Skip to content
2000
image of Energy Metabolism and Cancer Pain: A Pathway to Innovative Treatment Strategies

Abstract

Cancer is a widespread disease that often causes severe pain, significantly reducing patients’ quality of life and increasing the overall burden of the illness. Managing cancer pain effectively remains a major clinical challenge. Metabolism is a fundamental biological process that involves both the breaking down of substances to produce energy (catabolism) and the building of complex molecules (anabolism). Cancer cells exhibit altered energy metabolism, including glycolysis, oxidative phosphorylation, glutamine metabolism, and lipid metabolism. Emerging research suggests that these metabolic changes can amplify cancer pain through specific signalling pathways, such as AMPK and PI3K/AKT. Targeting these metabolic pathways offers a promising approach for pain relief. This review explores the link between cancer pain and energy metabolism, highlighting potential new therapeutic strategies aimed at metabolic targets.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266430740251020110940
2025-11-04
2026-01-31
Loading full text...

Full text loading...

References

  1. Formenti P. Umbrello M. Pignataro M. Sabbatini G. Dottorini L. Gotti M. Brenna G. Menozzi A. Terranova G. Galimberti A. Pezzi A. Managing severe cancer pain with oxycodone/naloxone treatment: A literature review update. J. Pers. Med. 2024 14 5 483 10.3390/jpm14050483 38793067
    [Google Scholar]
  2. Snijders R. Brom L. Theunissen M. van den Beuken-van Everdingen M. Update on prevalence of pain in patients with cancer 2022: A systematic literature review and meta-analysis. Cancers 2023 15 3 591 10.3390/cancers15030591 36765547
    [Google Scholar]
  3. Roberto A. Greco M.T. Uggeri S. Cavuto S. Deandrea S. Corli O. Apolone G. Living systematic review to assess the analgesic undertreatment in cancer patients. Pain Pract. 2022 22 4 487 496 10.1111/papr.13098 35014151
    [Google Scholar]
  4. Hjermstad M.J. Fainsinger R. Kaasa S. Assessment and classification of cancer pain. Curr. Opin. Support. Palliat. Care 2009 3 1 24 30 10.1097/SPC.0b013e3283260644 19365158
    [Google Scholar]
  5. Zhang X. An M. Zhang J. Zhao Y. Liu Y. Nano-medicine therapy reprogramming metabolic network of tumour microenvironment: New opportunity for cancer therapies. J. Drug Target. 2024 32 3 241 257 10.1080/1061186X.2024.2309565 38251656
    [Google Scholar]
  6. Arneth B. Tumor microenvironment. Medicina 2019 56 1 15 10.3390/medicina56010015 31906017
    [Google Scholar]
  7. Schmidt B.L. The neurobiology of cancer pain. Neuroscientist 2014 20 5 546 562 10.1177/1073858414525828 24664352
    [Google Scholar]
  8. Honore P. Rogers S.D. Schwei M.J. Salak-Johnson J.L. Luger N.M. Sabino M.C. Clohisy D.R. Mantyh P.W. Murine models of inflammatory, neuropathic and cancer pain each generates a unique set of neurochemical changes in the spinal cord and sensory neurons. Neuroscience 2000 98 3 585 598 10.1016/S0306‑4522(00)00110‑X 10869852
    [Google Scholar]
  9. Camps Herrero C. Batista N. Díaz Fernández N. Escobar Álvarez Y. Gonzalo Gómez A. Isla Casado D. Salud A. Terrasa Pons J. Guillem Porta V. Breakthrough cancer pain: Review and calls to action to improve its management. Clin. Transl. Oncol. 2020 22 8 1216 1226 10.1007/s12094‑019‑02268‑8 32002739
    [Google Scholar]
  10. Kartikasari A.E.R. Huertas C.S. Mitchell A. Plebanski M. Tumor-Induced inflammatory cytokines and the emerging diagnostic devices for cancer detection and prognosis. Front. Oncol. 2021 11 692142 10.3389/fonc.2021.692142 34307156
    [Google Scholar]
  11. Zhao H. Wu L. Yan G. Chen Y. Zhou M. Wu Y. Li Y. Inflammation and tumor progression: Signaling pathways and targeted intervention. Signal Transduct. Target. Ther. 2021 6 1 263 10.1038/s41392‑021‑00658‑5 34248142
    [Google Scholar]
  12. Falk S. Bannister K. Dickenson A.H. Cancer pain physiology. Br. J. Pain 2014 8 4 154 162 10.1177/2049463714545136 26516549
    [Google Scholar]
  13. Yam M.F. Loh Y.C. Tan C.S. Khadijah Adam S. Abdul Manan N. Basir R. General pathways of pain sensation and the major neurotransmitters involved in pain regulation. Int. J. Mol. Sci. 2018 19 8 2164 10.3390/ijms19082164 30042373
    [Google Scholar]
  14. Woolf C.J. Central sensitization: Implications for the diagnosis and treatment of pain. Pain 2011 152 3 S2 S15 [Suppl. 10.1016/j.pain.2010.09.030 20961685
    [Google Scholar]
  15. Mantyh P.W. Clohisy D.R. Koltzenburg M. Hunt S.P. Molecular mechanisms of cancer pain. Nat. Rev. Cancer 2002 2 3 201 209 10.1038/nrc747 11990856
    [Google Scholar]
  16. Zajączkowska R. Kocot-Kępska M. Leppert W. Wordliczek J. Bone pain in cancer patients: Mechanisms and current treatment. Int. J. Mol. Sci. 2019 20 23 6047 10.3390/ijms20236047 31801267
