Skip to content
2000
image of Exploring CD4+ T Cell-Mediated Metabolism in Serous Ovarian Cancer via Mendelian Randomization and Single-Cell RNA-Sequencing

Abstract

Introduction

To investigate the causal relationship between 1-palmitoyl-GPG (16:0) and serous ovarian cancer (SOC), and explore the underlying mechanisms.

Method

Two-sample Mendelian randomization (MR) and mediation effect analyses were employed to determine the causal effects of 1-palmitoyl-GPG (16:0) on serous ovarian cancer (SOC), focusing particularly on naive CD4+ T cell proportions as potential mediators. Single-cell RNA sequencing, immune infiltration analysis, and bulk machine learning algorithms were also integrated to examine the expression and impact of palmitoyl-CoA synthesis genes in CD4+ T cells. Lasso regression was utilized to refine the set of marker genes, and CatBoost machine learning algorithm was applied for predictive modeling. SHAP analysis was performed to interpret the model results.

Results

MR and mediation analyses indicated that 1-palmitoyl-GPG (16:0) has a causal effect on SOC, partly mediated by the proportion of naive CD4+ T cells, and partly through direct effects potentially involving metabolic gene expression (., PIGB) in CD4+ T cells. Single-cell and immune infiltration analyses confirmed that key palmitoyl-CoA synthesis genes, including PIGB, were highly expressed in CD4+ T cells and may contribute to SOC both indirectly, by influencing naive CD4+ T cell proportions, and directly through metabolic modulation within CD4+ subsets. The bulk RNA-seq machine learning model showed good predictive performance on an independent validation dataset. SHAP analysis was used to interpret feature contributions, with PIGB having the greatest impact on model predictions. The immune-related genes, including upregulated PIGB, GZMA, PRF1, S100A4, and CCL5, while downregulated AHNAK and LGALS1 (except in fibroblasts). Furthermore, different patterns of gene expression were observed in different CD4+ T cell clusters, which corresponded to various developmental statuses and functional roles. We identified a causal relationship between 1-palmitoyl-GPG (16:0) and SOC, which is mediated by naive CD4+ T cells and key synthesis genes.

Conclusion and Discussion

Our findings provide new insights into the metabolic and immunological mechanisms underlying SOC, and highlight potential targets for therapeutic interventions.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266403606251027080335
2026-01-12
2026-01-31
Loading full text...

Full text loading...

/deliver/fulltext/ctmc/10.2174/0115680266403606251027080335/BMS-CTMC-2025-138.html?itemId=/content/journals/ctmc/10.2174/0115680266403606251027080335&mimeType=html&fmt=ahah

