Skip to content
2000
image of Betanin: A Natural Phytomolecule for the Intervention of Neurological Disorders

Abstract

Betanin is widely consumed around the globe either as beetroot directly or as one of the key ingredients in food and pharmaceutical preparations. The health benefits of Betanin, including the treatment of numerous neurological diseases and brain cancer, have been reported extensively. Betanin has gained global attention due to notable anti-inflammatory, antioxidant, and anti-cancer activities. Recently, there has been growing attention on the usage of Betanin to prevent or delay the onset of neurodegenerative disorders. This review recapitulates available information from various recent pre-clinical studies on Betanin in several neurological diseases, such as Parkinson's disease, Alzheimer's disease, aging, brain stroke, anxiety, and neuropathic pain. Betanin exhibits remarkable neuroprotective effects activation of the Nrf2 signaling pathway, inhibition of the production and expression of pro-inflammatory mediators and reactive oxygen species, along with suppression of the NF-κB signaling pathway. Taking betanin as part of a healthy diet may aid in the management of various brain-related disorders. This review focuses on the neurological conditions for which betanin has shown therapeutic potential, highlighting its beneficial properties, cellular and molecular mechanisms of action, and its relevance in light of current research. Based on the available evidence, betanin could be considered a promising candidate and lead compound in the drug development process for the prevention, treatment, and management of several neurological disorders in the future.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266398457251014040532
2026-01-08
2026-01-31
Loading full text...

Full text loading...

References

  1. Gorji A. Neuroinflammation: The pathogenic mechanism of neurological disorders. Int. J. Mol. Sci. 2022 23 10 5744 10.3390/ijms23105744 35628553
    [Google Scholar]
  2. Kola S. LaFaver K. Functional movement disorder and functional seizures: What have we learned from different subtypes of functional neurological disorders? Epilepsy Behav. Rep. 2022 18 100510 10.1016/j.ebr.2021.100510 35198951
    [Google Scholar]
  3. Varshney V. Kumar A. Parashar V. Kumar A. Goyal A. Garabadu D. Therapeutic potential of capsaicin in various neurodegenerative diseases with special focus on Nrf2 signaling. Curr. Pharm. Biotechnol. 2024 25 13 1693 1707 10.2174/0113892010277933231122111244 38173062
    [Google Scholar]
  4. Feigin V.L. Vos T. Nichols E. Owolabi M.O. Carroll W.M. Dichgans M. Deuschl G. Parmar P. Brainin M. Murray C. The global burden of neurological disorders: Translating evidence into policy. Lancet Neurol. 2020 19 3 255 265 10.1016/S1474‑4422(19)30411‑9 31813850
    [Google Scholar]
  5. Picca A. Calvani R. Coelho-Junior H.J. Landi F. Bernabei R. Marzetti E. Mitochondrial dysfunction, oxidative stress, and neuroinflammation: Intertwined roads to neurodegeneration. Antioxidants 2020 9 8 647 10.3390/antiox9080647 32707949
    [Google Scholar]
  6. Mishra A. Bandopadhyay R. Singh P.K. Mishra P.S. Sharma N. Khurana N. Neuroinflammation in neurological disorders: Pharmacotherapeutic targets from bench to bedside. Metab. Brain Dis. 2021 36 7 1591 1626 10.1007/s11011‑021‑00806‑4 34387831
    [Google Scholar]
