Skip to content
2000
image of A Systematic Review of the Biochemical Role of Ginsenosides in Complications Associated with Postoperative Care

Abstract

Introduction

Postoperative complications are common issues that may arise from anesthetic drugs or surgical procedures. This study aimed to investigate the protective and therapeutic effects of ginsenosides on anesthesia-associated side effects and postoperative complications.

Methods

This study was conducted following the PRISMA 2020 guidelines. A comprehensive search was conducted across PubMed/MEDLINE, Scopus, Web of Science, Embase, and the Cochrane Library to identify relevant studies published prior to October 13, 2024. Predefined inclusion and exclusion criteria were applied, and duplicates were removed.

Results

Ginsenosides inhibit oxidative stress and enhance cognitive function by activating pathways such as phosphoinositide 3-kinase (PI3K)/Protein kinase B (PKB) (AKT)/glycogen synthase kinase-3 beta (GSK-3β), promoting neuroplasticity, alleviating oxidative stress, and modulating neuroinflammatory markers, as well as microglia and astrocytes. They help to maintain mitochondrial integrity, thereby reducing apoptosis and neurotoxicity caused by anesthetic agents. Ginsenosides also alleviate postoperative pain by modulating N-methyl-D-aspartate (NMDA) and suppressing inflammatory cytokines. They also improved neuropsychological problems by increasing Nerve Growth Factor (NGF) and Brain-Derived Neurotrophic Factor (BDNF). The anti-fatigue properties of ginsenosides are attributed to enhanced antioxidant activity, improved skeletal muscle metabolic function, and increased Adenosine Triphosphate (ATP) production.

Discussion

These results are consistent with prior studies demonstrating the neuroprotective effects of ginsenosides. Despite promising outcomes, the prevalence of animal studies and the absence of clinical data underscore the necessity for clinical validation and safety profiling in future research.

Conclusion

Preclinical evidence shows ginsenosides, particularly Rg1, Rb1, and Rg3, demonstrate promising protective and therapeutic effects against anesthesia-associated adverse effects and postoperative complications.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266404949251028045048
2026-01-22
2026-01-31
Loading full text...

Full text loading...