References

  1. Bray F. Laversanne M. Sung H. Ferlay J. Siegel R.L. Soerjomataram I. Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  2. Vergote I. Denys H. De Greve J. Gennigens C. Van De Vijver K. Kerger J. Vuylsteke P. Baurain J.F. Treatment algorithm in patients with ovarian cancer. Facts Views Vis. ObGyn 2020 12 3 227 239 33123697
    [Google Scholar]
  3. Mahmood R.D. Morgan R.D. Edmondson R.J. Clamp A.R. Jayson G.C. First-Line Management of Advanced High-Grade Serous Ovarian Cancer. Curr. Oncol. Rep. 2020 22 6 64 10.1007/s11912‑020‑00933‑8 32494876
    [Google Scholar]
  4. Kumar S. Acharya S. Karthikeyan M. Biswas P. Kumari S. Limitations and potential of immunotherapy in ovarian cancer. Front. Immunol. 2024 14 1292166 10.3389/fimmu.2023.1292166 38264664
    [Google Scholar]
  5. Wei Y. He L. Liu T. Guo T. Xie C. Jia J. Lin Y. Liu J. Fan J. Efficacy and safety of PARP inhibitors combined with antiangiogenic agents in the maintenance treatment of ovarian cancer: A systematic review and meta-analysis with trial sequential analysis of randomized controlled trials. Front. Pharmacol. 2024 15 1372077 10.3389/fphar.2024.1372077 38584601
    [Google Scholar]
  6. Cheng Z. Mirza H. Ennis D.P. Smith P. Morrill Gavarró L. Sokota C. Giannone G. Goranova T. Bradley T. Piskorz A. Lockley M. Kaur B. Singh N. Tookman L.A. Krell J. McDermott J. Macintyre G. Markowetz F. Brenton J.D. McNeish I.A. The Genomic Landscape of Early-Stage Ovarian High-Grade Serous Carcinoma. Clin. Cancer Res. 2022 28 13 2911 2922 10.1158/1078‑0432.CCR‑21‑1643 35398881
    [Google Scholar]
  7. Kim S.K. Cho S.W. The Evasion Mechanisms of Cancer Immunity and Drug Intervention in the Tumor Microenvironment. Front. Pharmacol. 2022 13 868695 10.3389/fphar.2022.868695 35685630
    [Google Scholar]
  8. Gaulin N. Chilakapati S.R. Zsiros E. Turning cold into hot: Combination of pembrolizumab with bevacizumab and oral metronomic cyclophosphamide increases immune cell migration into the tumor microenvironment in responding patients with recurrent ovarian cancer (090). Gynecol. Oncol. 2022 166 S61 10.1016/S0090‑8258(22)01316‑6
    [Google Scholar]
  9. Konstantinopoulos P.A. Cannistra S.A. Immune Checkpoint Inhibitors in Ovarian Cancer: Can We Bridge the Gap Between IMagynation and Reality? J. Clin. Oncol. 2021 39 17 1833 1838 10.1200/JCO.21.00571 33891471
    [Google Scholar]
  10. Kim J.H. Kim B.S. Lee S.K. Regulatory T. Regulatory T. Cells in Tumor Microenvironment and Approach for Anticancer Immunotherapy. Immune Netw. 2020 20 1 4 10.4110/in.2020.20.e4 32158592
    [Google Scholar]
  11. Monk B.J. Colombo N. Oza A.M. Fujiwara K. Birrer M.J. Randall L. Poddubskaya E.V. Scambia G. Shparyk Y.V. Lim M.C. Bhoola S.M. Sohn J. Yonemori K. Stewart R.A. Zhang X. Perkins Smith J. Linn C. Ledermann J.A. Chemotherapy with or without avelumab followed by avelumab maintenance versus chemotherapy alone in patients with previously untreated epithelial ovarian cancer (JAVELIN Ovarian 100): An open-label, randomised, phase 3 trial. Lancet Oncol. 2021 22 9 1275 1289 10.1016/S1470‑2045(21)00342‑9 34363762
    [Google Scholar]
  12. Squibb B.-M. A phase II safety and efficacy study of ipilimumab monotherapy in recurrent platinum sensitive ovarian cancer subjects. 2020
    [Google Scholar]
  13. Svane I.M. T-cell therapy in combination with nivolumab, relatlimab and ipilimumab for patients with advanced ovarian-, fallopian tube- and primary peritoneal cancer. 2021