  7. Howard R. McShane R. Lindesay J. Ritchie C. Baldwin A. Barber R. Burns A. Dening T. Findlay D. Holmes C. Hughes A. Jacoby R. Jones R. Jones R. McKeith I. Macharouthu A. O’Brien J. Passmore P. Sheehan B. Juszczak E. Katona C. Hills R. Knapp M. Ballard C. Brown R. Banerjee S. Onions C. Griffin M. Adams J. Gray R. Johnson T. Bentham P. Phillips P. Donepezil and memantine for moderate-to-severe Alzheimer’s disease. N. Engl. J. Med. 2012 366 10 893 903 10.1056/NEJMoa1106668 22397651
    [Google Scholar]
  8. Bago Rožanković P. Rožanković M. Badžak J. Stojić M. Šušak Sporiš I. Impact of donepezil and memantine on behavioral and psychological symptoms of Alzheimer disease: Six-month open-label study. Cogn. Behav. Neurol. 2021 34 4 288 294 10.1097/WNN.0000000000000285 34851866
    [Google Scholar]
  9. Samia K. Rohit B. Cerebral pseudoatrophy or real atrophy after therapy in multiple sclerosis. Ann. Neurol. 2010 68 6 778 779 10.1002/ana.22254 21194148
    [Google Scholar]
  10. Lushchak V.I. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem. Biol. Interact. 2014 224 164 175 10.1016/j.cbi.2014.10.016 25452175
    [Google Scholar]
  11. Jones D.P. Redefining oxidative stress. Antioxid. Redox Signal. 2006 8 9-10 1865 1879 10.1089/ars.2006.8.1865 16987039
    [Google Scholar]
  12. Uttara B. Singh A. Zamboni P. Mahajan R. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol. 2009 7 1 65 74 10.2174/157015909787602823 19721819
    [Google Scholar]
  13. Rasool M. Malik A. Qureshi M.S. Manan A. Pushparaj P.N. Asif M. Qazi M.H. Qazi A.M. Kamal M.A. Gan S.H. Sheikh I.A. Recent updates in the treatment of neurodegenerative disorders using natural compounds. Evid. Based Complement. Alternat. Med. 2014 2014 1 979730 10.1155/2014/979730 24864161
    [Google Scholar]
  14. Andersen J.K. Oxidative stress in neurodegeneration: Cause or consequence? Nat. Med. 2004 10 S7 S18 S25 10.1038/nrn1434 15298006
    [Google Scholar]
  15. Solanki I. Parihar P. Parihar M.S. Neurodegenerative diseases: From available treatments to prospective herbal therapy. Neurochem. Int. 2016 95 100 108 10.1016/j.neuint.2015.11.001 26550708
    [Google Scholar]
  16. Mottay D. Neergheen-Bhujun V.S. Anticholinesterase and antioxidant effects of traditional herbal medicines used in the management of neurodegenerative diseases. Arch. Med. Biomed. Res. 2016 2 4 114 130 10.4314/ambr.v2i4.2
    [Google Scholar]
  17. Furlan V. Konc J. Bren U. Inverse molecular docking as a novel approach to study anticarcinogenic and anti-neuroinflammatory effects of curcumin. Molecules 2018 23 12 3351 10.3390/molecules23123351 30567342
    [Google Scholar]
  18. Thong-asa W. Prasartsri S. Klomkleaw N. Thongwan N. The neuroprotective effect of betanin in trimethyltin-induced neurodegeneration in mice. Metab. Brain Dis. 2020 35 8 1395 1405 10.1007/s11011‑020‑00615‑1 32894390
    [Google Scholar]
  19. Amjadi S. Ghorbani M. Hamishehkar H. Roufegarinejad L. Improvement in the stability of betanin by liposomal nanocarriers: Its application in gummy candy as a food model. Food Chem. 2018 256 156 162 10.1016/j.foodchem.2018.02.114 29606432
    [Google Scholar]
  20. Sadowska-Bartosz I. Bartosz G. Biological properties and applications of betalains. Molecules 2021 26 9 2520 10.3390/molecules26092520 33925891
    [Google Scholar]
  21. Vieira Teixeira da Silva D. Dos Santos Baião D. de Oliveira Silva F. Alves G. Perrone D. Mere Del Aguila E. M Flosi Paschoalin, V. Betanin, a natural food additive: Stability, bioavailability, antioxidant and preservative ability assessments. Molecules 2019 24 3 458 10.3390/molecules24030458 30696032
