Skip to content
2000
image of Expression of Glucocorticoid and Mineralocorticoid Receptors in the Offspring of Mothers Experiencing Chronic Stress during Pregnancy

Abstract

Introduction

Glucocorticoid receptors (GRs) and mineralocorticoid receptors (MRs) are distributed in the brain, and they are particularly dense in the hippocampus. The two receptors are implicated in stress-related psychiatric diseases, such as anxiety, autism spectrum disorders (ASD) and depression. This study aims to investigate the alterations in neurological behaviour and the expression of GRs and MRs in male offspring from prenatal stress-exposed dams that were subjected to chronic stress.

Methods

In our study, we conducted the elevated plus maze (EPM) test on adult offspring of pregnant mice exposed to chronic stress, as well as on mice in the control group, to examine their neurological behaviors. Expression levels of GRs, MRs, and interleukin 6 (IL-6) were detected by Real-Time Quantitative Reverse Transcription Polymerase Chain Reaction (qRT PCR). After euthanizing the adult mice from both groups, we dissected their cortex and hippocampus for immunofluorescence staining.

Results

We observed an increase in the IL-6 mRNA content in the cerebral cortex of male offspring from the stress group, which was accompanied by the activation of microglial cells. Additionally, the relative mRNA expression levels of GRs and MRs in the hippocampus of male offspring from the stress group were found to be decreased. As a result, adult offspring from the stress group exhibited anxiety-like behavior.

Discussion

The observed reduction in hippocampal GR and MR expression, alongside increased cortical IL-6 and anxiety-like behavior in male offspring, suggests that prenatal stress disrupts neuroendocrine and inflammatory pathways, supporting previous findings on stress-induced neurodevelopmental vulnerability, although further studies are needed to address sex differences, long-term behavioral outcomes, and causal mechanisms.

Conclusion

Our study indicates that chronic prenatal stress induces anxiety like behaviour in offspring and decreases the expression levels of GRs and MRs.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266347602250715005258
2025-10-24
2025-11-01
Loading full text...

Full text loading...

