Skip to content
2000
image of Bacterial Nanocellulose Membranes for Codelivery of Carvacrol and Thymol: Physico-chemical Characterization and In vitro Studies

Abstract

Introduction

Skin wounds represent a worldwide problem. Biopolymers have been attracting interest in healthcare products for wound dressing. Among these, bacterial nanocellulose membranes (BNC) are attractive for their unique structure, but they lack antimicrobial activity. Thus, the incorporation of the monoterpenes Carvacrol (Car) and Thymol (Thy) - which present antimicrobial and healing properties - toward the improvement of skin wound healing, consists of an appealing approach. This research aimed to produce and characterize nanocellulose membranes containing carvacrol and/or thymol, and investigate their release behavior, cytotoxicity, and antimicrobial properties.

Method

BNC/Car, BNC/Thy, and BNC/Car-Thy membranes were produced at doses of 0.1 and 1.0 mg/cm2.

Results

The natural components incorporation into the nanocellulose did not interfere with the ultra-structure or its physical characteristics. Pilot studies showed that membranes with 1.0 mg/cm2 of monoterpenes were toxic to fibroblasts. Therefore, all further studies used the lower dose of 0.1 mg/cm2. Release experiments showed a burst release between 2-4 h with sustained release till 24 h, reaching around 80% of the initial amount of the incorporated monoterpenes. Studies with fibroblast and keratinocytes indicated no cytotoxicity and that cells could proliferate over the BNC/Car-Thy membranes. Microbiological studies suggested some antimicrobial potential of the BNC doped with Car and Thy.

Discussion

BNC membranes incorporated with Car and Thy were successfully produced and the monoterpenes incorporation into the BNC did not interfere with either ultra-structure or with its physico-chemical characteristics. Natural products incorporation induced cell proliferation and presented antimicrobial properties, besides increasing the solubility and stability of these natural compounds.

Conclusion

This innovative biomaterial has the potential for healthcare products.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266377999250929122859
2025-10-17
2025-12-16
Loading full text...

Full text loading...

