.2021.5.231714
    [Google Scholar]
  154. Zhang C. Sui Y. Liu S. Yang M. Anti-viral activity of bioactive molecules of silymarin against COVID-19 via in silico studies. Pharmaceuticals 2023 16 10 1479 10.3390/ph16101479 37895950
    [Google Scholar]
  155. Cotin S. Calliste C.A. Mazeron M.C. Hantz S. Duroux J.L. Rawlinson W.D. Ploy M.C. Alain S. Eight flavonoids and their potential as inhibitors of human cytomegalovirus replication. Antiviral Res. 2012 96 2 181 186 10.1016/j.antiviral.2012.09.010 23000494
    [Google Scholar]
  156. Wang S.Y. Zhang J. Xu X.G. Su H.L. Xing W.M. Zhang Z.S. Jin W.H. Dai J.H. Wang Y.Z. He X.Y. Sun C. Yan J. Mao G.X. Inhibitory effects of piceatannol on human cytomegalovirus (hCMV) in vitro. J. Microbiol. 2020 58 8 716 723 10.1007/s12275‑020‑9528‑2 32524342
    [Google Scholar]
  157. Wang S. Zhou X. He X. Ma S. Sun C. Zhang J. Xu X. Jin W. Yan J. Lin P. Mao G. Suppressive effects of pterostilbene on human cytomegalovirus (HCMV) infection and HCMV-induced cellular senescence. Virol. J. 2022 19 1 224 10.1186/s12985‑022‑01954‑4 36564838
    [Google Scholar]
  158. Lani R. Hassandarvish P. Shu M.H. Phoon W.H. Chu J.J.H. Higgs S. Vanlandingham D. Abu Bakar S. Zandi K. Antiviral activity of selected flavonoids against Chikungunya virus. Antiviral Res. 2016 133 50 61 10.1016/j.antiviral.2016.07.009 27460167
    [Google Scholar]
  159. Feibelman K.M. Fuller B.P. Li L. LaBarbera D.V. Geiss B.J. Identification of small molecule inhibitors of the Chikungunya virus nsP1 RNA capping enzyme. Antiviral Res. 2018 154 124 131 10.1016/j.antiviral.2018.03.013 29680670
    [Google Scholar]
  160. Muñoz A.L. Cuéllar A.F. Arévalo G. Santamaría B.D. Rodríguez A.K. Buendia-Atencio C. Reyes Chaparro A. Tenorio Barajas A.Y. Segura N.A. Bello F. Suárez A.I. Rangel H.R. Losada-Barragán M. Antiviral activity of myricetin glycosylated compounds isolated from Marcetia taxifolia against chikungunya virus. EXCLI J. 2023 22 716 731 10.17179/excli2023‑6242 37662709
    [Google Scholar]
  161. Motlhatlego K.E. Mehrbod P. Fotouhi F. Abdalla M.A. Eloff J.N. McGaw L.J. Antiviral activity against influenza H1N1 virus of myricetin-3-O-rhamnoside isolated from Newtonia buchananii and its mechanism of action. S. Afr. J. Bot. 2018 115 301 308 10.1016/j.sajb.2018.02.091
    [Google Scholar]
  162. Bourjot M. Leyssen P. Eydoux C. Guillemot J.C. Canard B. Rasoanaivo P. Guéritte F. Litaudon M. Chemical constituents of Anacolosa pervilleana and their antiviral activities. Fitoterapia 2012 83 6 1076 1080 10.1016/j.fitote.2012.05.004 22613073
    [Google Scholar]
  163. Kaur P. Thiruchelvan M. Lee R.C.H. Chen H. Chen K.C. Ng M.L. Chu J.J.H. Inhibition of chikungunya virus replication by harringtonine, a novel antiviral that suppresses viral protein expression. Antimicrob. Agents Chemother. 2013 57 1 155 167 10.1128/AAC.01467‑12 23275491
    [Google Scholar]
  164. Hayamizu K. Oshima I. Fukuda Z. Kuramochi Y. Nagai Y. Izumo N. Nakano M. Safety assessment of l-lysine oral intake: a systematic review. Amino Acids 2019 51 4 647 659 10.1007/s00726‑019‑02697‑3 30661148
    [Google Scholar]
  165. Kim G.N. Yoo W.S. Park M.H. Chung J.K. Han Y.S. Chung I.Y. Seo S.W. Yoo J.M. Kim S.J. Clinical features of Herpes Simplex Keratitis in a Korean tertiary referral center: Efficacy of oral antiviral and ascorbic acid on recurrence. Korean J. Ophthalmol. 2018 32 5 353 360 10.3341/kjo.2017.0131 30311457
    [Google Scholar]
  166. Sheridan P.A. Beck M.A. The immune response to herpes simplex virus encephalitis in mice is modulated by dietary vitamin E. J. Nutr. 2008 138 1 130 137 10.1093/jn/138.1.130 18156415
    [Google Scholar]
  167. Kumar A. Singh M.P. Kumar R.S. Ratho R.K. 25-Hydroxyvitamin D3 and 1,25 Dihydroxyvitamin D3 as an antiviral and immunomodulator against herpes simplex virus-1 infection in hela cells. Viral Immunol. 2018 31 8 589 593 10.1089/vim.2018.0026 29792782
    [Google Scholar]
  168. Rocha M.P. Amorim J.M. Lima W.G. Brito J.C.M. da Cruz Nizer W.S. Effect of honey and propolis, compared to acyclovir, against Herpes Simplex Virus (HSV)-induced lesions: A systematic review and meta-analysis. J. Ethnopharmacol. 2022 287 114939 10.1016/j.jep.2021.114939 34965458
    [Google Scholar]
  169. Bourjot M. Delang L. Nguyen V.H. Neyts J. Guéritte F. Leyssen P. Litaudon M. Prostratin and 12-O-tetradecanoylphorbol 13-acetate are potent and selective inhibitors of Chikungunya virus replication. J. Nat. Prod. 2012 75 12 2183 2187 10.1021/np300637t 23215460
    [Google Scholar]
  170. Su Yin Low J. Chen Caiyun K Xing Wu M Mah-Lee Ng J Jang Hann Chu Antiviral activity of emetine dihydrochloride against dengue virus infection. J. Antivir Antiretrovir 2009 1 1 062 071 10.4172/jaa.1000009
    [Google Scholar]
  171. Panraksa P. Ramphan S. Khongwichit S. Smith D.R. Activity of andrographolide against dengue virus. Antiviral Res. 2017 139 69 78 10.1016/j.antiviral.2016.12.014 28034742
    [Google Scholar]
  172. Dwivedi V.D. Bharadwaj S. Afroz S. Khan N. Ansari M.A. Yadava U. Anti-dengue infectivity evaluation of bioflavonoid from Azadirachta indica by dengue virus serine protease inhibition. J. Biomol. Struct. Dyn. 2020 2 1 14 10.1080/07391102.2020.1734485 32107969
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266366044250901094542
Loading
/content/journals/ctmc/10.2174/0115680266366044250901094542
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: placenta ; Antiviral ; therapeutic agents ; prophylaxis ; pregnancy ; natural products
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test