    [Google Scholar]
  17. Figura N. Smith J. Yu H.H.M. Mechanisms of, and Adjuvants for. Bone Pain. Hematol. Oncol. Clin. North Am 2018 32 3 447 458 10.1016/j.hoc.2018.01.006 29729780
    [Google Scholar]
  18. Yoneda T. Hiasa M. Nagata Y. Okui T. White F.A. Acidic microenvironment and bone pain in cancer-colonized bone. Bonekey Rep. 2015 4 690 10.1038/bonekey.2015.58 25987988
    [Google Scholar]
  19. Middlemiss T. Laird B.J.A. Fallon M.T. Mechanisms of cancer-induced bone pain. Clin. Oncol. 2011 23 6 387 392 10.1016/j.clon.2011.03.003 21683564
    [Google Scholar]
  20. Kapoor R. Saxena A.K. Vasudev P. Sundriyal D. Kumar A. Cancer induced bone pain: Current management and future perspectives. Med. Oncol. 2021 38 11 134 10.1007/s12032‑021‑01587‑7 34581894
    [Google Scholar]
  21. Xie T. Chen S. Hao J. Wu P. Gu X. Wei H. Li Z. Xiao J. Roles of calcium signaling in cancer metastasis to bone. Exploreation of Targeted Anti-tumor Therapy 2022 3 4 445 462 10.37349/etat.2022.00094 36071984
    [Google Scholar]
  22. Bortolin A. Neto E. Lamghari M. Calcium Signalling in Breast Cancer Associated Bone Pain. Int. J. Mol. Sci. 2022 23 3 1902 10.3390/ijms23031902 35163823
    [Google Scholar]
  23. Hu Y. Xu W. Zeng H. He Z. Lu X. Zuo D. Qin G. Chen W. OXPHOS-dependent metabolic reprogramming prompts metastatic potential of breast cancer cells under osteogenic differentiation. Br. J. Cancer 2020 123 11 1644 1655 10.1038/s41416‑020‑01040‑y 32934344
    [Google Scholar]
  24. Martland M.E. Rashidi A.S. Bennett M.I. Fallon M. Jones C. Rolke R. Mulvey M.R. The use of quantitative sensory testing in cancer pain assessment: A systematic review. Eur. J. Pain 2020 24 4 669 684 10.1002/ejp.1520 31823467
    [Google Scholar]
  25. Shetty Y.C. Singh V.K. Salins N. Jain P. Prescription pattern of drugs used for neuropathic pain and adherence to NeuPSIG guidelines in cancer. Indian J. Palliat. Care 2020 26 1 13 18 10.4103/IJPC.IJPC_172_19 32132777
    [Google Scholar]
  26. Yoon S.Y. Oh J. Neuropathic cancer pain: prevalence, pathophysiology, and management. Korean J. Intern. Med. (Korean. Assoc. Intern. Med.) 2018 33 6 1058 1069 10.3904/kjim.2018.162 29929349
    [Google Scholar]
  27. Kober K.M. Lee M.C. Olshen A. Conley Y.P. Sirota M. Keiser M. Hammer M.J. Abrams G. Schumacher M. Levine J.D. Miaskowski C. Differential methylation and expression of genes in the hypoxia-inducible factor 1 signaling pathway are associated with paclitaxel-induced peripheral neuropathy in breast cancer survivors and with preclinical models of chemotherapy-induced neuropathic pain. Mol. Pain 2020 16 1744806920936502 10.1177/1744806920936502 32586194
    [Google Scholar]
  28. Malacrida A. Meregalli C. Rodriguez-Menendez V. Nicolini G. Chemotherapy-induced peripheral neuropathy and changes in cytoskeleton. Int. J. Mol. Sci. 2019 20 9 2287 10.3390/ijms20092287 31075828
    [Google Scholar]
  29. Tufail M. Jiang C.H. Li N. Altered metabolism in cancer: Insights into energy pathways and therapeutic targets. Mol. Cancer 2024 23 1 203 10.1186/s12943‑024‑02119‑3 39294640
    [Google Scholar]
  30. Pérez-Tomás R. Pérez-Guillén I. actate in the tumor microenvironment: An essential molecule in cancer progression and treatment. cancers 2020 12 11 3244 10.3390/cancers12113244 33153193
    [Google Scholar]
  31. Li X. Yang Y. Zhang B. Lin X. Fu X. An Y. Zou Y. Wang J.X. Wang Z. Yu T. Lactate metabolism in human health and disease. Signal Transduct. Target. Ther. 2022 7 1 305 10.1038/s41392‑022‑01151‑3 36050306
    [Google Scholar]
  32. Dey P. Kimmelman A.C. DePinho R.A. Metabolic codependencies in the tumor microenvironment. Cancer Discov. 2021 11 5 1067 1081 10.1158/2159‑8290.CD‑20‑1211 33504580
    [Google Scholar]
  33. Liberti M.V. Locasale J.W. The Warburg Effect: How does it benefit cancer cells? Trends Biochem. Sci. 2016 41 3 211 218 10.1016/j.tibs.2015.12.001 26778478
    [Google Scholar]
  34. Zhou D. Duan Z. Li Z. Ge F. Wei R. Kong L. The significance of glycolysis in tumor progression and its relationship with the tumor microenvironment. Front. Pharmacol. 2022 13 1091779 10.3389/fphar.2022.1091779 36588722
    [Google Scholar]
  35. Huo Y. Xu X. Ma X. Feng Y. GINS1 enhances glycolysis, proliferation and metastasis in lung adenocarcinoma cells by activating the notch/PI3K/AKT/mTORC1 signaling pathway. Zhongguo Fei Ai Za Zhi 2024 27 10 735 744 39631830
    [Google Scholar]
  36. Jimenez-Andrade J.M. Mantyh WG Bloom A.P. Ferng A.S. Geffre C.P. Mantyh P.W. Bone cancer pain. Ann N Y Acad. Sci. 2010 1198 1 173 181 10.1111/j.1749‑6632.2009.05429.x 20536932
    [Google Scholar]
  37. Song H. Han Y. Pan C. Deng X. Dai W. Hu L. Jiang C. Yang Y. Cheng Z. Li F. Zhang G. Wu X. Liu W. Activation of adenosine monophosphate–activated protein kinase suppresses neuroinflammation and ameliorates bone cancer pain. Anesthesiology 2015 123 5 1170 1185 10.1097/ALN.0000000000000856 26378398