    [Google Scholar]
  14. Ukita M. Hamanishi J. Yoshitomi H. Yamanoi K. Takamatsu S. Ueda A. Suzuki H. Hosoe Y. Furutake Y. Taki M. Abiko K. Yamaguchi K. Nakai H. Baba T. Matsumura N. Yoshizawa A. Ueno H. Mandai M. CXCL13-producing CD4+ T cells accumulate in the early phase of tertiary lymphoid structures in ovarian cancer. JCI Insight 2022 7 12 157215 10.1172/jci.insight.157215 35552285
    [Google Scholar]
  15. Wu K. Fong L. CD4+ T cells help myeloid-mediated killing of immune-evasive tumors. Trends Cancer 2023 9 10 777 779 10.1016/j.trecan.2023.07.013 37544796
    [Google Scholar]
  16. Cao T. Dong J. Huang J. Tang Z. Shen H. Identification of fatty acid signature to predict prognosis and guide clinical therapy in patients with ovarian cancer. Front. Oncol. 2022 12 979565 10.3389/fonc.2022.979565 36267966
    [Google Scholar]
  17. Ha J.H. Radhakrishnan R. Jayaraman M. Yan M. Ward J.D. Fung K.M. Moxley K. Sood A.K. Isidoro C. Mukherjee P. Song Y.S. Dhanasekaran D.N. LPA induces metabolic reprogramming in ovarian cancer via a pseudohypoxic response. Cancer Res. 2018 78 8 1923 1934 10.1158/0008‑5472.CAN‑17‑1624 29386184
    [Google Scholar]
  18. Huang Y. Lin W. Zheng X. Causal association between 637 human metabolites and ovarian cancer: A mendelian randomization study. BMC Genomics 2024 25 1 97 10.1186/s12864‑024‑09997‑3 38262941
    [Google Scholar]
  19. Kong Y. Liu S. Wang X. Qie R. Associations between gut microbiota and gynecological cancers: A bi-directional two-sample Mendelian randomization study. Medicine 2024 103 13 37628 10.1097/MD.0000000000037628 38552081
    [Google Scholar]
  20. Gjorgoska M. Rizner T.L. The effect of androgens on the risk of endometriosis sub-phenotypes and ovarian neoplasms: A Mendelian randomization study. J. Steroid Biochem. Mol. Biol. 2024 239 106482 10.1016/j.jsbmb.2024.106482 38369034
    [Google Scholar]
  21. Zhong D. Cheng H. Application of Mendelian randomization in the discovery of risk factors for coronary heart disease from 2009 to 2023: A bibliometric review. Clin. Cardiol. 2024 47 1 24154 10.1002/clc.24154 37724687
    [Google Scholar]
  22. Zheng J. Baird D. Borges M.C. Bowden J. Hemani G. Haycock P. Evans D.M. Smith G.D. Recent developments in mendelian randomization studies. Curr. Epidemiol. Rep. 2017 4 4 330 345 10.1007/s40471‑017‑0128‑6 29226067
    [Google Scholar]
  23. Chen Z. Wang Z. Ma H. Bao H. Jiang T. Yang T. Ma S. Immune cells mediated the causal relationship between the gut microbiota and lung cancer: A Mendelian randomization study. Front. Microbiol. 2024 15 1390722 10.3389/fmicb.2024.1390722 38765682
    [Google Scholar]
  24. Zhang J. He J. Liao Y. Xia X. Yang F. Genetic association between gut microbiome and blood pressure and blood cell count as mediator: A two-step Mendelian randomization analysis. Gene 2024 925 148573 10.1016/j.gene.2024.148573 38762013
    [Google Scholar]
  25. Cui J. Zhai Q. Chen M. Yang Z. Genetically predicted lipids mediate the association between intrahepatic cholestasis of pregnancy and cardiovascular disease. Front. Cardiovasc. Med. 2024 11 1401010 10.3389/fcvm.2024.1401010 38745758
    [Google Scholar]
  26. Rijnhart J.J.M. Lamp S.J. Valente M.J. MacKinnon D.P. Twisk J.W.R. Heymans M.W. Mediation analysis methods used in observational research: A scoping review and recommendations. BMC Med. Res. Methodol. 2021 21 1 226 10.1186/s12874‑021‑01426‑3 34689754