References

  1. Moura C.A. Oliveira M.C. Costa L.F. Tiago P.R.F. Holanda V.A.D. Lima R.H. Cagni F.C. Lobão-Soares B. Bolaños-Jiménez F. Gavioli E.C. Prenatal restraint stress impairs recognition memory in adult male and female offspring. Acta Neuropsychiatr. 2020 32 3 122 127 10.1017/neu.2020.3 31992385
    [Google Scholar]
  2. Walsh K. McCormack C.A. Webster R. Pinto A. Lee S. Feng T. Krakovsky H.S. O’Grady S.M. Tycko B. Champagne F.A. Werner E.A. Liu G. Monk C. Maternal prenatal stress phenotypes associate with fetal neurodevelopment and birth outcomes. Proc. Natl. Acad. Sci. USA 2019 116 48 23996 24005 10.1073/pnas.1905890116 31611411
    [Google Scholar]
  3. Goldberg L.B. Aujla P.K. Raetzman L.T. Persistent expression of activated Notch inhibits corticotrope and melanotrope differentiation and results in dysfunction of the HPA axis. Dev. Biol. 2011 358 1 23 32 10.1016/j.ydbio.2011.07.004 21781958
    [Google Scholar]
  4. Lin T.K. Zhong L. Santiago J. Association between stress and the HPA axis in the atopic dermatitis. Int. J. Mol. Sci. 2017 18 10 2131 10.3390/ijms18102131 29023418
    [Google Scholar]
  5. Baker E.K. Richdale A.L. Hazi A. Prendergast L.A. Assessing a hyperarousal hypothesis of insomnia in adults with autism spectrum disorder. Autism Res. 2019 12 6 897 910 10.1002/aur.2094 30896090
    [Google Scholar]
  6. Sharpley C.F. Bitsika V. Andronicos N.M. Agnew L.L. Further evidence of HPA-axis dysregulation and its correlation with depression in Autism Spectrum Disorders: Data from girls. Physiol. Behav. 2016 167 110 117 10.1016/j.physbeh.2016.09.003 27619171
    [Google Scholar]
  7. Ancelin M.L. Scali J. Norton J. Ritchie K. Dupuy A.M. Chaudieu I. Ryan J. Heterogeneity in HPA axis dysregulation and serotonergic vulnerability to depression. Psychoneuroendocrinology 2017 77 90 94 10.1016/j.psyneuen.2016.11.016 28024274
    [Google Scholar]
  8. Ferrer A. Labad J. Salvat-Pujol N. Monreal J.A. Urretavizcaya M. Crespo J.M. Menchón J.M. Palao D. Soria V. Hypothalamic-pituitary-adrenal axis-related genes and cognition in major mood disorders and schizophrenia: a systematic review. Prog. Neuropsychopharmacol. Biol. Psychiatry 2020 101 109929 10.1016/j.pnpbp.2020.109929 32197928
    [Google Scholar]
  9. Mifsud K.R. Reul J.M.H.M. Mineralocorticoid and glucocorticoid receptor-mediated control of genomic responses to stress in the brain. Stress 2018 21 5 389 402 10.1080/10253890.2018.1456526 29614900
    [Google Scholar]
  10. Herman J.P. Regulation of adrenocorticosteroid receptor mRNA expression in the central nervous system. Cell. Mol. Neurobiol. 1993 13 4 349 372 10.1007/BF00711577 8252607
    [Google Scholar]
  11. Paskitti M.E. McCreary B.J. Herman J.P. Stress regulation of adrenocorticosteroid receptor gene transcription and mRNA expression in rat hippocampus: Time-course analysis. Brain Res. Mol. Brain Res. 2000 80 2 142 152 10.1016/S0169‑328X(00)00121‑2 11038247
    [Google Scholar]
  12. Reul J.M.H.M. van den Bosch F.R. de Kloet E.R. Relative occupation of type-I and type-II corticosteroid receptors in rat brain following stress and dexamethasone treatment: Functional implications. J. Endocrinol. 1987 115 3 459 467 10.1677/joe.0.1150459 3443807
    [Google Scholar]
  13. Zimmer C. Spencer K.A. Modifications of glucocorticoid receptors mRNA expression in the hypothalamic-pituitary-adrenal axis in response to early-life stress in female Japanese quail. J. Neuroendocrinol. 2014 26 12 853 860 10.1111/jne.12228 25303060
    [Google Scholar]
  14. Gómez-González B. Escobar A. Prenatal stress alters microglial development and distribution in postnatal rat brain. Acta Neuropathol. 2010 119 3 303 315 10.1007/s00401‑009‑0590‑4 19756668
    [Google Scholar]
  15. Diz-Chaves Y. Pernía O. Carrero P. Garcia-Segura L.M. Prenatal stress causes alterations in the morphology of microglia and the inflammatory response of the hippocampus of adult female mice. J. Neuroinflammation 2012 9 1 580 10.1186/1742‑2094‑9‑71 22520439
    [Google Scholar]
  16. Wang Y.L. Han Q.Q. Gong W.Q. Pan D.H. Wang L.Z. Hu W. Yang M. Li B. Yu J. Liu Q. Microglial activation mediates chronic mild stress-induced depressive- and anxiety-like behavior in adult rats. J. Neuroinflammation 2018 15 1 21 10.1186/s12974‑018‑1054‑3 29343269
    [Google Scholar]
  17. Masuzaki H. Paterson J. Shinyama H. Morton N.M. Mullins J.J. Seckl J.R. Flier J.S. A transgenic model of visceral obesity and the metabolic syndrome. Science 2001 294 5549 2166 2170 10.1126/science.1066285 11739957