References

  1. Rojas Y. Finnerty C.C. Radhakrishnan R.S. Herndon D.N. Burns: An update on current pharmacotherapy. Expert Opin. Pharmacother. 2012 13 17 2485 2494 10.1517/14656566.2012.738195 23121414
    [Google Scholar]
  2. El Khatib A. Jeschke M.G. Contemporary aspects of burn care. Medicina 2021 57 4 386 10.3390/medicina57040386 33923571
    [Google Scholar]
  3. Gerding R.L. Emerman C.L. Effron D. Lukens T. Imbembo A.L. Fratianne R.B. Outpatient management of partial-thickness burns: Biobrane® versus 1% silver sulfadiazine. Ann. Emerg. Med. 1990 19 2 121 124 10.1016/S0196‑0644(05)81793‑7 2405749
    [Google Scholar]
  4. Nasser S. Mabrouk A. Maher A. Colonization of burn wounds in Ain Shams University Burn Unit. Burns 2003 29 3 229 233 10.1016/s0305‑4179(02)00285‑1 12706615
    [Google Scholar]
  5. Barud Hda S. de Araujo A.M. Saska S. Mestieri L.B. Campos J.A. de Freitas R.M. Ferreira N.U. Nascimento A.P. Miguel F.G. Vaz M.M. Barizon E.A. Marquele-Oliveira F. Gaspar A.M. Ribeiro S.J. Berretta A.A. Antimicrobial Brazilian propolis (EPP-AF) containing biocellulose membranes as promising biomaterial for skin wound healing. Evid. Based Complement. Alternat. Med. 2013 703024 10.1155/2013/703024 23840264
    [Google Scholar]
  6. Alqirnas M.Q. Jarman Y.A. Almosa A.S. Alharbi S.S. Alhamadh M.S. Qasim S.S. Alhusainan H. Predictors of sepsis and sepsis-related mortality in critically Ill burn patients: A single tertiary care center experience. Plast. Reconstr. Surg. Glob. Open 2024 12 9 e6180 10.1097/GOX.0000000000006180 39296606
    [Google Scholar]
  7. Nischwitz S.P. Luze H. Popp D. Winter R. Draschl A. Schellnegger M. Kargl L. Rappl T. Giretzlehner M. Kamolz L-P. Global burn care and the ideal burn dressing reloaded - A survey of global experts. Burns 2021 47 7 1665 1674 10.1016/j.burns.2021.02.008 33838957
    [Google Scholar]
  8. Trovatti E. Freire C.S.R. Pinto P.C. Almeida I.F. Costa P. Silvestre A.J.D. Neto C.P. Rosado C. Bacterial cellulose membranes applied in topical and transdermal delivery of lidocaine hydrochloride and ibuprofen: In vitro diffusion studies. Int. J. Pharm. 2012 435 1 83 87 10.1016/j.ijpharm.2012.01.002 22266531
    [Google Scholar]
  9. Bombaldi de Souza R.F. Bombaldi de Souza F.C. Bierhalz A.C.K. Pires A.L.R. Moraes Â.M. Biopolymer-based films and membranes as wound dressings. Biopolymer Membranes and Films. de Moraes M.A. da Silva C.F. Vieira R.S. Elsevier 2020 165 194 10.1016/B978‑0‑12‑818134‑8.00007‑9
    [Google Scholar]
  10. Klemm D. Schumann D. Udhardt U. Marsch S. Bacterial synthesized cellulose — Artificial blood vessels for microsurgery. Prog. Polym. Sci. 2001 26 9 1561 1603 10.1016/S0079‑6700(01)00021‑1
    [Google Scholar]
  11. Machado R.T.A. Meneguin A.B. Sábio R.M. Franco D.F. Antonio S.G. Gutierrez J. Tercjak A. Berretta A.A. Ribeiro S.J.L. Lazarini S.C. Lustri W.R. Barud H.S. Komagataeibacter rhaeticus grown in sugarcane molasses-supplemented culture medium as a strategy for enhancing bacterial cellulose production. Ind. Crops Prod. 2018 122 637 646 10.1016/j.indcrop.2018.06.048
    [Google Scholar]
  12. Czaja W. Krystynowicz A. Bielecki S. Brown R. Microbial cellulose—the natural power to heal wounds. Biomaterials 2006 27 2 145 151 10.1016/j.biomaterials.2005.07.035 16099034
    [Google Scholar]
  13. Zarepour A. Gok B. Budama-Kilinc Y. Khosravi A. Iravani S. Zarrabi A. Bacterial nanocelluloses as sustainable biomaterials for advanced wound healing and dressings. J. Mater. Chem. B Mater. Biol. Med. 2024 12 48 12489 12507 10.1039/D4TB01024H 39533945
    [Google Scholar]
  14. Saska S. Scarel-Caminaga R.M. Teixeira L.N. Franchi L.P. dos Santos R.A. Gaspar A.M.M. de Oliveira P.T. Rosa A.L. Takahashi C.S. Messaddeq Y. Ribeiro S.J.L. Marchetto R. Characterization and in vitro evaluation of bacterial cellulose membranes functionalized with osteogenic growth peptide for bone tissue engineering. J. Mater. Sci. Mater. Med. 2012 23 9 2253 2266 10.1007/s10856‑012‑4676‑5 22622695