    [Google Scholar]
  38. Xiang H.C. Lin L.X. Hu X.F. Zhu H. Li H.P. Zhang R.Y. Hu L. Liu W.T. Zhao Y.L. Shu Y. Pan H.L. Li M. AMPK activation attenuates inflammatory pain through inhibiting NF-κB activation and IL-1β expression. J. Neuroinflammation 2019 16 1 34 10.1186/s12974‑019‑1411‑x 30755236
    [Google Scholar]
  39. Hao M. Tang Q. Wang B. Li Y. Ding J. Li M. Xie M. Zhu H. Resveratrol suppresses bone cancer pain in rats by attenuating inflammatory responses through the AMPK/Drp1 signaling. Acta Biochim. Biophys. Sin. 2020 52 3 231 240 10.1093/abbs/gmz162 32072182
    [Google Scholar]
  40. Yang H. Wang Y. Zhen S. Wang B. Jiao M. Liu L. Li D. Zhu H. Xie M. AMPK activation attenuates cancer-induced bone pain by reducing mitochondrial dysfunction-mediated neuroinflammation. Acta Biochim. Biophys. Sin. 2023 55 3 460 471 10.3724/abbs.2023039 36971458
    [Google Scholar]
  41. Yang L. Li M. Liu Y. Bai Y. Yin T. Chen Y. Jiang J. Liu S. MOTS-c is an effective target for treating cancer-induced bone pain through the induction of AMPK-mediated mitochondrial biogenesis. Acta Biochim. Biophys. Sin. 2024 56 9 1323 1339 10.3724/abbs.2024048 38716540
    [Google Scholar]
  42. Chen S.P. Zhou Y.Q. Liu D.Q. Zhang W. Manyande A. Guan X.H. Tian Y. Ye D.W. Omar D.M. PI3K/Akt Pathway: A potential therapeutic target for chronic pain. Curr. Pharm. Des. 2017 23 12 1860 1868 10.2174/1381612823666170210150147 28190392
    [Google Scholar]
  43. Yang L. Fu Q. Yang L. Zhang Y. HIF-1α/MMP-9 promotes spinal cord central sensitization in rats with bone cancer pain. Eur. J. Pharmacol. 2023 954 175858 10.1016/j.ejphar.2023.175858 37356787
    [Google Scholar]
  44. Zhao J. Yan Y. Zhen S. Yu L. Ding J. Tang Q. Liu L. Zhu H. Xie M. LY294002 alleviates bone cancer pain by reducing mitochondrial dysfunction and the inflammatory response. Int. J. Mol. Med. 2023 51 5 42 10.3892/ijmm.2023.5245 37026522
    [Google Scholar]
  45. Jin D. Yang J. Hu J. Wang L. Zuo J. MCP-1 stimulates spinal microglia via PI3K/Akt pathway in bone cancer pain. Brain Res. 2015 1599 158 167 10.1016/j.brainres.2014.12.043 25555372
    [Google Scholar]
  46. Hoxhaj G. Manning B.D. The PI3K–AKT network at the interface of oncogenic signalling and cancer metabolism. Nat. Rev. Cancer 2020 20 2 74 88 10.1038/s41568‑019‑0216‑7 31686003
    [Google Scholar]
  47. Chen W. Li H. Hao X. Liu C. TRPV1 in dorsal root ganglion contributed to bone cancer pain. Frontier in Pain Research 2022 3 1022022 10.3389/fpain.2022.1022022 36438444
    [Google Scholar]
  48. Deval E. Lingueglia E. Acid-Sensing Ion Channels and nociception in the peripheral and central nervous systems. Neuropharmacology 2015 94 49 57 10.1016/j.neuropharm.2015.02.009 25724084
    [Google Scholar]
  49. Wang F. Qi X.M. Wertz R. Mortensen M. Hagen C. Evans J. Sheinin Y. James M. Liu P. Tsai S. Thomas J. Mackinnon A. Dwinell M. Myers C.R. Bartrons Bach R. Fu L. Chen G. p38γ MAPK is essential for aerobic glycolysis and pancreatic tumorigenesis. Cancer Res. 2020 80 16 3251 3264 10.1158/0008‑5472.CAN‑19‑3281 32580961
    [Google Scholar]
  50. Grave N. Scheffel T.B. Cruz F.F. Rockenbach L. Goettert M.I. Laufer S. Morrone F.B. The functional role of p38 MAPK pathway in malignant brain tumors. Front. Pharmacol. 2022 13 975197 10.3389/fphar.2022.975197 36299892
    [Google Scholar]
  51. Lin M. Chen X. Wu S. Chen P. Wan H. Ma S. Lin N. Liao Y. Zheng T. Jiang J. Zheng X. Upregulation of Nav1.6 mediated by the p38 MAPK pathway in the dorsal root ganglia contributes to cancer-induced bone pain in rats. Cells 2022 11 21 3375 10.3390/cells11213375 36359772
    [Google Scholar]
  52. Guo C.H. Bai L. Wu H.H. Yang J. Cai G.H. Wang X. Wu S.X. Ma W. The analgesic effect of rolipram is associated with the inhibition of the activation of the spinal astrocytic JNK/CCL2 pathway in bone cancer pain. Int. J. Mol. Med. 2016 38 5 1433 1442 10.3892/ijmm.2016.2763 28025994
    [Google Scholar]
  53. Baserga R. Hongo A. Rubini M. Prisco M. Valentinis B. The IGF-I receptor in cell growth, transformation and apoptosis. Biochim. Biophys. Acta 1997 1332 3 F105 F126 9196021
    [Google Scholar]
  54. You L. Wu W. Wang X. Fang L. Adam V. Nepovimova E. Wu Q. Kuca K. The role of hypoxia‐inducible factor 1 in tumor immune evasion. Med. Res. Rev. 2021 41 3 1622 1643 10.1002/med.21771 33305856
    [Google Scholar]
  55. De Francesco E.M. Sims A.H. Maggiolini M. Sotgia F. Lisanti M.P. Clarke R.B. GPER mediates the angiocrine actions induced by IGF1 through the HIF-1α/VEGF pathway in the breast tumor microenvironment. Breast Cancer Res. 2017 19 1 129 10.1186/s13058‑017‑0923‑5 29212519
    [Google Scholar]