References

  1. Stephenson C. Mohabbat A. Raslau D. Gilman E. Wight E. Kashiwagi D. Management of common postoperative complications. Mayo Clin. Proc. 2020 95 11 2540 2554 10.1016/j.mayocp.2020.03.008 33153639
    [Google Scholar]
  2. Tevis S.E. Kennedy G.D. Postoperative complications and implications on patient-centered outcomes. J. Surg. Res. 2013 181 1 106 113 10.1016/j.jss.2013.01.032 23465392
    [Google Scholar]
  3. Downey C.L. Bainbridge J. Jayne D.G. Meads D.M. Impact of in-hospital postoperative complications on quality of life up to 12 months after major abdominal surgery. Br. J. Surg. 2023 110 9 1206 1212 10.1093/bjs/znad167 37335925
    [Google Scholar]
  4. Roach E. de la Maza L. Rieder S. Vigneswaran L. Maeda A. Okrainec A.D. Jackson T. Cost of postoperative complications after general surgery at a major Canadian academic centre. Int. J. Qual. Health Care 2022 34 4 mzac075 10.1093/intqhc/mzac075 36165353
    [Google Scholar]
  5. Dharap S.B. Barbaniya P. Navgale S. Incidence and risk factors of postoperative complications in general surgery patients. Cureus 2022 14 11 e30975 10.7759/cureus.30975 36465229
    [Google Scholar]
  6. Bilotta F. Evered L.A. Gruenbaum S.E. Neurotoxicity of anesthetic drugs. Curr. Opin. Anaesthesiol. 2017 30 4 452 457 10.1097/ACO.0000000000000482 28562386
    [Google Scholar]
  7. Sun M. Xu M. Sun J. Risk factor analysis of postoperative complications in patients undergoing emergency abdominal surgery. Heliyon 2023 9 3 e13971 10.1016/j.heliyon.2023.e13971 36950651
    [Google Scholar]
  8. Nikfarjam M. Parvin N. Assarzadegan N. Asghari S. The effects of lavandula angustifolia mill infusion on depression in patients using citalopram: A comparison study. Iran. Red Crescent Med. J. 2013 15 8 734 739 10.5812/ircmj.4173 24578844
    [Google Scholar]
  9. Parvin N. Farzane-Dehkordi S. Goudarzi I. Effects of portulaca oleracea l (purslane) on psychological symptoms of chronic schizophrenic patients in sina hospital. J. Mazandaran Univ. Med. Sci. 2013 22 97 2 10
    [Google Scholar]
  10. Parvin N. Nikfarjam M. Goudarzi I. Heidari S. Effect of Ginkgo biloba pill on patients with major depression treated with electroconvulsive therapy. J. Mazandaran Univ. Med. Sci. 2012 22 88 61 69
    [Google Scholar]
  11. Lü J.M. Yao Q. Chen C. Ginseng compounds: An update on their molecular mechanisms and medical applications. Curr. Vasc. Pharmacol. 2009 7 3 293 302 10.2174/157016109788340767 19601854
    [Google Scholar]
  12. Yoon E.J. Ahn J.W. Kim H.S. Choi Y. Jeong J. Joo S.S. Park D. Improvement of Cognitive Function by Fermented Panax ginseng C.A. Meyer Berries Extracts in an AF64A-Induced Memory Deficit Model. Nutrients 2023 15 15 3389 10.3390/nu15153389 37571326
    [Google Scholar]
  13. Ratan Z.A. Youn S.H. Kwak Y.S. Han C.K. Haidere M.F. Kim J.K. Min H. Jung Y.J. Hosseinzadeh H. Hyun S.H. Cho J.Y. Adaptogenic effects of Panax ginseng on modulation of immune functions. J. Ginseng Res. 2021 45 1 32 40 10.1016/j.jgr.2020.09.004 33437154
    [Google Scholar]
  14. Shi Z.Y. Zeng J.Z. Wong A.S.T. Chemical structures and pharmacological profiles of ginseng Saponins. Molecules 2019 24 13 2443 10.3390/molecules24132443 31277214
    [Google Scholar]
  15. Ratan Z.A. Haidere M.F. Hong Y.H. Park S.H. Lee J.O. Lee J. Cho J.Y. Pharmacological potential of ginseng and its major component ginsenosides. J. Ginseng Res. 2021 45 2 199 210 10.1016/j.jgr.2020.02.004 33841000
    [Google Scholar]
  16. Hooijmans C.R. Rovers M.M. de Vries R.B.M. Leenaars M. Ritskes-Hoitinga M. Langendam M.W. SYRCLE’s risk of bias tool for animal studies. BMC Med. Res. Methodol. 2014 14 1 43 10.1186/1471‑2288‑14‑43 24667063
    [Google Scholar]
  17. Tan S. Zhou F. Yu Z. Du L. Ye X. Zhang X. Dong Q. Zhang B. Hu L. [Study on characteristics of energy metabolism in skeletal muscle of rats with postoperative fatigue syndrome and interventional effect of ginsenoside Rb1 Zhongguo Zhongyao Zazhi 2011 36 24 3489 3493 22368863