    [Google Scholar]
  15. Weyell P. Beekmann U. Küpper C. Dederichs M. Thamm J. Fischer D. Kralisch D. Tailor-made material characteristics of bacterial cellulose for drug delivery applications in dentistry. Carbohydr. Polym. 2019 207 1 10 10.1016/j.carbpol.2018.11.061 30599988
    [Google Scholar]
  16. Meneguin A.B. da Silva Barud H. Sábio R.M. de Sousa P.Z. Manieri K.F. de Freitas L.A.P. Pacheco G. Alonso J.D. Chorilli M. Spray-dried bacterial cellulose nanofibers: A new generation of pharmaceutical excipient intended for intestinal drug delivery. Carbohydr. Polym. 2020 249 116838 10.1016/j.carbpol.2020.116838 32933682
    [Google Scholar]
  17. Sanchavanakit N. Sangrungraungroj W. Kaomongkolgit R. Banaprasert T. Pavasant P. Phisalaphong M. Growth of human keratinocytes and fibroblasts on bacterial cellulose film. Biotechnol. Prog. 2006 22 4 1194 1199 10.1021/bp060035o 16889398
    [Google Scholar]
  18. Loh E.Y.X. Mohamad N. Fauzi M.B. Ng M.H. Ng S.F. Mohd Amin M.C.I. Development of a bacterial cellulose-based hydrogel cell carrier containing keratinocytes and fibroblasts for full-thickness wound healing. Sci. Rep. 2018 8 1 2875 10.1038/s41598‑018‑21174‑7 29440678
    [Google Scholar]
  19. Barud H.S. Regiani T. Marques R.F.C. Lustri W.R. Messaddeq Y. Ribeiro S.J.L. Antimicrobial bacterial cellulose-silver nanoparticles composite membranes. J. Nanomater. 2011 2011 1 8 10.1155/2011/721631
    [Google Scholar]
  20. Maslova E. Eisaiankhongi L. Sjöberg F. McCarthy R.R. Burns and biofilms: Priority pathogens and in vivo models. NPJ Biofilms Microbiomes 2021 7 1 73 10.1038/s41522‑021‑00243‑2 34504100
    [Google Scholar]
  21. Maria L.C.S. Santos A.L.C. Oliveira P.C. Valle A.S.S. Barud H.S. Messaddeq Y. Ribeiro S.J.L. Preparation and antibacterial activity of silver nanoparticles impregnated in bacterial cellulose. Polímeros 2010 20 1 72 77 10.1590/S0104‑14282010005000001
    [Google Scholar]
  22. Maneerung T. Tokura S. Rujiravanit R. Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr. Polym. 2008 72 1 43 51 10.1016/j.carbpol.2007.07.025
    [Google Scholar]
  23. Marquele-Oliveira F. da Silva Barud H. Torres E.C. Machado R.T.A. Caetano G.F. Leite M.N. Frade M.A.C. Ribeiro S.J.L. Berretta A.A. Development, characterization and pre-clinical trials of an innovative wound healing dressing based on propolis (EPP-AF®)-containing self-microemulsifying formulation incorporated in biocellulose membranes. Int. J. Biol. Macromol. 2019 136 570 578 10.1016/j.ijbiomac.2019.05.135 31226369
    [Google Scholar]
  24. Memar M.Y. Raei P. Alizadeh N. Akbari Aghdam M. Kafil H.S. Carvacrol and thymol: Strong antimicrobial agents against resistant isolates. Rev. Med. Microbiol. 2017 28 2 63 68 10.1097/MRM.0000000000000100
    [Google Scholar]
  25. Rúa J. del Valle P. de Arriaga D. Fernández-Álvarez L. García-Armesto M.R. Combination of carvacrol and thymol: Antimicrobial activity against Staphylococcus aureus and antioxidant activity. Foodborne Pathog. Dis. 2019 16 9 622 629 10.1089/fpd.2018.2594 31009261
    [Google Scholar]
  26. Kachur K. Suntres Z. The antibacterial properties of phenolic isomers, carvacrol and thymol. Crit. Rev. Food Sci. Nutr. 2020 60 18 3042 3053 10.1080/10408398.2019.1675585 31617738
    [Google Scholar]
  27. Costa M.F. Durço A.O. Rabelo T.K. Barreto R.S.S. Guimarães A.G. Effects of Carvacrol, Thymol and essential oils containing such monoterpenes on wound healing: A systematic review. J. Pharm. Pharmacol. 2019 71 2 141 155 10.1111/jphp.13054 30537169
    [Google Scholar]
  28. AbouAitah K. Bil M. Pietrzykowska E. Szałaj U. Fudala D. Woźniak B. Nasiłowska J. Swiderska-Sroda A. Lojkowski M. Sokołowska B. Swieszkowski W. Lojkowski W. Drug-releasing antibacterial coating made from nano-hydroxyapatite using the sonocoating method. Nanomaterials 2021 11 7 1690 10.3390/nano11071690 34203218