  56. Lee H.L. Lee H.Y. Yun Y. Oh J. Che L. Lee M. Ha Y. Hypoxia-specific, VEGF-expressing neural stem cell therapy for safe and effective treatment of neuropathic pain. J. Control. Release 2016 226 21 34 10.1016/j.jconrel.2016.01.047 26826306
    [Google Scholar]
  57. Selvaraj D. Gangadharan V. Michalski C.W. Kurejova M. Stösser S. Srivastava K. Schweizerhof M. Waltenberger J. Ferrara N. Heppenstall P. Shibuya M. Augustin H.G. Kuner R. A functional role for VEGFR1 expressed in peripheral sensory neurons in cancer pain. Cancer Cell 2015 27 6 780 796 10.1016/j.ccell.2015.04.017 26058077
    [Google Scholar]
  58. Azimi I. The interplay between HIF-1 and calcium signalling in cancer. Int. J. Biochem. Cell Biol. 2018 97 73 77 10.1016/j.biocel.2018.02.001 29407528
    [Google Scholar]
  59. Li Y. Cai J. Han Y. Xiao X. Meng X.L. Su L. Liu F.Y. Xing G.G. Wan Y. Enhanced function of TRPV1 via up‐regulation by insulin‐like growth factor‐1 in a rat model of bone cancer pain. Eur. J. Pain 2014 18 6 774 784 10.1002/j.1532‑2149.2013.00420.x 24827675
    [Google Scholar]
  60. Meng F. Yu W. Duan W. Wang T. Liu Y. Dexmedetomidine attenuates LPS‐mediated BV2 microglia cells inflammation via inhibition of glycolysis. Fundam. Clin. Pharmacol. 2020 34 3 313 320 10.1111/fcp.12528 31841245
    [Google Scholar]
  61. Ni S. Yang B. Xia L. Zhang H. EZH2 mediates miR‐146a‐5p/HIF‐1α to alleviate inflammation and glycolysis after acute spinal cord injury. Mediators Inflamm. 2021 2021 1 5591582 10.1155/2021/5591582 34104112
    [Google Scholar]
  62. Di Gregorio J. Petricca S. Iorio R. Toniato E. Flati V. Mitochondrial and metabolic alterations in cancer cells. Eur. J. Cell Biol. 2022 101 3 151225 10.1016/j.ejcb.2022.151225 35453093
    [Google Scholar]
  63. Li F.B. Bao S.Q. Sun X.L. Ma J.X. Ma X.L. Extracellular acidification stimulates OGR1 to modify osteoclast differentiation and activity through the Ca2+ calcineurin NFATc1 pathway. Exp. Ther. Med. 2024 29 2 28 10.3892/etm.2024.12778 39720672
    [Google Scholar]
  64. Zhang J. Zhang L. Nie J. Lin Y. Li Y. Xu W. Zhao J.Y. Zhao S.M. Wang C. Calcineurin inactivation inhibits pyruvate dehydrogenase complex activity and induces the Warburg effect. Oncogene 2021 40 49 6692 6702 10.1038/s41388‑021‑02065‑0 34667275
    [Google Scholar]
  65. Chen Z. Huang L. Ding L. Zhang C. Li Y. Wang B. Shi J. Zhang J. NFATc1 facilitates hepatocellular carcinoma progression by regulating the senescence-associated secretory phenotype. Sci. Rep. 2025 15 1 24824 10.1038/s41598‑025‑07585‑3 40640247
    [Google Scholar]
  66. Casanova A. Wevers A. Navarro-Ledesma S. Pruimboom L. Mitochondria: It is all about energy. Front. Physiol. 2023 14 1114231 10.3389/fphys.2023.1114231 37179826
    [Google Scholar]
  67. Lagos-Rodríguez V. Martínez-Palma L. Marton S. Miquel E. Escobar-Pintos R. Cassina A. Lago N. Cassina P. Mitochondrial bioenergetics, glial reactivity, and pain-related behavior can be restored by dichloroacetate treatment in rodent pain models. Pain 2020 161 12 2786 2797 10.1097/j.pain.0000000000001992 32658145
    [Google Scholar]
  68. Doyle T.M. Salvemini D. Mini-Review: Mitochondrial dysfunction and chemotherapy-induced neuropathic pain. Neurosci. Lett. 2021 760 136087 10.1016/j.neulet.2021.136087 34182057
    [Google Scholar]
  69. Ding Z. Liang X. Wang J. Song Z. Guo Q. Schäfer M.K.E. Huang C. Inhibition of spinal ferroptosis-like cell death alleviates hyperalgesia and spontaneous pain in a mouse model of bone cancer pain. Redox Biol. 2023 62 102700 10.1016/j.redox.2023.102700 37084690
    [Google Scholar]
  70. Chen N. Zhan R.N. Liu D.Q. Zhang Y. Tian Y.K. Zhou Y.Q. PGC‐1α activation ameliorates cancer-induced bone pain via inhibiting apoptosis of GABAergic interneurons. Biochem. Pharmacol. 2024 222 116053 10.1016/j.bcp.2024.116053 38354958
    [Google Scholar]
  71. Fazzari J. Linher-Melville K. Singh G. Tumour-Derived Glutamate: Linking aberrant cancer cell metabolism to peripheral sensory pain pathways. Curr. Neuropharmacol. 2017 15 4 620 636 10.2174/1570159X14666160509123042 27157265
    [Google Scholar]
  72. Koppula P. Zhang Y. Zhuang L. Gan B. Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer. Cancer Commun. 2018 38 1 1 13 10.1186/s40880‑018‑0288‑x 29764521
    [Google Scholar]
  73. Ungard R.G. Seidlitz E.P. Singh G. Inhibition of breast cancer-cell glutamate release with sulfasalazine limits cancer-induced bone pain. Pain 2014 155 1 28 36 10.1016/j.pain.2013.08.030 23999057
    [Google Scholar]
  74. Fazzari J. Balenko M. Zacal N. Singh G. Identification of capsazepine as a novel inhibitor of system xc− and cancer-induced bone pain. J. Pain Res. 2017 10 915 925 10.2147/JPR.S125045 28458574
    [Google Scholar]
  75. Jin Y.H. Yamaki F. Takemura M. Koike Y. Furuyama A. Yonehara N. Capsaicin-induced glutamate release is implicated in nociceptive processing through activation of ionotropic glutamate receptors and group I metabotropic glutamate receptor in primary afferent fibers. J. Pharmacol. Sci. 2009 109 2 233 241 10.1254/jphs.08262FP 19202316