    [Google Scholar]
  22. Khan M.I. Plant betalains: Safety, antioxidant activity, clinical efficacy, and bioavailability. Compr. Rev. Food Sci. Food Saf. 2016 15 2 316 330 10.1111/1541‑4337.12185 33371594
    [Google Scholar]
  23. Kanner J. Harel S. Granit R. Betalains--a new class of dietary cationized antioxidants. J. Agric. Food Chem. 2001 49 11 5178 5185 10.1021/jf010456f 11714300
    [Google Scholar]
  24. Coles L.T. Clifton P.M. Effect of beetroot juice on lowering blood pressure in free-living, disease-free adults: A randomized, placebo-controlled trial. Nutr. J. 2012 11 1 106 10.1186/1475‑2891‑11‑106 23231777
    [Google Scholar]
  25. Hadipour E. Fereidoni M. Tayarani-Najaran Z. Betanin attenuates oxidative stress induced by 6-OHDA in PC12 cells via SAPK/JNK and PI3K pathways. Neurochem. Res. 2020 45 2 395 403 10.1007/s11064‑019‑02927‑w 31858376
    [Google Scholar]
  26. Clifford T. Howatson G. West D. Stevenson E. The potential benefits of red beetroot supplementation in health and disease. Nutrients 2015 7 4 2801 2822 10.3390/nu7042801 25875121
    [Google Scholar]
  27. Tural K. Ozden O. Bilgi Z. Kubat E. Ermutlu C.S. Merhan O. Tasoglu I. The protective effect of betanin and copper on spinal cord ischemia–reperfusion injury. J. Spinal Cord Med. 2021 44 5 704 710 10.1080/10790268.2020.1737788 32223592
    [Google Scholar]
  28. Tian Y.S. Fu X.Y. Yang Z.Q. Wang B. Gao J.J. Wang M.Q. Xu J. Han H.J. Li Z.J. Yao Q.H. Peng R.H. Metabolic engineering of rice endosperm for betanin biosynthesis. New Phytol. 2020 225 5 1915 1922 10.1111/nph.16323 31737907
    [Google Scholar]
  29. Smeriglio A. Bonasera S. Germanò M.P. D’Angelo V. Barreca D. Denaro M. Monforte M.T. Galati E.M. Trombetta D. Opuntia ficus‐indica (L.) Mill. fruit as source of betalains with antioxidant, cytoprotective, and anti‐angiogenic properties. Phytother. Res. 2019 33 5 1526 1537 10.1002/ptr.6345 30907039
    [Google Scholar]
  30. Ahmadi H. Nayeri Z. Minuchehr Z. Sabouni F. Mohammadi M. Betanin purification from red beetroots and evaluation of its anti-oxidant and anti-inflammatory activity on LPS-activated microglial cells. PLoS One 2020 15 5 e0233088 10.1371/journal.pone.0233088 32401824
    [Google Scholar]
  31. Pulido-Hornedo N.A. Ventura-Juárez J. Guevara-Lara F. González-Ponce H.A. Sánchez-Alemán E. Buist-Homan M. Moshage H. Martínez-Saldaña M.C. Hepatoprotective effect of Opuntia robusta fruit biocomponents in a rat model of thioacetamide-induced liver fibrosis. Plants 2022 11 15 2039 10.3390/plants11152039 35956519
    [Google Scholar]
  32. Taghvaei S. Sabouni F. Minuchehr Z. Taghvaei A. Identification of novel anti-cancer agents, applying in silico method for SENP1 protease inhibition. J. Biomol. Struct. Dyn. 2022 40 14 6228 6242 10.1080/07391102.2021.1880480 33533323
    [Google Scholar]
  33. Abedimanesh N. Asghari S. Mohammadnejad K. Daneshvar Z. Rahmani S. Shokoohi S. Farzaneh A.H. Hosseini S.H. Jafari Anarkooli I. Noubarani M. Andalib S. Eskandari M.R. Motlagh B. The anti-diabetic effects of betanin in streptozotocin-induced diabetic rats through modulating AMPK/SIRT1/NF-κB signaling pathway. Nutr. Metab. 2021 18 1 92 10.1186/s12986‑021‑00621‑9 34656137
    [Google Scholar]