    [Google Scholar]
  18. Tan S.J. Yu Z. Dong Q.T. Effects of ginsenoside Rb1 on the oxidative stress in the skeletal muscles of rats with postoperative fatigue syndrome Chung Kuo Chung Hsi I Chieh Ho Tsa Chih 2012 32 11 1535 1538 23359981
    [Google Scholar]
  19. Shin D.J. Yoon M.H. Lee H.G. Kim W.M. Park B.Y. Kim Y.O. Huang L.J. Cui J.H. The effect of treatment with intrathecal ginsenosides in a rat model of postoperative pain. Korean J. Pain 2007 20 2 100 105 10.3344/kjp.2007.20.2.100
    [Google Scholar]
  20. Wenwen G. Ya Z. Yinghua W. Repairing effects of ginsenoside RG1 on traumatic brain injury in mice. Lab. Anim. Comp Med. 2023 43 3 243
    [Google Scholar]
  21. Liu S. Improvement of ginsenoside Rb1 on inflammation of central nervous system in postoperative fatigue syndrome rats. Chin Tradit Herb Drugs 2015 2104 2110
    [Google Scholar]
  22. Liu C. Zhang X.N. Liu D. Min S. Effects of propofol, ginsenoside Rg-1, protein phosphatase-2a, and lithium on the learning and memory in rats and the content of glutamic acid in hippocampus after the electroconvulsive therapy. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2014 36 3 234 240 24997813
    [Google Scholar]
  23. Choi S.H. Kim M.K. Koo B.N. Min K.T. Effect of ginsenosides on the desflurane modulation in the recombinant serotonin type 3A receptor expressed in Xenopus laevis oocytes. Korean J. Anesthesiol. 2009 56 6 681 686 10.4097/kjae.2009.56.6.681 30625810
    [Google Scholar]
  24. Liu Q. Liu L. Liu H. Jiang J. Guo S. Wang C. Jia Y. Tian Y. Compound K attenuated hepatectomy-induced post-operative cognitive dysfunction in aged mice via LXRα activation. Biomed. Pharmacother. 2019 119 109400 10.1016/j.biopha.2019.109400 31514067
    [Google Scholar]
  25. Yu X.T. Wsp, Clinical observation on treatment for postoperative gastric cancer by ginsenoside Rg3 combined with chemotherapy. China J. Cancer Prev. Treat. 2010 17 10 779 781
    [Google Scholar]
  26. Xia Z. Liu X.Y. Zhan L. He Y. Luo T. Xia Z. Ginsenosides compound (shen-fu) attenuates gastrointestinal injury and inhibits inflammatory response after cardiopulmonary bypass in patients with congenital heart disease. J. Thorac. Cardiovasc. Surg. 2005 130 2 258 264 10.1016/j.jtcvs.2005.02.046 16077384
    [Google Scholar]
  27. Chang Y. Lai P.H. Wang C.C. Chen S.C. Chang W.C. Sung H.W. Mesothelium regeneration on acellular bovine pericardia loaded with an angiogenic agent (ginsenoside Rg1) successfully reduces postsurgical pericardial adhesions. J. Thorac. Cardiovasc. Surg. 2006 132 4 867 874.e3 10.1016/j.jtcvs.2006.06.029 17000299
    [Google Scholar]
  28. Li Y. Tang J. Khatibi N.H. Zhu M. Chen D. Tu L. Chen L. Wang S. Treatment with ginsenoside rb1, a component of panax ginseng, provides neuroprotection in rats subjected to subarachnoid hemorrhage-induced brain injury. Acta Neurochir. Suppl. 2011 110 Pt 2 75 79 10.1007/978‑3‑7091‑0356‑2_14 21125449
    [Google Scholar]
  29. Ye R. Kong X. Yang Q. Zhang Y. Han J. Li P. Xiong L. Zhao G. Ginsenoside rd in experimental stroke: Superior neuroprotective efficacy with a wide therapeutic window. Neurotherapeutics 2011 8 3 515 525 10.1007/s13311‑011‑0051‑3 21647765
    [Google Scholar]
  30. Kim I.J. Park C.H. Lee S.H. Yoon M.H. The role of spinal adrenergic receptors on the antinociception of ginsenosides in a rat postoperative pain model. Korean J. Anesthesiol. 2013 65 1 55 60 10.4097/kjae.2013.65.1.55 23904940
    [Google Scholar]
  31. Tan S. Zhou F. Li N. Dong Q. Zhang X. Ye X. Guo J. Chen B. Yu Z. Anti-fatigue effect of ginsenoside Rb1 on postoperative fatigue syndrome induced by major small intestinal resection in rat. Biol. Pharm. Bull. 2013 36 10 1634 1639 10.1248/bpb.b13‑00522 23924778
    [Google Scholar]
  32. Kim W.J. Kang H. Choi G.J. Shin H.Y. Baek C.W. Jung Y.H. Woo Y.C. Kim J.Y. Yon J.H. Antihyperalgesic effects of ginseng total saponins in a rat model of incisional pain. J. Surg. Res. 2014 187 1 169 175 10.1016/j.jss.2013.09.034 24555878