    [Google Scholar]
  29. Bulman S. Tronci G. Goswami P. Carr C. Russell S. Antibacterial properties of nonwoven wound dressings coated with manuka honey or methylglyoxal. Materials 2017 10 8 954 10.3390/ma10080954 28813014
    [Google Scholar]
  30. Rodero C.F. Fioramonti Calixto G.M. Cristina Dos Santos K. Sato M.R. Aparecido Dos Santos Ramos M. Miro M.S. Rodriguez E. Vigezzi C. Bauab T.M. Sotomayor C.E. Chorilli M. Curcumin-loaded liquid crystalline systems for controlled drug release and improved treatment of vulvovaginal candidiasis. Mol. Pharm. 2018 15 10 4491 4504 10.1021/acs.molpharmaceut.8b00507 30184431
    [Google Scholar]
  31. Castilho R.M. Squarize C.H. Leelahavanichkul K. Zheng Y. Bugge T. Gutkind J.S. Rac1 is required for epithelial stem cell function during dermal and oral mucosal wound healing but not for tissue homeostasis in mice. PLoS One 2010 5 5 e10503 10.1371/journal.pone.0010503 20463891
    [Google Scholar]
  32. de Oliveira Barud H.G. da Silva R.R. Borges M.A.C. Castro G.R. Ribeiro S.J.L. da Silva Barud H. Bacterial nanocellulose in dentistry: Perspectives and challenges. Molecules 2020 26 1 49 10.3390/molecules26010049 33374301
    [Google Scholar]
  33. de Oliveira Barud H.G. da Silva R.R. da Silva Barud H. Tercjak A. Gutierrez J. Lustri W.R. de Oliveira O.B. Ribeiro S.J.L. A multipurpose natural and renewable polymer in medical applications: Bacterial cellulose. Carbohydr. Polym. 2016 153 406 420 10.1016/j.carbpol.2016.07.059 27561512
    [Google Scholar]
  34. Marestoni L.D. Barud H.S. Gomes R.J. Catarino R.P.F. Hata N.N.Y. Ressutte J.B. Spinosa W.A. Commercial and potential applications of bacterial cellulose in Brazil: Ten years review. Polímeros 2020 30 4 e2020047 10.1590/0104‑1428.09420
    [Google Scholar]
  35. Costa P. Sousa Lobo J.M. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci. 2001 13 2 123 133 10.1016/s0928‑0987(01)00095‑1 11297896
    [Google Scholar]
  36. Kačuráková M. Smith A.C. Gidley M.J. Wilson R.H. Molecular interactions in bacterial cellulose composites studied by 1D FT-IR and dynamic 2D FT-IR spectroscopy. Carbohydr. Res. 2002 337 12 1145 1153 10.1016/S0008‑6215(02)00102‑7 12062530
    [Google Scholar]
  37. Valderrama A.C.S. Rojas De G.C. Traceability of active compounds of essential oils in antimicrobial food packaging using a chemometric method by ATR-FTIR. Am. J. Anal. Chem. 2017 8 11 726 741 10.4236/ajac.2017.811053
    [Google Scholar]
  38. Barud H.S. Ribeiro C.A. Crespi M.S. Martines M.A.U. Dexpert-Ghys J. Marques R.F.C. Messaddeq Y. Ribeiro S.J.L. Thermal characterization of bacterial cellulose–phosphate composite membranes. J. Therm. Anal. Calorim. 2007 87 3 815 818 10.1007/s10973‑006‑8170‑5
    [Google Scholar]
  39. Barud H.S. Souza J.L. Santos D.B. Crespi M.S. Ribeiro C.A. Messaddeq Y. Ribeiro S.J.L. Bacterial cellulose/poly(3-hydroxybutyrate) composite membranes. Carbohydr. Polym. 2011 83 3 1279 1284 10.1016/j.carbpol.2010.09.049
    [Google Scholar]
  40. Adepu S. Khandelwal M. Bacterial cellulose with microencapsulated antifungal essential oils: A novel double barrier release system. Materialia 2020 9 100585 10.1016/j.mtla.2020.100585
    [Google Scholar]
  41. French A.D. Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 2014 21 2 885 896 10.1007/s10570‑013‑0030‑4
    [Google Scholar]
  42. French A.D. Correction to: Increment in evolution of cellulose crystallinity analysis. Cellulose 2020 27 15 9135 9136 10.1007/s10570‑020‑03377‑2
    [Google Scholar]
  43. Perotti G.F. Barud H.S. Messaddeq Y. Ribeiro S.J.L. Constantino V.R.L. Bacterial cellulose–laponite clay nanocomposites. Polymer 2011 52 1 157 163 10.1016/j.polymer.2010.10.062
    [Google Scholar]
  44. Roman M. Winter W.T. Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 2004 5 5 1671 1677 10.1021/bm034519+ 15360274
    [Google Scholar]