  34. Spórna-Kucab A. Bernaś K. Grzegorczyk A. Malm A. Skalicka-Woźniak K. Wybraniec S. Liquid chromatographic techniques in betacyanin isomers separation from Gomphrena globosa L. flowers for the determination of their antimicrobial activities. J. Pharm. Biomed. Anal. 2018 161 83 93 10.1016/j.jpba.2018.08.025 30145453
    [Google Scholar]
  35. Lu X. Wang Y. Zhang Z. Radioprotective activity of betalains from red beets in mice exposed to gamma irradiation. Eur. J. Pharmacol. 2009 615 1-3 223 227 10.1016/j.ejphar.2009.04.064 19446548
    [Google Scholar]
  36. Kwankaew N. Okuda H. Aye-Mon A. Ishikawa T. Hori K. Sonthi P. Kozakai Y. Ozaki N. Antihypersensitivity effect of betanin (red beetroot extract) via modulation of microglial activation in a mouse model of neuropathic pain. Eur. J. Pain 2021 25 8 1788 1803 10.1002/ejp.1790 33961320
    [Google Scholar]
  37. Stefaniak O. Dobrzyńska M. Drzymała-Czyż S. Przysławski J. Diet in the prevention of Alzheimer’s disease: Current knowledge and future research requirements. Nutrients 2022 14 21 4564 10.3390/nu14214564 36364826
    [Google Scholar]
  38. Mantzavinos V. Alexiou A. Biomarkers for Alzheimer’s disease diagnosis. Curr. Alzheimer Res. 2017 14 11 1149 1154 10.2174/1567205014666170203125942 28164766
    [Google Scholar]
  39. Jack C.R. Bennett D.A. Blennow K. Carrillo M.C. Dunn B. Haeberlein S.B. Holtzman D.M. Jagust W. Jessen F. Karlawish J. Liu E. Molinuevo J.L. Montine T. Phelps C. Rankin K.P. Rowe C.C. Scheltens P. Siemers E. Snyder H.M. Sperling R. Elliott C. Masliah E. Ryan L. Silverberg N. NIA‐AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018 14 4 535 562 10.1016/j.jalz.2018.02.018 29653606
    [Google Scholar]
  40. Goyal A. Dubey N. Verma A. Agrawal A. Erucic acid: A possible therapeutic agent for neurodegenerative diseases. Curr. Mol. Med. 2024 24 4 419 427 10.2174/1566524023666230509123536 37165502
    [Google Scholar]
  41. Imamura T. Isozumi N. Higashimura Y. Koga H. Segawa T. Desaka N. Takagi H. Matsumoto K. Ohki S. Mori M. Red-beet betalain pigments inhibit amyloid-β aggregation and toxicity in amyloid-β expressing Caenorhabditis elegans. Plant Foods Hum. Nutr. 2022 77 1 90 97 10.1007/s11130‑022‑00951‑w 35088214
    [Google Scholar]
  42. Salimi A. Sabur M. Dadkhah M. Shabani M. Inhibition of scopolamine‐induced memory and mitochondrial impairment by betanin. J. Biochem. Mol. Toxicol. 2022 36 7 e23076 10.1002/jbt.23076 35411685
    [Google Scholar]
  43. Shafqat O. Rehman Z. Shah M.M. Ali S.H.B. Jabeen Z. Rehman S. Synthesis, structural characterization and in vitro pharmacological properties of betanin-encapsulated chitosan nanoparticles. Chem. Biol. Interact. 2023 370 110291 10.1016/j.cbi.2022.110291 36513144
    [Google Scholar]
  44. Shunan D. Yu M. Guan H. Zhou Y. Neuroprotective effect of Betalain against AlCl3-Induced Alzheimer’s disease in Sprague Dawley Rats via putative modulation of oxidative stress and nuclear factor kappa B (NF-κB) signaling pathway. Biomed. Pharmacother. 2021 137 111369 10.1016/j.biopha.2021.111369 33582452
    [Google Scholar]
  45. Rehman S. Ali Ashfaq U. Sufyan M. Shahid I. Ijaz B. Hussain M. The insight of in silico and in vitro evaluation of Beta vulgaris phytochemicals against Alzheimer’s disease targeting acetylcholinesterase. PLoS One 2022 17 3 e0264074 10.1371/journal.pone.0264074 35239683
    [Google Scholar]
  46. DeMaagd G. Philip A. Parkinson’s disease and its management:Part 1: Disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis 2015 40 8 504 532 26236139