    [Google Scholar]
  33. Li H. Xu J. Wang X. Yuan G. Protective effect of ginsenoside Rg1 on lidocaine-induced apoptosis. Mol. Med. Rep. 2014 9 2 395 400 10.3892/mmr.2013.1822 24270314
    [Google Scholar]
  34. Tan S. Yu W. Lin Z. Chen Q. Shi J. Dong Y. Duan K. Bai X. Xu L. Li J. Li N. Anti-inflammatory effect of ginsenoside Rb1 contributes to the recovery of gastrointestinal motility in the rat model of postoperative ileus. Biol. Pharm. Bull. 2014 37 11 1788 1794 10.1248/bpb.b14‑00441 25177041
    [Google Scholar]
  35. Tan S.J. Li N. Zhou F. Dong Q.T. Zhang X.D. Chen B.C. Yu Z. Ginsenoside Rb1 improves energy metabolism in the skeletal muscle of an animal model of postoperative fatigue syndrome. J. Surg. Res. 2014 191 2 344 349 10.1016/j.jss.2014.04.042 24881470
    [Google Scholar]
  36. Zhuang C.L. Mao X.Y. Liu S. Chen W.Z. Huang D.D. Zhang C.J. Chen B.C. Shen X. Yu Z. Ginsenoside Rb1 improves postoperative fatigue syndrome by reducing skeletal muscle oxidative stress through activation of the PI3K/Akt/Nrf2 pathway in aged rats. Eur. J. Pharmacol. 2014 740 480 487 10.1016/j.ejphar.2014.06.040 24975098
    [Google Scholar]
  37. Chen W.Z. Liu S. Chen F.F. Zhou C.J. Yu J. Zhuang C.L. Shen X. Chen B.C. Yu Z. Prevention of postoperative fatigue syndrome in rat model by ginsenoside Rb1 via down-regulation of inflammation along the NMDA receptor pathway in the hippocampus. Biol. Pharm. Bull. 2015 38 2 239 247 10.1248/bpb.b14‑00599 25747983
    [Google Scholar]
  38. Miao H.H. Zhen Y. Ding G.N. Hong F.X. Xie Z.C. Tian M. Ginsenoside Rg1 Attenuates Isoflurane-induced Caspase-3 Activation via Inhibiting Mitochondrial Dysfunction. Biomed. Environ. Sci. 2015 28 2 116 126 25716562
    [Google Scholar]
  39. Ahn E.J. Choi G.J. Kang H. Baek C.W. Jung Y.H. Woo Y.C. Bang S.R. Antinociceptive effects of ginsenoside RG3 in a rat model of incisional pain. Eur. Surg. Res. 2016 57 3-4 211 223 10.1159/000448001 27441690
    [Google Scholar]
  40. Liu M.Y. Ren Y.P. Zhang L.J. Ding J.Y. Pretreatment with ginseng fruit saponins affects serotonin expression in an experimental comorbidity model of myocardial infarction and depression. Aging Dis. 2016 7 6 680 686 10.14336/AD.2016.0729 28053817
    [Google Scholar]
  41. Zhang Y. Zhang Z. Wang H. Cai N. Zhou S. Zhao Y. Chen X. Zheng S. Si Q. Zhang W. Neuroprotective effect of ginsenoside Rg1 prevents cognitive impairment induced by isoflurane anesthesia in aged rats via antioxidant, anti-inflammatory and anti-apoptotic effects mediated by the PI3K/AKT/GSK-3β pathway. Mol. Med. Rep. 2016 14 3 2778 2784 10.3892/mmr.2016.5556 27485139
    [Google Scholar]
  42. Miao H.H. Zhang Y. Ding G.N. Hong F.X. Dong P. Tian M. Ginsenoside Rb1 attenuates isoflurane/surgery-induced cognitive dysfunction via inhibiting neuroinflammation and oxidative stress. Biomed. Environ. Sci. 2017 30 5 363 372 28549492
    [Google Scholar]
  43. Kim M.K. Kang H. Baek C.W. Jung Y.H. Woo Y.C. Choi G.J. Shin H.Y. Kim K.S. Antinociceptive and anti-inflammatory effects of ginsenoside Rf in a rat model of incisional pain. J. Ginseng Res. 2018 42 2 183 191 10.1016/j.jgr.2017.02.005 29719465
    [Google Scholar]
  44. Yang Q.Y. Lai X.D. Ouyang J. Yang J.D. Effects of Ginsenoside Rg3 on fatigue resistance and SIRT1 in aged rats. Toxicology 2018 409 144 151 10.1016/j.tox.2018.08.010 30144466
    [Google Scholar]
  45. Li Y. Chen C. Li S. Jiang C. Ginsenoside R f relieves mechanical hypersensitivity, depression‐like behavior, and inflammatory reactions in chronic constriction injury rats. Phytother. Res. 2019 33 4 1095 1103 10.1002/ptr.6303 30740801
    [Google Scholar]
  46. Miao H.H. Wang M. Wang H.X. Tian M. Xue F.S. Ginsenoside Rg1 attenuates isoflurane/surgery-induced cognitive disorders and sirtuin 3 dysfunction. Biosci. Rep. 2019 39 10 BSR20190069 10.1042/BSR20190069 31652451
    [Google Scholar]