    [Google Scholar]
  76. Woo D.H. Jung S.J. Zhu M.H. Park C.K. Kim Y.H. Oh S.B. Lee C.J. Direct activation of transient receptor potential vanilloid 1(TRPV1) by diacylglycerol (DAG) Mol. Pain 2008 4 1744-8069-4-42 10.1186/1744‑8069‑4‑42 18826653
    [Google Scholar]
  77. Premkumar L.S. Ahern G.P. Induction of vanilloid receptor channel activity by protein kinase C. Nature 2000 408 6815 985 990 10.1038/35050121 11140687
    [Google Scholar]
  78. Ba F. Wei J. Feng Q.Y. Yu C.Y. Song M.X. Hu S. Xu G.Y. Zhang H.L. Jiang G.Q. GluR2 overexpression in ACC glutamatergic neurons alleviates cancer-induced bone pain in rats. Mol. Med. 2025 31 1 130 10.1186/s10020‑025‑01183‑9 40197156
    [Google Scholar]
  79. Jin Y.H. Nishioka H. Wakabayashi K. Fujita T. Yonehara N. Effect of morphine on the release of excitatory amino acids in the rat hind instep: Pain is modulated by the interaction between the peripheral opioid and glutamate systems. Neuroscience 2006 138 4 1329 1339 10.1016/j.neuroscience.2005.12.049 16473472
    [Google Scholar]
  80. Ji R.R. Nackley A. Huh Y. Terrando N. Maixner W. Neuroinflammation and central sensitization in chronic and widespread pain. Anesthesiology 2018 129 2 343 366 10.1097/ALN.0000000000002130 29462012
    [Google Scholar]
  81. Yi M. Li J. Chen S. Cai J. Ban Y. Peng Q. Zhou Y. Zeng Z. Peng S. Li X. Xiong W. Li G. Xiang B. Emerging role of lipid metabolism alterations in Cancer stem cells. J. Exp. Clin. Cancer Res. 2018 37 1 118 10.1186/s13046‑018‑0784‑5 29907133
    [Google Scholar]
  82. Kaplan Z. Zielske S.P. Ibrahim K.G. Cackowski F.C. wnt and β-Catenin signaling in the bone metastasis of prostate Cancer. Life 2021 11 10 1099 10.3390/life11101099 34685470
    [Google Scholar]
  83. Hu C. Zhao Y-T. Cui Y-B. Zhang H-H. Huang G-L. Liu Y. Liu Y-F. Wnt/β-catenin signaling contributes to vincristine-induced neuropathic pain. Physiol. Res. 2020 69 4 701 710 10.33549/physiolres.934314 32584132
    [Google Scholar]
  84. Pan H.L. Zhang Y.Q. Zhao Z.Q. Involvement of lysophosphatidic acid in bone cancer pain by potentiation of TRPV1 via PKCε pathway in dorsal root ganglion neurons. 2010 6 1744-8069-6-85 10.1186/1744‑8069‑6‑85 21118579
    [Google Scholar]
  85. Duong L.K. Corbali H.I. Riad T.S. Ganjoo S. Nanez S. Voss T. Barsoumian H.B. Welsh J. Cortez M.A. Lipid metabolism in tumor immunology and immunotherapy. Front. Oncol. 2023 13 1187279 10.3389/fonc.2023.1187279 37205182
    [Google Scholar]
  86. Zheng G. Ren J. Shang L. Bao Y. Role of autophagy in the pathogenesis and regulation of pain. Eur. J. Pharmacol. 2023 955 175859 10.1016/j.ejphar.2023.175859 37429517
    [Google Scholar]
  87. Ravanan P. Srikumar I.F. Talwar P. Autophagy: The spotlight for cellular stress responses. Life Sci. 2017 188 53 67 10.1016/j.lfs.2017.08.029 28866100
    [Google Scholar]
  88. Dikic I. Elazar Z. Mechanism and medical implications of mammalian autophagy. Nat. Rev. Mol. Cell Biol. 2018 19 6 349 364 10.1038/s41580‑018‑0003‑4 29618831
    [Google Scholar]
  89. Vendrell I. Macedo D. Alho I. Dionísio M.R. Costa L. Treatment of cancer pain by targeting cytokines. Mediators Inflamm. 2015 2015 1 984570 10.1155/2015/984570 26538839
    [Google Scholar]
  90. Mao Y. Huang Y. Zhang Y. Wang C. Wu H. Tian X. Liu Y. Hou B. Liang Y. Rong H. Gu X. Ma Z. Cannabinoid receptor 2 selective agonist JWH015 attenuates bone cancer pain through the amelioration of impaired autophagy flux induced by inflammatory mediators in the spinal cord. Mol. Med. Rep. 2019 20 6 5100 5110 10.3892/mmr.2019.10772 31661120
    [Google Scholar]
  91. Qi W. Li Z. Yang C. Jiangshan Dai J. Zhang, Q.; Wang, D.; Wu, C.; Xia, L.; Xu, S. Inhibitory mechanism of muscone in liver cancer involves the induction of apoptosis and autophagy. Oncol. Rep. 2020 43 3 839 850 10.3892/or.2020.7484 32020222
    [Google Scholar]
  92. Zhu H. Ding J. Wu J. Liu T. Liang J. Tang Q. Jiao M. Resveratrol attenuates bone cancer pain through regulating the expression levels of ASIC3 and activating cell autophagy. Acta Biochim. Biophys. Sin. 2017 49 11 1008 1014 10.1093/abbs/gmx103 29036449
    [Google Scholar]
  93. Boeckel G.R. Ehrlich B.E. NCS-1 is a regulator of calcium signaling in health and disease. Biochim. Biophys. Acta Mol. Cell Res. 2018 1865 11 1660 1667 10.1016/j.bbamcr.2018.05.005 29746899
    [Google Scholar]
  94. Zhang F. Dong Y. Chen F. Niu M. Liu Z. Wang C. Cinobufotalin capsule combined with zoledronic acid in the treatment of pain symptoms and clinical efficacy in prostate cancer patients with bone metastases: A retrospective study. Arch. Esp. Urol. 2024 77 3 242 248 10.56434/j.arch.esp.urol.20247703.32 38715164
    [Google Scholar]