    [Google Scholar]
  27. Crouse W.L. Keele G.R. Gastonguay M.S. Churchill G.A. Valdar W. A Bayesian model selection approach to mediation analysis. PLoS Genet. 2022 18 5 1010184 10.1371/journal.pgen.1010184 35533209
    [Google Scholar]
  28. Shen L. Li A. Cui J. Liu H. Zhang S. Integration of single-cell RNA-seq and bulk RNA-seq data to construct and validate a cancer-associated fibroblast-related prognostic signature for patients with ovarian cancer. J. Ovarian Res. 2024 17 1 82 10.1186/s13048‑024‑01399‑z 38627854
    [Google Scholar]
  29. Zhao S. Ye B. Chi H. Cheng C. Liu J. Identification of peripheral blood immune infiltration signatures and construction of monocyte-associated signatures in ovarian cancer and Alzheimer’s disease using single-cell sequencing. Heliyon 2023 9 7 17454 10.1016/j.heliyon.2023.e17454 37449151
    [Google Scholar]
  30. Zhang Y. Pei L. Machine learning constructs a T cell-related signature for predicting prognosis and drug sensitivity in ovarian cancer. Aging 2024 16 4 3332 3349 10.18632/aging.205536 38345575
    [Google Scholar]
  31. He L. Bulanova D. Oikkonen J. Häkkinen A. Zhang K. Zheng S. Wang W. Erkan E.P. Carpén O. Joutsiniemi T. Hietanen S. Hynninen J. Huhtinen K. Hautaniemi S. Vähärautio A. Tang J. Wennerberg K. Aittokallio T. Network-guided identification of cancer-selective combinatorial therapies in ovarian cancer. Brief. Bioinform. 2021 22 6 bbab272 10.1093/bib/bbab272 34343245
    [Google Scholar]
  32. Yuan K. Zhao S. Ye B. Wang Q. Liu Y. Zhang P. Xie J. Chi H. Chen Y. Cheng C. Liu J. A novel T-cell exhaustion-related feature can accurately predict the prognosis of OC patients. Front. Pharmacol. 2023 14 1192777 10.3389/fphar.2023.1192777 37284314
    [Google Scholar]
  33. Orrù V. Steri M. Sidore C. Marongiu M. Serra V. Olla S. Sole G. Lai S. Dei M. Mulas A. Virdis F. Piras M.G. Lobina M. Marongiu M. Pitzalis M. Deidda F. Loizedda A. Onano S. Zoledziewska M. Sawcer S. Devoto M. Gorospe M. Abecasis G.R. Floris M. Pala M. Schlessinger D. Fiorillo E. Cucca F. Complex genetic signatures in immune cells underlie autoimmunity and inform therapy. Nat. Genet. 2020 52 10 1036 1045 10.1038/s41588‑020‑0684‑4 32929287
    [Google Scholar]
  34. Chen Y. Lu T. Pettersson-Kymmer U. Stewart I.D. Butler-Laporte G. Nakanishi T. Cerani A. Liang K.Y.H. Yoshiji S. Willett J.D.S. Su C.Y. Raina P. Greenwood C.M.T. Farjoun Y. Forgetta V. Langenberg C. Zhou S. Ohlsson C. Richards J.B. Genomic atlas of the plasma metabolome prioritizes metabolites implicated in human diseases. Nat. Genet. 2023 55 1 44 53 10.1038/s41588‑022‑01270‑1 36635386
    [Google Scholar]
  35. Zheng X. Wang X. Cheng X. Liu Z. Yin Y. Li X. Huang Z. Wang Z. Guo W. Ginhoux F. Li Z. Zhang Z. Wang X. Single-cell analyses implicate ascites in remodeling the ecosystems of primary and metastatic tumors in ovarian cancer. Nat. Cancer 2023 4 8 1138 1156 10.1038/s43018‑023‑00599‑8 37488416
    [Google Scholar]
  36. Vathipadiekal V. Wang V. Wei W. Waldron L. Drapkin R. Gillette M. Skates S. Birrer M. Creation of a human secretome: A novel composite library of human secreted proteins: Validation using ovarian cancer gene expression data and a virtual secretome array. Clin. Cancer Res. 2015 21 21 4960 4969 10.1158/1078‑0432.CCR‑14‑3173 25944803
    [Google Scholar]