  47. Qiu R. Li J. Sun D. Li H. Qian F. Wang L. 20(S)-Ginsenoside Rg3-loaded electrospun membranes to prevent postoperative peritoneal adhesion. Biomed. Microdevices 2019 21 4 78 10.1007/s10544‑019‑0425‑6 31414228
    [Google Scholar]
  48. Liu S. Cheng Y. Chen W.Z. Lv J.X. Zheng B.S. Huang D.D. Xia X.F. Yu Z. Inflammation Disturbed the Tryptophan Catabolites in Hippocampus of Post-operative Fatigue Syndrome Rats via Indoleamine 2,3-Dioxygenas Enzyme and the Improvement Effect of Ginsenoside Rb1. Front. Neurosci. 2021 15 652817 10.3389/fnins.2021.652817 34512234
    [Google Scholar]
  49. Wang M. Liu H. Xu L. Li M. Zhao M. The protective effect of notoginsenoside r1 on isoflurane-induced neurological Impairment in the Rats via Regulating miR-29a Expression and Neuroinflammation. Neuroimmunomodulation 2022 29 1 70 76 10.1159/000518215 34515180
    [Google Scholar]
  50. Xu Z.L. Chen G. Liu X. Xie D. Zhang J. Ying Y. Effects of ginsenosides on memory impairment in propofol-anesthetized rats. Bioengineered 2022 13 1 617 623 10.1080/21655979.2021.2012407 34964700
    [Google Scholar]
  51. Huang Y. Yang D. Liao S. Guan X. Zhou F. Liu Y. Wang Y. Zhang Y. Ginsenoside Rg1 protects the blood-brain barrier and myelin sheath to prevent postoperative cognitive dysfunction in aged mice. Neuroreport 2024 35 14 925 935 10.1097/WNR.0000000000002083 39166417
    [Google Scholar]
  52. Lin J. Gang L. Wen L. Zi H.Y. Xia S. 20(S)-Ginsenoside Rh1 alleviates sevoflurane-induced ototoxicity by reducing oxidative stress levels. Neuroreport 2024 35 3 152 159 10.1097/WNR.0000000000001990 38141010
    [Google Scholar]
  53. Wang H. Liu Y. Cui M. Guo Z. Zhao Y. Yang J. Wu C. Pseudoginsenoside-F11 reduces cognitive impairment and white matter injury in vascular dementia by alleviating autophagy-lysosomal pathway deficiency. Phytomedicine 2024 133 155883 10.1016/j.phymed.2024.155883 39059268
    [Google Scholar]
  54. Yang Y. Wu J. Feng S. Yu H. Liu C. Wang S. Notoginsenoside R1 attenuates bupivacaine induced neurotoxicity by activating Jak1/Stat3/Mcl1 pathway. Toxicology 2024 503 153740 10.1016/j.tox.2024.153740 38316350
    [Google Scholar]
  55. Ginsenosides 2004 Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Ginsenosides
  56. Piao X.M. Huo Y. Kang J.P. Mathiyalagan R. Zhang H. Yang D.U. Kim M. Yang D.C. Kang S.C. Wang Y.P. Diversity of ginsenoside profiles produced by various processing technologies. Molecules 2020 25 19 4390 10.3390/molecules25194390 32987784
    [Google Scholar]
  57. Hou M. Wang R. Zhao S. Wang Z. Ginsenosides in Panax genus and their biosynthesis. Acta Pharm. Sin. B 2021 11 7 1813 1834 10.1016/j.apsb.2020.12.017 34386322
    [Google Scholar]
  58. Fodale V. Tripodi V.F. Penna O. Famà F. Squadrito F. Mondello E. David A. An update on anesthetics and impact on the brain. Expert Opin. Drug Saf. 2017 16 9 997 1008 10.1080/14740338.2017.1351539 28697315
    [Google Scholar]
  59. Maloney S.E. Creeley C.E. Hartman R.E. Yuede C.M. Zorumski C.F. Jevtovic-Todorovic V. Dikranian K. Noguchi K.K. Farber N.B. Wozniak D.F. Using animal models to evaluate the functional consequences of anesthesia during early neurodevelopment. Neurobiol. Learn. Mem. 2019 165 106834 10.1016/j.nlm.2018.03.014 29550366
    [Google Scholar]
  60. Wen J. Li Z. Zuo Z. Postoperative learning and memory dysfunction is more severe in males but is not persistent and transmittable to next generation in young adult rats. J. Neurosurg. Anesthesiol. 2023 35 4 429 437 10.1097/ANA.0000000000000856 35605917
    [Google Scholar]
  61. Brodier E.A. Cibelli M. Postoperative cognitive dysfunction in clinical practice. BJA Educ. 2021 21 2 75 82 10.1016/j.bjae.2020.10.004 33889433
    [Google Scholar]
  62. Kennedy D.O. Phytochemicals for improving aspects of cognitive function and psychological state potentially relevant to sports performance. Sports Med 2019 49 S1 39 58 Suppl 1 10.1007/s40279‑018‑1007‑0 30671903
    [Google Scholar]