  95. Cao B. Scherrer G. Chen L. Spinal cord retinoic acid receptor signaling gates mechanical hypersensitivity in neuropathic pain. Neuron 2022 110 24 4108 4124.e6 10.1016/j.neuron.2022.09.027 36223767
    [Google Scholar]
  96. Ma X.N. Yao C.H. Yang Y.J. Li X. Zhou M.Y. Yang J. Zhang S. Yu B.Y. Dai W.L. Liu J.H. Blockade of spinal dopamine D1/D2 receptor heteromers by levo -Corydalmine suppressed calcium signaling cascade in spinal neurons to alleviate bone cancer pain in rats. J. Cancer 2024 15 4 1041 1052 10.7150/jca.91129 38230224
    [Google Scholar]
  97. Andrade E.L. Meotti F.C. Calixto J.B. TRPA1 antagonists as potential analgesic drugs. Pharmacol. Ther. 2012 133 2 189 204 10.1016/j.pharmthera.2011.10.008 22119554
    [Google Scholar]
  98. Hu F. Song X. Long D. Transient receptor potential ankyrin 1 and calcium: Interactions and association with disease.(Review) Exp. Ther. Med. 2021 22 6 1462 10.3892/etm.2021.10897 34737802
    [Google Scholar]
  99. Liu Q. Lu Z. Ren H. Fu L. Wang Y. Bu H. Ma M. Ma L. Huang C. Wang J. Zang W. Cao J. Fan X. Cav3.2 T-Type calcium channels downregulation attenuates bone cancer pain induced by inhibiting IGF-1/HIF-1α signaling pathway in the rat spinal cord. J. Bone Oncol. 2023 42 100495 10.1016/j.jbo.2023.100495 37583441
    [Google Scholar]
  100. Wakabayashi H. Wakisaka S. Hiraga T. Hata K. Nishimura R. Tominaga M. Yoneda T. Decreased sensory nerve excitation and bone pain associated with mouse Lewis lung cancer in TRPV1-deficient mice. J. Bone Miner. Metab. 2018 36 3 274 285 10.1007/s00774‑017‑0842‑7 28516219
    [Google Scholar]
  101. Yu Q. Wang Y. Dong L. He Y. Liu R. Yang Q. Cao Y. Wang Y. Jia A. Bi Y. Liu G. Regulations of glycolytic activities on macrophages functions in tumor and infectious inflammation. Front. Cell. Infect. Microbiol. 2020 10 287 10.3389/fcimb.2020.00287 32596169
    [Google Scholar]
  102. Li H.M. Yang J.G. Liu Z.J. Wang W.M. Yu Z.L. Ren J.G. Chen G. Zhang W. Jia J. Blockage of glycolysis by targeting PFKFB3 suppresses tumor growth and metastasis in head and neck squamous cell carcinoma. J. Exp. Clin. Cancer Res. 2017 36 1 7 10.1186/s13046‑016‑0481‑1 28061878
    [Google Scholar]
  103. Dong C. Zhang W. Luo H. Association between P2X3 receptors and neuropathic pain: As a potential therapeutic target for therapy. Biomed. Pharmacother. 2022 150 113029 10.1016/j.biopha.2022.113029 35489283
    [Google Scholar]
  104. Tataranni T. Piccoli C. Dichloroacetate (DCA) and cancer: An overview towards clinical applications. Oxid. Med. Cell. Longev. 2019 2019 1 14 10.1155/2019/8201079 31827705
    [Google Scholar]
  105. Bazmandegan G. Zamanian M.Y. Giménez-Llort L. Nikbakhtzadeh M. Kamiab Z. Heidari M. The therapeutic activities of metformin: focus on the nrf2 signaling pathway and oxidative stress amelioration. Curr. Mol. Pharmacol. 2023 16 3 331 345 10.2174/1874467215666220620143655 35726417
    [Google Scholar]
  106. Qian H.Y. Zhou F. Wu R. Cao X.J. Zhu T. Yuan H.D. Chen Y.N. Zhang P.A. Metformin attenuates bone cancer pain by Reducing TRPV1 and ASIC3 expression. Front. Pharmacol. 2021 12 713944 10.3389/fphar.2021.713944 34421611
    [Google Scholar]
  107. Zhou Y.Q. Liu D.Q. Chen S.P. Sun J. Zhou X.R. Rittner H. Mei W. Tian Y.K. Zhang H.X. Chen F. Ye D.W. Reactive oxygen species scavengers ameliorate mechanical allodynia in a rat model of cancer-induced bone pain. Redox Biol. 2018 14 391 397 10.1016/j.redox.2017.10.011 29055283
    [Google Scholar]
  108. Xu L. Hou L. Cao C. Li X. Ghrelin induces the production of hypothalamic NPY through the AMPK-mTOR pathway to alleviate cancer-induced bone pain. In vivo 2024 38 3 1133 1142 10.21873/invivo.13548 38688635
    [Google Scholar]
  109. Naveilhan P. Hassani H. Lucas G. Blakeman K.H. Hao J.X. Xu X.J. Wiesenfeld-Hallin Z. Thorén P. Ernfors P. Reduced antinociception and plasma extravasation in mice lacking a neuropeptide Y receptor. Nature 2001 409 6819 513 517 10.1038/35054063 11206547
    [Google Scholar]
  110. Diaz-delCastillo M. Christiansen S.H. Appel C.K. Falk S. Woldbye D.P.D. Heegaard A.M. Neuropeptide Y is Up-regulated and Induces Antinociception in Cancer-induced Bone Pain. Neuroscience 2018 384 111 119 10.1016/j.neuroscience.2018.05.025 29852245
    [Google Scholar]
  111. Shan Z. Wang Y. Qiu T. Zhou Y. Zhang Y. Hu L. Zhang L. Liang J. Ding M. Fan S. Xiao Z. SS-31 alleviated nociceptive responses and restored mitochondrial function in a headache mouse model via Sirt3/Pgc-1α positive feedback loop. J. Headache Pain 2023 24 1 65 10.1186/s10194‑023‑01600‑6 37271805
    [Google Scholar]
  112. Mo Y. Deng S. Zhang L. Huang Y. Li W. Peng Q. Liu Z. Ai Y. SS-31 reduces inflammation and oxidative stress through the inhibition of Fis1 expression in lipopolysaccharide-stimulated microglia. Biochem. Biophys. Res. Commun. 2019 520 1 171 178 10.1016/j.bbrc.2019.09.077 31582222