    [Google Scholar]
  47. Jankovic J. Parkinson’s disease: Clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 2008 79 4 368 376 10.1136/jnnp.2007.131045 18344392
    [Google Scholar]
  48. Goyal A. Agrawal A. Verma A. Dubey N. The PI3K-AKT pathway: A plausible therapeutic target in Parkinson’s disease. Exp. Mol. Pathol. 2023 129 104846 10.1016/j.yexmp.2022.104846 36436571
    [Google Scholar]
  49. Singh N.K. Singh A. Varshney M. Agrawal R. A research update on Exendin-4 as a novel molecule against Parkinson’s disease. Curr. Mol. Med. 2023 23 9 889 900 10.2174/1566524023666230529093314 37254536
    [Google Scholar]
  50. Thong-asa W. Jedsadavitayakol S. Jutarattananon S. Benefits of betanin in rotenone-induced Parkinson mice. Metab. Brain Dis. 2021 36 8 2567 2577 10.1007/s11011‑021‑00826‑0 34436745
    [Google Scholar]
  51. Wardlaw J.M. Murray V. Berge E. del Zoppo G.J. Thrombolysis for acute ischaemic stroke. Cochrane Libr. 2014 2016 1 CD000213 10.1002/14651858.CD000213.pub3 25072528
    [Google Scholar]
  52. Wafa H.A. Wolfe C.D.A. Emmett E. Roth G.A. Johnson C.O. Wang Y. Burden of stroke in Europe: Thirty-year projections of incidence, prevalence, deaths, and disability-adjusted life years. Stroke 2020 51 8 2418 2427 10.1161/STROKEAHA.120.029606 32646325
    [Google Scholar]
  53. Srivastava R. Kirton A. Perinatal stroke: A practical approach to diagnosis and management. Neoreviews 2021 22 3 e163 e176 10.1542/neo.22‑3‑e163 33649089
    [Google Scholar]
  54. L, L.; X, W.; Z, Y. Ischemia-reperfusion injury in the brain: Mechanisms and potential therapeutic strategies. Biochem. Pharmacol. 2016 5 4 213 10.4172/2167‑0501.1000213 29888120
    [Google Scholar]
  55. Pinheiro A.C. Fazzi R.B. Esteves L.C. Machado C.O. Dörr F.A. Pinto E. Hattori Y. Sa J. da Costa Ferreira A.M. Bastos E.L. A bioinspired nitrone precursor to a stabilized nitroxide radical. Free Radic. Biol. Med. 2021 168 110 116 10.1016/j.freeradbiomed.2021.03.030 33798616
    [Google Scholar]
  56. Thong-asa W. Puenpha K. Lairaksa T. Saengjinda S. Neuroprotective effects of betanin in mice with cerebral ischemia-reperfusion injury. Exp. Anim. 2023 72 3 336 345 10.1538/expanim.22‑0176 36754417
    [Google Scholar]
  57. Stonerock G.L. Hoffman B.M. Smith P.J. Blumenthal J.A. Exercise as treatment for anxiety: Systematic review and analysis. Ann. Behav. Med. 2015 49 4 542 556 10.1007/s12160‑014‑9685‑9 25697132
    [Google Scholar]
  58. Peres M.F.P. Mercante J.P.P. Tobo P.R. Kamei H. Bigal M.E. Anxiety and depression symptoms and migraine: A symptom-based approach research. J. Headache Pain 2017 18 1 37 10.1186/s10194‑017‑0742‑1 28324317
    [Google Scholar]
  59. Liu Y. Zhao J. Fan X. Guo W. Dysfunction in serotonergic and noradrenergic systems and somatic symptoms in psychiatric disorders. Front. Psychiatry 2019 10 286 10.3389/fpsyt.2019.00286 31178761
    [Google Scholar]
  60. Adwas A.A. Jbireal J.M. Azab A.E. Anxiety: Insights into signs, symptoms, etiology, pathophysiology, and treatment. East Afr Scholars. J. Med. Sci. 2019 2 10 580 591
    [Google Scholar]
  61. Teleanu D.M. Niculescu A.G. Lungu I.I. Radu C.I. Vladâcenco O. Roza E. Costăchescu B. Grumezescu A.M. Teleanu R.I. An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases. Int. J. Mol. Sci. 2022 23 11 5938 10.3390/ijms23115938 35682615
    [Google Scholar]
  62. DiSabato D.J. Quan N. Godbout J.P. Neuroinflammation: The devil is in the details. J. Neurochem. 2016 139 S2 136 153 10.1111/jnc.13607 26990767