  63. Varpaei H.A. Farhadi K. Mohammadi M. Khafaee pour khamseh, A.; Mokhtari, T. Postoperative cognitive dysfunction: A concept analysis. Aging Clin. Exp. Res. 2024 36 1 133 10.1007/s40520‑024‑02779‑7 38902462
    [Google Scholar]
  64. Ntalouka M.P. Arnaoutoglou E. Tzimas P. Postoperative cognitive disorders: An update. Hippokratia 2018 22 4 147 154 31695301
    [Google Scholar]
  65. Afzal S. Abdul Manap A.S. Attiq A. Albokhadaim I. Kandeel M. Alhojaily S.M. From imbalance to impairment: The central role of reactive oxygen species in oxidative stress-induced disorders and therapeutic exploration. Front. Pharmacol. 2023 14 1269581 10.3389/fphar.2023.1269581 37927596
    [Google Scholar]
  66. Naomi R. Yazid M.D. Teoh S.H. Balan S.S. Shariff H. Kumar J. Bahari H. Embong H. Dietary polyphenols as a protection against cognitive decline: Evidence from animal experiments; mechanisms and limitations. Antioxidants 2023 12 5 1054 10.3390/antiox12051054 37237920
    [Google Scholar]
  67. Ahmad M.A. Kareem O. Khushtar M. Akbar M. Haque M.R. Iqubal A. Haider M.F. Pottoo F.H. Abdulla F.S. Al-Haidar M.B. Alhajri N. Neuroinflammation: A Potential Risk for Dementia. Int. J. Mol. Sci. 2022 23 2 616 10.3390/ijms23020616 35054805
    [Google Scholar]
  68. Hogarth K. Tarazi D. Maynes J.T. The effects of general anesthetics on mitochondrial structure and function in the developing brain. Front. Neurol. 2023 14 1179823 10.3389/fneur.2023.1179823 37533472
    [Google Scholar]
  69. Yang Y. Hang W. Li J. Liu T. Hu Y. Fang F. Yan D. McQuillan P.M. Wang M. Hu Z. Effect of general anesthetic agents on microglia. Aging Dis. 2024 15 3 1308 1328 37962460
    [Google Scholar]
  70. Lei X. Guo Q. Zhang J. Mechanistic insights into neurotoxicity induced by anesthetics in the developing brain. Int. J. Mol. Sci. 2012 13 6 6772 6799 10.3390/ijms13066772 22837663
    [Google Scholar]
  71. Perouansky M. Hemmings H.C. Riou B. Neurotoxicity of general anesthetics: Cause for concern? Anesthesiology 2009 111 6 1365 1371 10.1097/ALN.0b013e3181bf1d61 19934883
    [Google Scholar]
  72. Park R. Mohiuddin M. Arellano R. Pogatzki-Zahn E. Klar G. Gilron I. Prevalence of postoperative pain after hospital discharge: Systematic review and meta-analysis. Pain Rep. 2023 8 3 e1075 10.1097/PR9.0000000000001075 37181639
    [Google Scholar]
  73. Rafiei H. Esmaeli Abdar M. Lalegani H. Iranian nurses’ knowledge of pain management in elderly patients. J. Educ. Res. Nurs. 2014 11 1 25 29
    [Google Scholar]
  74. Lalegani H. Esmaili S. Safdari A. The effects of breathing techniques on pain intensity of burn dressing-A clinical randomized trial. J. Multidiscip. Care 2014 2 4 61 68
    [Google Scholar]
  75. Lalehgani H. Esmaili S. Karimi M. Moghni M. Jivad N. The effect of deep-slow and regular breathing on pain intensity of burn dressing. Iran J. Crit. Care Nurs. 2013 6 4 229 234
    [Google Scholar]
  76. Khan J.S. Sessler D.I. Chan M.T.V. Wang C.Y. Garutti I. Szczeklik W. Turan A. Busse J.W. Buckley D.N. Paul J. McGillion M. Fernández-Riveira C. Srinathan S.K. Shanthanna H. Gilron I. Jacka M. Jackson P. Hankinson J. Paniagua P. Pettit S. Devereaux P.J. Persistent incisional pain after noncardiac surgery: An international prospective cohort study. Anesthesiology 2021 135 4 711 723 10.1097/ALN.0000000000003951 34499129
    [Google Scholar]
  77. Shubayev V.I. Kato K. Myers R.R. Cytokines in Pain. Translational Pain Research: From Mouse to Man. Kruger L. Light A.R. Boca Raton, FL 2010
    [Google Scholar]
  78. Mak T.W. Saunders M.E. Jett, BD Primer to The Immune Response, 2nd. Academic Cell 2014 1 674
    [Google Scholar]
  79. Margraf A. Ludwig N. Zarbock A. Rossaint J. Systemic inflammatory response syndrome after surgery: Mechanisms and protection. Anesth. Analg. 2020 131 6 1693 1707 10.1213/ANE.0000000000005175 33186158
    [Google Scholar]
  80. Shavit Y. Fridel K. Beilin B. Postoperative pain management and proinflammatory cytokines: Animal and human studies. J. Neuroimmune Pharmacol. 2006 1 4 443 451 10.1007/s11481‑006‑9043‑1 18040817