  45. Crawford C.B. Quinn B. 4 - Physiochemical properties and degradation. Microplastic Pollutants. Crawford C.B. Quinn B. Elsevier 2017 57 100 10.1016/B978‑0‑12‑809406‑8.00004‑9
    [Google Scholar]
  46. Król-Morkisz K. Pielichowska K. 13 - Thermal Decomposition of Polymer Nanocomposites With Functionalized Nanoparticles. Polymer Composites with Functionalized Nanoparticles. Pielichowski K. Majka T.M. Elsevier 2019 405 435 10.1016/B978‑0‑12‑814064‑2.00013‑5
    [Google Scholar]
  47. Celebi H. Gunes E. Combined effect of a plasticizer and carvacrol and thymol on the mechanical, thermal, morphological properties of poly(lactic acid). J. Appl. Polym. Sci. 2018 135 8 45895 10.1002/app.45895
    [Google Scholar]
  48. Ramos M. Jiménez A. Peltzer M. Garrigós M.C. Characterization and antimicrobial activity studies of polypropylene films with carvacrol and thymol for active packaging. J. Food Eng. 2012 109 3 513 519 10.1016/j.jfoodeng.2011.10.031
    [Google Scholar]
  49. Ramos M. Beltran A. Valdes A. Peltzer M. Jimenez A. Garrigós M. Zaikov G. Active packaging for fresh food based on the release of carvacrol and thymol. 2013 7 3 295 303 10.23939/chcht07.03.295
    [Google Scholar]
  50. Oliveira C.E.L. Cremasco M.A. Determination of the vapor pressure of Lippia gracilis Schum essential oil by thermogravimetric analysis. Thermochim. Acta 2014 577 1 4 10.1016/j.tca.2013.11.023
    [Google Scholar]
  51. Khaleel C. Tabanca N. Buchbauer G. α-Terpineol, a natural monoterpene: A review of its biological properties. Open Chem. 2018 16 1 349 361 10.1515/chem‑2018‑0040
    [Google Scholar]
  52. Souza R. Cardoso M. Menezes C. Silva J. De Sousa D. Batista J. Gastroprotective activity of α-terpineol in two experimental models of gastric ulcer in rats. Daru 2011 19 4 277 281 22615669
    [Google Scholar]
  53. Ferreira L.M.V. Revestimentos Hidrofóbicos (Master). FCT/Universidade Nova de Lisboa 2013
    [Google Scholar]
  54. Aewsiri T. Benjakul S. Visessanguan W. Eun J.B. Wierenga P.A. Gruppen H. Antioxidative activity and emulsifying properties of cuttlefish skin gelatin modified by oxidised phenolic compounds. Food Chem. 2009 117 1 160 168 10.1016/j.foodchem.2009.03.092
    [Google Scholar]
  55. Das S. Baker A.B. Biomaterials and Nanotherapeutics for Enhancing Skin Wound Healing. Front. Bioeng. Biotechnol. 2016 4 82 10.3389/fbioe.2016.00082 27843895
    [Google Scholar]
  56. Wang L. Duan L. Liu G. Sun J. Shahbazi M.A. Kundu S.C. Reis R.L. Xiao B. Yang X. Bioinspired polyacrylic acid‐based dressing: Wet adhesive, self‐healing, and multi‐biofunctional coacervate hydrogel accelerates wound healing. Adv. Sci. 2023 10 16 2207352 10.1002/advs.202207352 37060151
    [Google Scholar]
  57. Lüpertz R. Wätjen W. Kahl R. Chovolou Y. Dose- and time-dependent effects of doxorubicin on cytotoxicity, cell cycle and apoptotic cell death in human colon cancer cells. Toxicology 2010 271 3 115 121 10.1016/j.tox.2010.03.012 20346999
    [Google Scholar]
  58. Gould S. Templin M.V. Off target toxicities and links with physicochemical properties of medicinal products, including antibiotics, oligonucleotides, lipid nanoparticles (with cationic and/or anionic charges). Data review suggests an emerging pattern. Toxicol. Lett. 2023 384 14 29 10.1016/j.toxlet.2023.07.011 37454775
    [Google Scholar]
  59. Cristani M. D’Arrigo M. Mandalari G. Castelli F. Sarpietro M.G. Micieli D. Venuti V. Bisignano G. Saija A. Trombetta D. Interaction of four monoterpenes contained in essential oils with model membranes: Implications for their antibacterial activity. J. Agric. Food Chem. 2007 55 15 6300 6308 10.1021/jf070094x 17602646
    [Google Scholar]
  60. Lambert R.J.W. Skandamis P.N. Coote P.J. Nychas G.J.E. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol. 2001 91 3 453 462 10.1046/j.1365‑2672.2001.01428.x 11556910
    [Google Scholar]