  37. Mok S.C. Bonome T. Vathipadiekal V. Bell A. Johnson M.E. Wong; Park, D.C.; Hao, K.; Yip, D.K.P.; Donninger, H.; Ozbun, L.; Samimi, G.; Brady, J.; Randonovich, M.; Pise-Masison, C.A.; Barrett, J.C.; Wong, W.H.; Welch, W.R.; Berkowitz, R.S.; Birrer, M.J. A gene signature predictive for outcome in advanced ovarian cancer identifies a survival factor: Microfibril-associated glycoprotein 2. Cancer Cell 2009 16 6 521 532 10.1016/j.ccr.2009.10.018 19962670
    [Google Scholar]
  38. Gunn H.J. Hayati Rezvan P. Fernández M.I. Comulada W.S. How to apply variable selection machine learning algorithms with multiply imputed data: A missing discussion. Psychol. Methods 2023 28 2 452 471 10.1037/met0000478 35113633
    [Google Scholar]
  39. Luo J. Ren S. Li Y. Liu T. The effect of college students’ adaptability on nomophobia: Based on Lasso regression. Front. Psychiatry 2021 12 641417 10.3389/fpsyt.2021.641417 34777032
    [Google Scholar]
  40. Duan D. Wang P. Rao X. Zhong J. Xiao M. Huang F. Xiao R. Identifying interactive effects of spatial drivers in soil heavy metal pollutants using interpretable machine learning models. Sci. Total Environ. 2024 934 173284 10.1016/j.scitotenv.2024.173284 38768726
    [Google Scholar]
  41. Hancock J.T. Khoshgoftaar T.M. CatBoost for big data: An interdisciplinary review. J. Big Data 2020 7 1 94 10.1186/s40537‑020‑00369‑8 33169094
    [Google Scholar]
  42. Ahn J.M. Kim J. Kim K. Ensemble Machine Learning of gradient boosting (XGBoost, LightGBM, CatBoost) and attention-based CNN-LSTM for harmful algal blooms forecasting. Toxins 2023 15 10 608 10.3390/toxins15100608 37888638
    [Google Scholar]
  43. Yoon H. Lee S. Fatty acid metabolism in ovarian cancer: Therapeutic implications. Int. J. Mol. Sci. 2022 23 4 2170 10.3390/ijms23042170 35216285
    [Google Scholar]
  44. Cuello M.A. Gómez F. Wichmann I. Suárez F. Kato S. Orlandini E. Brañes J. Ibañez C. Body composition and metabolic dysfunction really matter for the achievement of better outcomes in high-grade serous ovarian cancer. Cancers 2023 15 4 1156 10.3390/cancers15041156 36831500
    [Google Scholar]
  45. Xu Y. Lysophospholipid signaling in the epithelial ovarian cancer tumor microenvironment. Cancers 2018 10 7 227 10.3390/cancers10070227 29987226
    [Google Scholar]
  46. Zhan S. Yung M.M.H. Siu M.K.Y. Jiao P. Ngan H.Y.S. Chan D.W. Chan K.K.L. New insights into ferroptosis initiating therapies (FIT) by targeting the rewired lipid metabolism in ovarian cancer peritoneal metastases. Int. J. Mol. Sci. 2022 23 23 15263 10.3390/ijms232315263 36499591
    [Google Scholar]
  47. Yan J. Xu F. Zhou D. Zhang S. Zhang B. Meng Q. Lv Q. Metabolic reprogramming of three major nutrients in platinum-resistant ovarian cancer. Front. Oncol. 2023 13 1231460 10.3389/fonc.2023.1231460 37681030
    [Google Scholar]
  48. Long J. Zhang C.J. Zhu N. Du K. Yin Y.F. Tan X. Liao D.F. Qin L. Lipid metabolism and carcinogenesis, cancer development. Am. J. Cancer Res. 2018 8 5 778 791 29888102
    [Google Scholar]
  49. Guo Z. Huang J. Huo X. Huang C. Yu X. Sun Y. Li Y. He T. Guo H. Yang J. Xue L. Targeting LTA4H facilitates the reshaping of the immune microenvironment mediated by CCL5 and sensitizes ovarian cancer to Cisplatin. Sci. China Life Sci. 2024 67 6 1226 1241 10.1007/s11427‑023‑2444‑5 38300441
    [Google Scholar]
  50. Ma J. Cen Q. Wang Q. Liu L. Zhou J. Exosomes released from PD-L1+ tumor associated macrophages promote peritoneal metastasis of epithelial ovarian cancer by up-regulating T cell lipid metabolism. Biochem. Biophys. Rep. 2023 36 101542 10.1016/j.bbrep.2023.101542 37822876