    [Google Scholar]
  63. Yi Y.S. Son Y.J. Ryou C. Sung G.H. Kim J.H. Cho J.Y. Functional roles of Syk in macrophage-mediated inflammatory responses. Mediators Inflamm. 2014 2014 1 12 10.1155/2014/270302 25045209
    [Google Scholar]
  64. Bannister K. Sachau J. Baron R. Dickenson A.H. Neuropathic pain: Mechanism-based therapeutics. Annu. Rev. Pharmacol. Toxicol. 2020 60 1 257 274 10.1146/annurev‑pharmtox‑010818‑021524 31914896
    [Google Scholar]
  65. Bouhassira D. Neuropathic pain: Definition, assessment and epidemiology. Rev. Neurol. 2019 175 1-2 16 25 10.1016/j.neurol.2018.09.016 30385075
    [Google Scholar]
  66. Campbell J.N. Meyer R.A. Mechanisms of neuropathic pain. Neuron 2006 52 1 77 92 10.1016/j.neuron.2006.09.021 17015228
    [Google Scholar]
  67. Ray W.A. Chung C.P. Murray K.T. Hall K. Stein C.M. Prescription of long-acting opioids and mortality in patients with chronic noncancer pain. JAMA 2016 315 22 2415 2423 10.1001/jama.2016.7789 27299617
    [Google Scholar]
  68. Shah V. Kochar P. Brain cancer: Implication to disease, therapeutic strategies and tumor-targeted drug delivery approaches. Recent Patents Anticancer Drug Discov. 2018 13 1 70 85 10.2174/1574892812666171129142023 29189177
    [Google Scholar]
  69. Salimi A. Bahiraei T. Ahdeno S. Vatanpour S. Pourahmad J. Evaluation of cytotoxic activity of betanin against U87MG human glioma cells and normal human lymphocytes and its anticancer potential through mitochondrial pathway. Nutr. Cancer 2021 73 3 450 459 10.1080/01635581.2020.1764068 32420763
    [Google Scholar]
  70. Pizzino G. Irrera N. Cucinotta M. Pallio G. Mannino F. Arcoraci V. Squadrito F. Altavilla D. Bitto A. Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell. Longev. 2017 2017 1 8416763 10.1155/2017/8416763 28819546
    [Google Scholar]
  71. Islam M.T. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol. Res. 2017 39 1 73 82 10.1080/01616412.2016.1251711 27809706
    [Google Scholar]
  72. Díaz-Hung M.L. González Fraguela M.E. Oxidative stress in neurological diseases: Cause or effect? Neurología 2014 29 8 451 452 10.1016/j.nrleng.2013.06.012 24139387
    [Google Scholar]
  73. Wang C.Q. Yang G.Q. Betacyanins from Portulaca oleracea L. ameliorate cognition deficits and attenuate oxidative damage induced by D-galactose in the brains of senescent mice. Phytomedicine 2010 17 7 527 532 10.1016/j.phymed.2009.09.006 19879120
    [Google Scholar]
  74. Thawkar B.S. Kaur G. Betanin mitigates scopolamine-induced cognitive impairment by restoring cholinergic function, boosting brain antioxidative status, and increasing BDNF level in the zebrafish model. Fish Physiol. Biochem. 2023 49 2 335 349 10.1007/s10695‑023‑01185‑6 36991213
    [Google Scholar]
  75. Motawi T.K. Ahmed S.A. El-Boghdady N.A. Metwally N.S. Nasr N.N. Protective effects of betanin against paracetamol and diclofenac induced neurotoxicity and endocrine disruption in rats. Biomarkers 2019 24 7 645 651 10.1080/1354750X.2019.1642958 31305161
    [Google Scholar]
  76. Ştefănescu C. Voştinaru O. Mogoşan C. Crişan G. Balica G. The neuroprotective potential of betalains: A focused review. Plants 2025 14 7 994 10.3390/plants14070994 40219061
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266398457251014040532
Loading
/content/journals/ctmc/10.2174/0115680266398457251014040532
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test