    [Google Scholar]
  81. Brennan T.J. Pathophysiology of postoperative pain. Pain 2011 152 3 S33 S40 [Suppl. 10.1016/j.pain.2010.11.005 21232860
    [Google Scholar]
  82. Iyengar S. Ossipov M.H. Johnson K.W. The role of calcitonin gene-related peptide in peripheral and central pain mechanisms including migraine. Pain 2017 158 4 543 559 10.1097/j.pain.0000000000000831 28301400
    [Google Scholar]
  83. Deng M. Chen S.R. Pan H.L. Presynaptic NMDA receptors control nociceptive transmission at the spinal cord level in neuropathic pain. Cell. Mol. Life Sci. 2019 76 10 1889 1899 10.1007/s00018‑019‑03047‑y 30788514
    [Google Scholar]
  84. Pogatzki-Zahn E.M. Segelcke D. Schug S.A. Postoperative pain—from mechanisms to treatment. Pain Rep. 2017 2 2 e588 10.1097/PR9.0000000000000588 29392204
    [Google Scholar]
  85. Mendy N. Moriceau J. Sacuto Y. Besnier E. Clavier T. Ndangang M.M. Castel H. Dureuil B. Compère V. Postoperative fatigue after day surgery: Prevalence and risk factors. A prospective observational study. Minerva Anestesiol. 2020 86 12 1269 1276 10.23736/S0375‑9393.20.14358‑X 32755085
    [Google Scholar]
  86. Oliveira M. Oliveira G. Souza-Talarico J. Mota D. Surgical oncology: Evolution of postoperative fatigue and factors related to its severity. Clin. J. Oncol. Nurs. 2016 20 1 E3 E8 10.1188/16.CJON.E3‑E8 26800419
    [Google Scholar]
  87. Salmon P. Hall G.M. A theory of postoperative fatigue. J. R. Soc. Med. 1997 90 12 661 664 10.1177/014107689709001207 9496290
    [Google Scholar]
  88. Lee J.S. Kim H.G. Lee D.S. Son C.G. Oxidative stress is a convincing contributor to idiopathic chronic fatigue. Sci. Rep. 2018 8 1 12890 10.1038/s41598‑018‑31270‑3 30150620
    [Google Scholar]
  89. Buchanan L. Tuma F. Postoperative Ileus. StatPearls. Treasure Island, FL StatPearls Publishing 2024
    [Google Scholar]
  90. Khawaja Z.H. Gendia A. Adnan N. Ahmed J. Prevention and management of postoperative ileus: A review of current practice. Cureus 2022 14 2 e22652 10.7759/cureus.22652 35371753
    [Google Scholar]
  91. Aboshama R.A. Taha O.T. Abdel Halim H.W. Elrehim E.I.A. Kamal S.H.M. ElSherbiny A.M. Magdy H.A. Albayadi E. Elsaid R.E. Abdelghany A.M. Anan M.A. Abdelfattah L.E. Prevalence and risk factor of postoperative adhesions following repeated cesarean section: A prospective cohort study. Int. J. Gynaecol. Obstet. 2023 161 1 234 240 10.1002/ijgo.14498 36200671
    [Google Scholar]
  92. Fatehi Hassanabad A. Zarzycki A.N. Jeon K. Deniset J.F. Fedak P.W.M. Post-Operative adhesions: A comprehensive review of mechanisms. Biomedicines 2021 9 8 867 10.3390/biomedicines9080867 34440071
    [Google Scholar]
  93. Choi M.K. Jin S. Jeon J.H. Kang W.Y. Seong S.J. Yoon Y.R. Han Y.H. Song I.S. Tolerability and pharmacokinetics of ginsenosides Rb1, Rb2, Rc, Rd, and compound K after single or multiple administration of red ginseng extract in human beings. J. Ginseng Res. 2020 44 2 229 237 10.1016/j.jgr.2018.10.006 32148404
    [Google Scholar]
  94. Gillis C.N. Panax ginseng pharmacology: A nitric oxide link? Biochem. Pharmacol. 1997 54 1 1 8 10.1016/S0006‑2952(97)00193‑7 9296344
    [Google Scholar]
  95. Leung K.W. Cheng Y.K. Mak N.K. Chan K.K.C. David Fan T.P. Wong R.N.S. Signaling pathway of ginsenoside‐Rg1 leading to nitric oxide production in endothelial cells. FEBS Lett. 2006 580 13 3211 3216 10.1016/j.febslet.2006.04.080 16696977
    [Google Scholar]
  96. Siegel R.K. Ginseng abuse syndrome. Problems with the panacea. JAMA 1979 241 15 1614 1615 10.1001/jama.1979.03290410046024 430716
    [Google Scholar]
  97. Jovanovski E. Bateman E.A. Bhardwaj J. Fairgrieve C. Mucalo I. Jenkins A.L. Vuksan V. Effect of Rg3-enriched Korean red ginseng (Panax ginseng) on arterial stiffness and blood pressure in healthy individuals: A randomized controlled trial. J. Am. Soc. Hypertens. 2014 8 8 537 541 10.1016/j.jash.2014.04.004 24997863