    [Google Scholar]
  18. Okonogi T. Nakayama R. Sasaki T. Ikegaya Y. Characterization of peripheral activity states and cortical local field potentials of mice in an elevated plus maze test. Front. Behav. Neurosci. 2018 12 62 10.3389/fnbeh.2018.00062 29666572
    [Google Scholar]
  19. Egliston K.A. McMahon C. Austin M.P. Stress in pregnancy and infant HPA axis function: Conceptual and methodological issues relating to the use of salivary cortisol as an outcome measure. Psychoneuroendocrinology 2007 32 1 1 13 10.1016/j.psyneuen.2006.10.003 17123741
    [Google Scholar]
  20. Juruena M.F. Eror F. Cleare A.J. Young A.H. The role of early life stress in HPA axis and anxiety. Adv. Exp. Med. Biol. 2020 1191 141 153 10.1007/978‑981‑32‑9705‑0_9 32002927
    [Google Scholar]
  21. Brunton P.J. Effects of maternal exposure to social stress during pregnancy: Consequences for mother and offspring. Reproduction 2013 146 5 R175 R189 10.1530/REP‑13‑0258 23901130
    [Google Scholar]
  22. Brannigan R. Tanskanen A. Huttunen M.O. Cannon M. Leacy F.P. Clarke M.C. The role of prenatal stress as a pathway to personality disorder: Longitudinal birth cohort study. Br. J. Psychiatry 2020 216 2 85 89 10.1192/bjp.2019.190 31488224
    [Google Scholar]
  23. Freeman L.M.Y. Gil K.M. Daily stress, coping, and dietary restraint in binge eating. Int. J. Eat. Disord. 2004 36 2 204 212 10.1002/eat.20012 15282690
    [Google Scholar]
  24. Kyrou I. Tsigos C. Stress mechanisms and metabolic complications. Horm. Metab. Res. 2007 39 6 430 438 10.1055/s‑2007‑981462 17578760
    [Google Scholar]
  25. Schneiderman N. Ironson G. Siegel S.D. Stress and health: Psychological, behavioral, and biological determinants. Annu. Rev. Clin. Psychol. 2005 1 1 607 628 10.1146/annurev.clinpsy.1.102803.144141 17716101
    [Google Scholar]
  26. Felder J.N. Epel E. Coccia M. Cordeiro A. Laraia B. Adler N. Coleman-Phox K. Bush N.R. Prenatal maternal objective and subjective stress exposures and rapid infant weight gain. J. Pediatr. 2020 222 45 51 10.1016/j.jpeds.2020.03.017 32418816
    [Google Scholar]
  27. Morgan J.T. Chana G. Pardo C.A. Achim C. Semendeferi K. Buckwalter J. Courchesne E. Everall I.P. Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biol. Psychiatry 2010 68 4 368 376 10.1016/j.biopsych.2010.05.024 20674603
    [Google Scholar]
  28. Young A.P. Denovan-Wright E.M. The Dynamic role of microglia and the endocannabinoid system in neuroinflammation. Front. Pharmacol. 2022 12 806417 10.3389/fphar.2021.806417 35185547
    [Google Scholar]
  29. Ramirez K. Fornaguera-Trías J. Sheridan J.F. Stress-induced microglia activation and monocyte trafficking to the brain underlie the development of anxiety and depression. Curr. Top. Behav. Neurosci. 2016 31 155 172 10.1007/7854_2016_25 27352390
    [Google Scholar]
  30. Lehmann M.L. Weigel T.K. Poffenberger C.N. Herkenham M. The behavioral sequelae of social defeat require microglia and are driven by oxidative stress in mice. J. Neurosci. 2019 39 28 5594 5605 10.1523/JNEUROSCI.0184‑19.2019 31085604
    [Google Scholar]
  31. Björntorp P. Do stress reactions cause abdominal obesity and comorbidities? Obes. Rev. 2001 2 2 73 86 10.1046/j.1467‑789x.2001.00027.x 12119665
    [Google Scholar]
  32. Leigh Gibson E. Emotional influences on food choice: Sensory, physiological and psychological pathways. Physiol. Behav. 2006 89 1 53 61 10.1016/j.physbeh.2006.01.024 16545403
    [Google Scholar]
  33. Baes C.W. Martins C.M.S. Tofoli S.M.C. Juruena M.F. Early life stress in depressive patients: HPA axis response to GR and MR agonist. Front. Psychiatry 2014 5 2 10.3389/fpsyt.2014.00002 24478730
    [Google Scholar]
  34. Vassiliou A.G. Athanasiou N. Vassiliadi D.A. Jahaj E. Keskinidou C. Kotanidou A. Dimopoulou I. Glucocorticoid and mineralocorticoid receptor expression in critical illness: A narrative review. World J. Crit. Care Med. 2021 10 4 102 111 10.5492/wjccm.v10.i4.102 34316445
    [Google Scholar]
  35. Faught E. Vijayan M.M. Postnatal triglyceride accumulation is regulated by mineralocorticoid receptor activation under basal and stress conditions. J. Physiol. 2019 597 19 4927 4941 10.1113/JP278088 31246274
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266347602250715005258
Loading
/content/journals/ctmc/10.2174/0115680266347602250715005258
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test