    [Google Scholar]
  51. Li L. Fridley B.L. Kalari K. Niu N. Jenkins G. Batzler A. Abo R.P. Schaid D. Wang L. Discovery of genetic biomarkers contributing to variation in drug response of cytidine analogues using human lymphoblastoid cell lines. BMC Genomics 2014 15 1 93 10.1186/1471‑2164‑15‑93 24483146
    [Google Scholar]
  52. Gao D. Cazares L.H. Fish E.N. CCL5-CCR5 interactions modulate metabolic events during tumor onset to promote tumorigenesis. BMC Cancer 2017 17 1 834 10.1186/s12885‑017‑3817‑0 29216863
    [Google Scholar]
  53. Qiu J. Xu L. Zeng X. Wu H. Liang F. Lv Q. Du Z. CCL5 mediates breast cancer metastasis and prognosis through CCR5/Treg cells. Front. Oncol. 2022 12 972383 10.3389/fonc.2022.972383 36033472
    [Google Scholar]
  54. Huffman A.P. Lin J.H. Kim S.I. Byrne K.T. Vonderheide R.H. CCL5 mediates CD40-driven CD4+ T cell tumor infiltration and immunity. JCI Insight 2020 5 10 137263 10.1172/jci.insight.137263 32324594
    [Google Scholar]
  55. An Y. Duan H. ALKBH5 modulates macrophages polarization in tumor microenvironment of ovarian cancer. J. Ovarian Res. 2024 17 1 84 10.1186/s13048‑024‑01394‑4 38637813
    [Google Scholar]
  56. Jeong M. Wang Y.Y. Choi J.Y. Lim M.C. Choi J.H. CC chemokine ligand 7 derived from cancer-stimulated macrophages promotes ovarian cancer cell invasion. Cancers 2021 13 11 2745 10.3390/cancers13112745 34206004
    [Google Scholar]
  57. van Elsas M.J. Middelburg J. Labrie C. Roelands J. Schaap G. Sluijter M. Tonea R. Ovcinnikovs V. Lloyd K. Schuurman J. Riesenfeld S.J. Gajewski T.F. Immunotherapy-activated T cells recruit and skew late-stage activated M1-like macrophages that are critical for therapeutic efficacy. Cancer Cell 2024 42 6 1032 1050.e10 10.1016/j.ccell.2024.04.011 38759656
    [Google Scholar]
  58. Gao S.H. Liu S.Z. Wang G.Z. Zhou G.B. CXCL13 in cancer and other diseases: Biological functions, clinical significance, and therapeutic opportunities. Life 2021 11 12 1282 10.3390/life11121282 34947813
    [Google Scholar]
  59. Carlsen H.S. Baekkevold E.S. Morton H.C. Haraldsen G. Brandtzaeg P. Monocyte-like and mature macrophages produce CXCL13 (B cell-attracting chemokine 1) in inflammatory lesions with lymphoid neogenesis. Blood 2004 104 10 3021 3027 10.1182/blood‑2004‑02‑0701 15284119
    [Google Scholar]
  60. Olbrecht S. Busschaert P. Qian J. Vanderstichele A. Loverix L. Van Gorp T. Van Nieuwenhuysen E. Han S. Van den Broeck A. Coosemans A. Van Rompuy A.S. Lambrechts D. Vergote I. High-grade serous tubo-ovarian cancer refined with single-cell RNA sequencing: Specific cell subtypes influence survival and determine molecular subtype classification. Genome Med. 2021 13 1 111 10.1186/s13073‑021‑00922‑x 34238352
    [Google Scholar]
  61. Padmanabhan S. Gaire B. Zou Y. Uddin M.M. Vancurova I. IFNγ-induced PD-L1 expression in ovarian cancer cells is regulated by JAK1, STAT1 and IRF1 signaling. Cell. Signal. 2022 97 110400 10.1016/j.cellsig.2022.110400 35820543
    [Google Scholar]
  62. Qian Y. Arellano G. Ifergan I. Lin J. Snowden C. Kim T. Thomas J.J. Law C. Guan T. Balabanov R.D. Kaech S.M. Miller S.D. Choi J. ZEB1 promotes pathogenic Th1 and Th17 cell differentiation in multiple sclerosis. Cell Rep. 2021 36 8 109602 10.1016/j.celrep.2021.109602 34433042
    [Google Scholar]