    [Google Scholar]
  98. Zeng Z. Wang H. Yi R. Lou J. Wen S. Hu Z. Gut microbiome and metabolome in aneurysm rat with hypertension after ginsenoside Rb1 treatment. Front. Pharmacol. 2023 14 1287711 10.3389/fphar.2023.1287711 38074114
    [Google Scholar]
  99. Song S.W. Kim H.N. Shim J.Y. Yoo B.Y. Kim D.H. Lee S.H. Park J.S. Kim M.J. Yoo J.H. Cho B. Kang H.C. Kim K.M. Kim S.S. Kim K.S. Safety and tolerability of Korean Red Ginseng in healthy adults: A multicenter, double-blind, randomized, placebo-controlled trial. J. Ginseng Res. 2018 42 4 571 576 10.1016/j.jgr.2018.07.002 30337818
    [Google Scholar]
  100. Jia L. Zhao Y. Liang X.J. Current evaluation of the millennium phytomedicine- ginseng (II): Collected chemical entities, modern pharmacology, and clinical applications emanated from traditional Chinese medicine. Curr. Med. Chem. 2009 16 22 2924 2942 10.2174/092986709788803204 19689273
    [Google Scholar]
  101. Cao Y. Tao F. Yu Y. Song L. Zhang R. Feng J. Zhai Q. Xue P. Safety evaluation of rare ginsenosides of stems and leaves from American ginseng: 90-day exposure toxicity study combined with intestinal flora analysis and metabonomics in rats. Ecotoxicol. Environ. Saf. 2023 264 115429 10.1016/j.ecoenv.2023.115429 37660532
    [Google Scholar]
  102. Liu Y. Zhang J.W. Li W. Ma H. Sun J. Deng M.C. Yang L. Ginsenoside metabolites, rather than naturally occurring ginsenosides, lead to inhibition of human cytochrome P450 enzymes. Toxicol. Sci. 2006 91 2 356 364 10.1093/toxsci/kfj164 16547074
    [Google Scholar]
  103. Van Booven D. Marsh S. McLeod H. Carrillo M.W. Sangkuhl K. Klein T.E. Altman R.B. Cytochrome P450 2C9-CYP2C9. Pharmacogenet. Genomics 2010 20 4 277 281 10.1097/FPC.0b013e3283349e84 20150829
    [Google Scholar]
  104. Bansal A.B. Cassagnol M. HMG-CoA Reductase Inhibitors. StatPearls. Treasure Island, FL StatPearls Publishing 2024
    [Google Scholar]
  105. Miners J.O. Birkett D.J. Cytochrome P4502C9: An enzyme of major importance in human drug metabolism. Br. J. Clin. Pharmacol. 1998 45 6 525 538 10.1046/j.1365‑2125.1998.00721.x 9663807
    [Google Scholar]
  106. Zhao T. Chen X. Yu H. Du J. Wang D. Wang C. Meng Q. Sun H. Liu K. Wu J. Unraveling the structure-dependent inhibitory effects of ginsenoside series compounds on human cytochrome P450 1B1. Curr. Drug Metab. 2022 23 7 553 561 10.2174/1389200223666220601102629 35652395
    [Google Scholar]
  107. Ben-Eltriki M. Shankar G. Tomlinson Guns E.S. Deb S. Pharmacokinetics and pharmacodynamics of Rh2 and aPPD ginsenosides in prostate cancer: A drug interaction perspective. Cancer Chemother. Pharmacol. 2023 92 6 419 437 10.1007/s00280‑023‑04583‑y 37709921
    [Google Scholar]
  108. Zheng Y.F. Bae S.H. Choi E.J. Park J.B. Kim S.O. Jang M.J. Park G.H. Shin W.G. Oh E. Bae S.K. Evaluation of the in vitro/in vivo drug interaction potential of BST204, a purified dry extract of ginseng, and its four bioactive ginsenosides through cytochrome P450 inhibition/induction and UDP-glucuronosyltransferase inhibition. Food Chem. Toxicol. 2014 68 117 127 10.1016/j.fct.2014.03.004 24632066
    [Google Scholar]
  109. Lin J.F. Fan L.L. Li B.W. Zhao R.R. Jiang L.G. Zhang B.C. Lu Y.S. Shao J.W. A study to evaluate herb-drug interaction underlying mechanisms: An investigation of ginsenosides attenuating the effect of warfarin on cardiovascular diseases. Eur. J. Pharm. Sci. 2020 142 105100 10.1016/j.ejps.2019.105100 31669385
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266404949251028045048
Loading
/content/journals/ctmc/10.2174/0115680266404949251028045048
Loading

Data & Media loading...

Supplements

PRISMA Checklist is available on the publisher's website along with the published article.


  • Article Type:
    Review Article
Keywords: Pain ; Anesthetic ; Fatigue ; Postoperative cognitive complications ; Ginsenosides ; Surgery
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test