  61. Chen Y. Mensah A. Wang Q. Li D. Qiu Y. Wei Q. Hierarchical porous nanofibers containing thymol/beta-cyclodextrin: Physico-chemical characterization and potential biomedical applications. Mater. Sci. Eng. C 2020 115 111155 10.1016/j.msec.2020.111155 32600736
    [Google Scholar]
  62. Zhong H. Mu B. Zhang M. Hui A. Kang Y. Wang A. Preparation of effective carvacrol/attapulgite hybrid antibacterial materials by mechanical milling. J. Porous Mater. 2020 27 3 843 853 10.1007/s10934‑020‑00863‑7
    [Google Scholar]
  63. Bajpai A.K. Shukla S.K. Bhanu S. Kankane S. Responsive polymers in controlled drug delivery. Prog. Polym. Sci. 2008 33 11 1088 1118 10.1016/j.progpolymsci.2008.07.005
    [Google Scholar]
  64. Tamahkar E. Bacterial cellulose/poly vinyl alcohol based wound dressings with sustained antibiotic delivery. Chem. Pap. 2021 75 8 3979 3987 10.1007/s11696‑021‑01631‑w
    [Google Scholar]
  65. Corsaro C. Neri G. Mezzasalma A.M. Fazio E. Weibull modeling of controlled drug release from Ag-PMA nanosystems. Polymers 2021 13 17 2897 10.3390/polym13172897 34502937
    [Google Scholar]
  66. Aragón J. Costa C. Coelhoso I. Mendoza G. Aguiar-Ricardo A. Irusta S. Electrospun asymmetric membranes for wound dressing applications. Mater. Sci. Eng. C 2019 103 109822 10.1016/j.msec.2019.109822 31349490
    [Google Scholar]
  67. Miguel S.P. Simões D. Moreira A.F. Sequeira R.S. Correia I.J. Production and characterization of electrospun silk fibroin based asymmetric membranes for wound dressing applications. Int. J. Biol. Macromol. 2019 121 524 535 10.1016/j.ijbiomac.2018.10.041 30316771
    [Google Scholar]
  68. Pivetta T.P. Simões S. Araújo M.M. Carvalho T. Arruda C. Marcato P.D. Development of nanoparticles from natural lipids for topical delivery of thymol: Investigation of its anti-inflammatory properties. Colloids Surf. B Biointerfaces 2018 164 281 290 10.1016/j.colsurfb.2018.01.053 29413607
    [Google Scholar]
  69. Manconi M. Petretto G. D’hallewin G. Escribano E. Milia E. Pinna R. Palmieri A. Firoznezhad M. Peris J.E. Usach I. Fadda A.M. Caddeo C. Manca M.L. Thymus essential oil extraction, characterization and incorporation in phospholipid vesicles for the antioxidant/antibacterial treatment of oral cavity diseases. Colloids Surf. B Biointerfaces 2018 171 115 122 10.1016/j.colsurfb.2018.07.021 30025373
    [Google Scholar]
  70. Norbury W. Herndon D.N. Tanksley J. Jeschke M.G. Finnerty C.C. Infection in Burns. Surg. Infect. 2016 17 2 250 255 10.1089/sur.2013.134 26978531
    [Google Scholar]
  71. Jacobs M.R. Optimisation of antimicrobial therapy using pharmacokinetic and pharmacodynamic parameters. Clin. Microbiol. Infect. 2001 7 11 589 596 10.1046/j.1198‑743x.2001.00295.x 11737083
    [Google Scholar]
  72. Batain F. Crescencio K. Alves T. Souza J. Amaral V. Juliana C. Santos C. Jozala A. Luciane L. Chaud M. Medicinal plant extract associated with bacterial cellulose membrane: Antibacterial activity and physicochemical properties. Arch. Pharm. Pharm. Sci. 2020 4 1 013 020 10.29328/journal.apps.1001022
    [Google Scholar]
  73. Engel J.B. Heckler C. Tondo E.C. Daroit D.J. da Silva Malheiros P. Antimicrobial activity of free and liposome-encapsulated thymol and carvacrol against Salmonella and Staphylococcus aureus adhered to stainless steel. Int. J. Food Microbiol. 2017 252 18 23 10.1016/j.ijfoodmicro.2017.04.003 28436830
    [Google Scholar]
  74. Dikić J. Lukić I. Pajnik J. Pavlović J. Hrenović J. Rajic N. Antibacterial activity of thymol/carvacrol and clinoptilolite composites prepared by supercritical solvent impregnation. J. Porous Mater. 2021 28 1577 1584 10.1007/s10934‑021‑01107‑y
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266377999250929122859
Loading
/content/journals/ctmc/10.2174/0115680266377999250929122859
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: In vitro ; Carvacrol ; Monoterpenes ; Bacterial nanocellulose ; Membranes ; Thymol
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test