  63. Xiao H. Ulmert I. Bach L. Huber J. Narasimhan H. Kurochkin I. Chang Y. Holst S. Mörbe U. Zhang L. Schlitzer A. Pereira C.F. Schraml B.U. Baumjohann D. Lahl K. Genomic deletion of Bcl6 differentially affects conventional dendritic cell subsets and compromises Tfh/Tfr/Th17 cell responses. Nat. Commun. 2024 15 1 3554 10.1038/s41467‑024‑46966‑6 38688934
    [Google Scholar]
  64. Mo Z. Liu D. Chen Y. Luo J. Li W. Liu J. Yu L. Huang B. Zhang S. Single-cell transcriptomics reveals the role of Macrophage-Naïve CD4 + T cell interaction in the immunosuppressive microenvironment of primary liver carcinoma. J. Transl. Med. 2022 20 1 466 10.1186/s12967‑022‑03675‑2 36221095
    [Google Scholar]
  65. Cachot A. Bilous M. Liu Y.C. Li X. Saillard M. Cenerenti M. Rockinger G.A. Wyss T. Guillaume P. Schmidt J. Genolet R. Ercolano G. Protti M.P. Reith W. Ioannidou K. de Leval L. Trapani J.A. Coukos G. Harari A. Speiser D.E. Mathis A. Gfeller D. Altug H. Romero P. Jandus C. Tumor-specific cytolytic CD4 T cells mediate immunity against human cancer. Sci. Adv. 2021 7 9 eabe3348 10.1126/sciadv.abe3348 33637530
    [Google Scholar]
  66. Yuan Y. Li P. Li J. Zhao Q. Chang Y. He X. Protein lipidation in health and disease: Molecular basis, physiological function and pathological implication. Signal Transduct. Target. Ther. 2024 9 1 60 10.1038/s41392‑024‑01759‑7 38485938
    [Google Scholar]
  67. Oh D.Y. Fong L. Cytotoxic CD4+ T cells in cancer: Expanding the immune effector toolbox. Immunity 2021 54 12 2701 2711 10.1016/j.immuni.2021.11.015 34910940
    [Google Scholar]
  68. Kori M. Demirtas T.Y. Comertpay B. Arga K.Y. Sinha R. Gov E. A 19-gene signature of serous ovarian cancer identified by machine learning and systems biology: Prospects for diagnostics and personalized medicine. OMICS 2024 28 2 90 101 10.1089/omi.2023.0273 38320250
    [Google Scholar]
  69. Hiruta A. Oguri Y. Yokoi A. Matsumoto T. Oda Y. Tomohiro M. Hashimura M. Jiang Z. Tochimoto M. Nakagawa M. Saegusa M. S100A4/Nonmuscle myosin IIA/p53 axis contributes to aggressive features in ovarian high-grade serous carcinoma. Am. J. Pathol. 2020 190 11 2304 2316 10.1016/j.ajpath.2020.07.014 32805233
    [Google Scholar]
  70. Cai Y. Hu Y. Yu F. Tong W. Wang S. Sheng S. Zhu J. AHNAK suppresses ovarian cancer progression through the Wnt/β-catenin signaling pathway. Aging 2021 13 20 23579 23587 10.18632/aging.203473 34689136
    [Google Scholar]
  71. Li X. Wang H. Jia A. Cao Y. Yang L. Jia Z. LGALS1 regulates cell adhesion to promote the progression of ovarian cancer. Oncol. Lett. 2023 26 2 326 10.3892/ol.2023.13912 37415637
    [Google Scholar]
  72. Lee D. Dunn Z.S. Guo W. Rosenthal C.J. Penn N.E. Yu Y. Zhou K. Li Z. Ma F. Li M. Song T.C. Cen X. Li Y.R. Zhou J.J. Pellegrini M. Wang P. Yang L. Unlocking the potential of allogeneic Vδ2 T cells for ovarian cancer therapy through CD16 biomarker selection and CAR/IL-15 engineering. Nat. Commun. 2023 14 1 6942 10.1038/s41467‑023‑42619‑2 37938576
    [Google Scholar]
  73. You Y. Li Y. Li M. Lei M. Wu M. Qu Y. Yuan Y. Chen T. Jiang H. Ovarian cancer stem cells promote tumour immune privilege and invasion via CCL5 and regulatory T cells. Clin. Exp. Immunol. 2017 191 1 60 73 10.1111/cei.13044 28868628
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266403606251027080335
Loading
/content/journals/ctmc/10.2174/0115680266403606251027080335
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test