    [Google Scholar]
  113. Yang Y. Liu Y. Wang Y. Chao Y. Zhang J. Jia Y. Tie J. Hu D. Regulation of SIRT1 and its roles in inflammation. Front. Immunol. 2022 13 831168 10.3389/fimmu.2022.831168 35359990
    [Google Scholar]
  114. Song F.H. Liu D.Q. Zhou Y.Q. Mei W. SIRT1: A promising therapeutic target for chronic pain. CNS Neurosci. Ther. 2022 28 6 818 828 10.1111/cns.13838 35396903
    [Google Scholar]
  115. Li M.Y. Ding J.Q. Tang Q. Hao M.M. Wang B.H. Wu J. Yu L.Z. Jiao M. Luo B.H. Xie M. Zhu H.L. SIRT1 activation by SRT1720 attenuates bone cancer pain via preventing Drp1-mediated mitochondrial fission. Biochim. Biophys. Acta Mol. Basis Dis. 2019 1865 3 587 598 10.1016/j.bbadis.2018.12.017 30579931
    [Google Scholar]
  116. Yang C. Kang F. Huang X. Zhang W. Wang S. Han M. Zhang Z. Li J. Melatonin attenuates bone cancer pain via the SIRT1/HMGB1 pathway. Neuropharmacology 2022 220 109254 10.1016/j.neuropharm.2022.109254 36122662
    [Google Scholar]
  117. Ellingson H.M. Vanderah T.W. Potential therapeutic treatments of cancer-induced bone pain. Curr. Opin. Support. Palliat. Care 2020 14 2 107 111 10.1097/SPC.0000000000000496 32349095
    [Google Scholar]
  118. Fazzari J. Singh G. Effect of glutaminase inhibition on cancer-induced bone pain. Breast Cancer 2019 11 273 282 10.2147/BCTT.S215655 31571981
    [Google Scholar]
  119. Yang C. Kang F. Wang S. Han M. Zhang Z. Li J. SIRT1 activation attenuates bone cancer pain by inhibiting mGluR1/5. Cell. Mol. Neurobiol. 2019 39 8 1165 1175 10.1007/s10571‑019‑00710‑7 31270711
    [Google Scholar]
  120. Pajak B. Siwiak E. Sołtyka M. Priebe A. Zieliński R. Fokt I. Ziemniak M. Jaśkiewicz A. Borowski R. Domoradzki T. Priebe W. 2-deoxy-d-glucose and its analogs: From diagnostic to therapeutic agents. Int. J. Mol. Sci. 2019 21 1 234 10.3390/ijms21010234 31905745
    [Google Scholar]
  121. Singh R. Gupta V. Kumar A. Singh K. 2-Deoxy-D-Glucose: A novel pharmacological agent for killing hypoxic tumor cells, oxygen dependence-lowering in Covid-19, and other pharmacological activities. Adv. Pharmacol. Pharm. Sci. 2023 2023 1 15 10.1155/2023/9993386 36911357
    [Google Scholar]
  122. Goldberg L. Israeli R. Kloog Y. FTS and 2-DG induce pancreatic cancer cell death and tumor shrinkage in mice. Cell Death Dis. 2012 3 3 e284 10.1038/cddis.2012.24 22419113
    [Google Scholar]
  123. Zhu W. Ye L. Zhang J. Yu P. Wang H. Ye Z. Tian J. PFK15, a small molecule inhibitor of PFKFB3, induces cell cycle arrest, apoptosis and inhibits invasion in gastric cancer. PLoS One 2016 11 9 e0163768 10.1371/journal.pone.0163768 27669567
    [Google Scholar]
  124. Minchenko O.H. Tsuchihara K. Minchenko D.O. Bikfalvi A. Esumi H. Mechanisms of regulation of PFKFB expression in pancreatic and gastric cancer cells. World J. Gastroenterol. 2014 20 38 13705 13717 10.3748/wjg.v20.i38.13705 25320508
    [Google Scholar]
  125. Ge X. Lyu P. Gu Y. Li L. Li J. Wang Y. Zhang L. Fu C. Cao Z. Sonic hedgehog stimulates glycolysis and proliferation of breast cancer cells: Modulation of PFKFB3 activation. Biochem. Biophys. Res. Commun. 2015 464 3 862 868 10.1016/j.bbrc.2015.07.052 26171876
    [Google Scholar]
  126. Clem B. Telang S. Clem A. Yalcin A. Meier J. Simmons A. Rasku M.A. Arumugam S. Dean W.L. Eaton J. Lane A. Trent J.O. Chesney J. Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Mol. Cancer Ther. 2008 7 1 110 120 10.1158/1535‑7163.MCT‑07‑0482 18202014
    [Google Scholar]
  127. Seo M. Kim J.D. Neau D. Sehgal I. Lee Y.H. Structure-based development of small molecule PFKFB3 inhibitors: a framework for potential cancer therapeutic agents targeting the Warburg effect. PLoS One 2011 6 9 e24179 10.1371/journal.pone.0024179 21957443
    [Google Scholar]
  128. Zlacká J. Murár M. Addová G. Moravčík R. Boháč A. Zeman M. Synthesis of Glycolysis Inhibitor PFK15 and its synergistic action with an approved multikinase antiangiogenic drug on human endothelial cell migration and proliferation. Int. J. Mol. Sci. 2022 23 22 14295 10.3390/ijms232214295 36430773
    [Google Scholar]
  129. Lu X. Zhou D. Hou B. Liu Q.X. Chen Q. Deng X.F. Yu Z.B. Dai J.G. Zheng H. Dichloroacetate enhances the antitumor efficacy of chemotherapeutic agents via inhibiting autophagy in non-small-cell lung cancer. Cancer Manag. Res. 2018 10 1231 1241 10.2147/CMAR.S156530 29844702
    [Google Scholar]
  130. Sun H. Zhu A. Zhou X. Wang F. Suppression of pyruvate dehydrogenase kinase-2 re-sensitizes paclitaxel-resistant human lung cancer cells to paclitaxel. Oncotarget 2017 8 32 52642 52650 10.18632/oncotarget.16991 28881758
    [Google Scholar]
  131. Woolbright B.L. Choudhary D. Mikhalyuk A. Trammel C. Shanmugam S. Abbott E. Pilbeam C.C. Taylor J.A. The role of pyruvate dehydrogenase kinase-4 (PDK4) in bladder cancer and chemoresistance. Mol. Cancer Ther. 2018 17 9 2004 2012 10.1158/1535‑7163.MCT‑18‑0063 29907593
    [Google Scholar]
  132. Fekir K. Dubois-Pot-Schneider H. Désert R. Daniel Y. Glaise D. Rauch C. Morel F. Fromenty B. Musso O. Cabillic F. Corlu A. Retrodifferentiation of human tumor hepatocytes to stem cells leads to metabolic reprogramming and chemoresistance. Cancer Res. 2019 79 8 1869 1883 10.1158/0008‑5472.CAN‑18‑2110 30837223
    [Google Scholar]
  133. Su L. Zhang H. Yan C. Chen A. Meng G. Wei J. Yu D. Ding Y. Superior anti-tumor efficacy of diisopropylamine dichloroacetate compared with dichloroacetate in a subcutaneous transplantation breast tumor model. Oncotarget 2016 7 40 65721 65731 10.18632/oncotarget.11609 27582548
    [Google Scholar]
  134. Foretz M. Guigas B. Bertrand L. Pollak M. Viollet B. Metformin: From mechanisms of action to therapies. Cell Metab. 2014 20 6 953 966 10.1016/j.cmet.2014.09.018 25456737
    [Google Scholar]
  135. Lee J.H. Kim T.I. Jeon S.M. Hong S.P. Cheon J.H. Kim W.H. The effects of metformin on the survival of colorectal cancer patients with diabetes mellitus. Int. J. Cancer 2012 131 3 752 759 10.1002/ijc.26421 21913184
    [Google Scholar]
  136. Jiralerspong S. Palla S.L. Giordano S.H. Meric-Bernstam F. Liedtke C. Barnett C.M. Hsu L. Hung M.C. Hortobagyi G.N. Gonzalez-Angulo A.M. Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer. J. Clin. Oncol. 2009 27 20 3297 3302 10.1200/JCO.2009.19.6410 19487376
    [Google Scholar]
  137. Višnjić D. Lalić H. Dembitz V. Tomić B. Smoljo T. AICAr, a Widely Used AMPK activator with important aMPK-independent effects: A systematic review. Cells 2021 10 5 1095 10.3390/cells10051095 34064363
    [Google Scholar]
  138. Hu X.L. Zhu Y.J. Hu C.H. You L. Wu J. He X.Y. Huang W.J. Wu Z.H. Ghrelin affects gastric cancer progression by activating AMPK signaling pathway. Biochem. Genet. 2021 59 3 652 667 10.1007/s10528‑020‑10022‑x 33442814
    [Google Scholar]
  139. Ginter G. Ceranowicz P. Warzecha Z. Protective and healing effects of ghrelin and risk of cancer in the digestive system. Int. J. Mol. Sci. 2021 22 19 10571 10.3390/ijms221910571 34638910
    [Google Scholar]
  140. Schwalfenberg G.K. N-Acetylcysteine: A review of clinical usefulness (an Old Drug with New Tricks). J. Nutr. Metab. 2021 2021 1 13 10.1155/2021/9949453 34221501
    [Google Scholar]
  141. Yao Z. Zhang X. Zhen Y. He X.Y. Zhao S. Li X.F. Yang B. Gao F. Guo F.Y. Fu L. Liu X.Z. Duan C.Z. A novel small-molecule activator of Sirtuin-1 induces autophagic cell death/mitophagy as a potential therapeutic strategy in glioblastoma. Cell Death Dis. 2018 9 7 767 10.1038/s41419‑018‑0799‑z 29991742
    [Google Scholar]
  142. Mihanfar A. Yousefi B. Azizzadeh B. Majidinia M. Interactions of melatonin with various signaling pathways: implications for cancer therapy. Cancer Cell Int. 2022 22 1 420 10.1186/s12935‑022‑02825‑2 36581900
    [Google Scholar]
  143. Yang A. Peng F. Zhu L. Li X. Ou S. Huang Z. Wu S. Peng C. Liu P. Kong Y. Melatonin inhibits triple-negative breast cancer progression through the Lnc049808-FUNDC1 pathway. Cell Death Dis. 2021 12 8 712 10.1038/s41419‑021‑04006‑x 34272359
    [Google Scholar]
  144. Samec M. Liskova A. Koklesova L. Zhai K. Varghese E. Samuel S.M. Šudomová M. Lucansky V. Kassayova M. Pec M. Biringer K. Brockmueller A. Kajo K. Hassan S.T.S. Shakibaei M. Golubnitschaja O. Büsselberg D. Kubatka P. metabolic anti-cancer effects of melatonin: Clinically relevant prospects. Cancers 2021 13 12 3018 10.3390/cancers13123018 34208645
    [Google Scholar]
  145. Zhuang J. Liu X. Yang Y. Zhang Y. Guan G. Sulfasalazine, a potent suppressor of gastric cancer proliferation and metastasis by inhibition of xCT: Conventional drug in new use. J. Cell. Mol. Med. 2021 25 12 5372 5380 10.1111/jcmm.16548 33988296
    [Google Scholar]
  146. Chen D. Xie J. Fiskesund R. Dong W. Liang X. Lv J. Jin X. Liu J. Mo S. Zhang T. Cheng F. Zhou Y. Zhang H. Tang K. Ma J. Liu Y. Huang B. Chloroquine modulates antitumor immune response by resetting tumor-associated macrophages toward M1 phenotype. Nat. Commun. 2018 9 1 873 10.1038/s41467‑018‑03225‑9 29491374
    [Google Scholar]
  147. Raczka A.M. Reynolds P.A. Glutaminase inhibition in renal cell carcinoma therapy. Cancer Drug Resist. 2019 2 2 356 364 10.20517/cdr.2018.004 35582719
    [Google Scholar]
  148. Ren B. Gu X. Zheng Y. Liu C. Wang D. Sun Y. Ma Z. Intrathecal injection of metabotropic glutamate receptor subtype 3 and 5 agonist/antagonist attenuates bone cancer pain by inhibition of spinal astrocyte activation in a mouse model. Anesthesiology 2012 116 1 122 132 10.1097/ALN.0b013e31823de68d 22123524
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266430740251020110940
Loading
/content/journals/ctmc/10.2174/0115680266430740251020110940
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test