Skip to content
2000
image of Zingerone Induces Apoptosis and Ferroptosis in Prostate Cancer DU145 Cells

Abstract

Introduction

Prostate cancer is among the most prominent malignant tumors in the male population, characterized by growing morbidity, a high fatality rate, and currently limited therapeutic options, necessitating the urgent development of novel clinical medications. The objective of the current study was to examine the therapeutic potential of zingerone in prostate cancer cells.

Methods

In this study, we investigated the underlying mechanism by which zingerone exerts its anticancer effects in prostate cancer cells. We conducted various and experiments to determine the therapeutic efficacy and mechanism of action of zingerone.

Results

Cytotoxicity analysis of zingerone revealed its substantial cytotoxic impact and ability to elevate lactose dehydrogenase levels in DU145 cells. Using the MTT assay, we determined that a concentration of 24.84 μM zingerone in DU145 cells grown for 24 h resulted in an IC value. Zingerone effectively induced apoptosis by increasing the levels of cytochrome c and caspase in DU145 cells. Regarding the identification of signs of ferroptosis, evidence has been shown for the presence of heightened mitochondrial ROS, disrupted mitochondrial membrane potential, increased levels of glutathione (GSH) and malondialdehyde (MDA), and reduced expression of SCL7A11 and GPX4.

Discussion

Importantly, our study confirms that zingerone triggered both apoptosis and ferroptosis in DU145 cells by downregulating SLC7A11 and GPX4 expression.

Conclusion

This study provides evidence that makes zingerone a potent therapeutic agent for prostate cancer.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266411570250929101928
2025-10-16
2025-11-08
Loading full text...

Full text loading...

References

  1. Gandaglia G. Mazzone E. Stabile A. Pellegrino A. Cucchiara V. Barletta F. Scuderi S. Robesti D. Leni R. Samanes Gajate A.M. Picchio M. Gianolli L. Brembilla G. De Cobelli F. van Oosterom M.N. van Leeuwen F.W.B. Montorsi F. Briganti A. Prostate-specific membrane antigen radioguided surgery to detect nodal metastases in primary prostate cancer patients undergoing robot-assisted radical prostatectomy and extended Pelvic Lymph node dissection: Results of a planned interim analysis of a prospective phase 2 study. Eur. Urol. 2022 82 4 411 418 10.1016/j.eururo.2022.06.002 35879127
    [Google Scholar]
  2. Ong S. Chen K. Grummet J. Yaxley J. Scheltema M.J. Stricker P. Tay K.J. Lawrentschuk N. Guidelines of guidelines: Focal therapy for prostate cancer, is it time for consensus? BJU Int. 2023 131 1 20 31 10.1111/bju.15883 36083229
    [Google Scholar]
  3. Dorff T.B. Narayan V. Forman S.J. Zang P.D. Fraietta J.A. June C.H. Haas N.B. Priceman S.J. Novel redirected T–cell immunotherapies for advanced prostate cancer. Clin. Cancer Res. 2022 28 4 576 584 10.1158/1078‑0432.CCR‑21‑1483 34675084
    [Google Scholar]
  4. Sooi K. Walsh R. Kumarakulasinghe N. Wong A. Ngoi N. A review of strategies to overcome immune resistance in the treatment of advanced prostate cancer. Cancer Drug Resist. 2023 6 3 656 673 10.20517/cdr.2023.48 37842236
    [Google Scholar]
  5. Ni J. Zhang Z. Ge M. Chen J. Zhuo W. Immune-based combination therapy to convert immunologically cold tumors into hot tumors: An update and new insights. Acta Pharmacol. Sin. 2023 44 2 288 307 10.1038/s41401‑022‑00953‑z 35927312
    [Google Scholar]
  6. Khan F. Pandey P. Verma M. Ramniwas S. Lee D. Moon S. Park M.N. Upadhyay T.K. Kim B. Emerging trends of phytochemicals as ferroptosis modulators in cancer therapy. Biomed. Pharmacother. 2024 173 116363 10.1016/j.biopha.2024.116363 38479184
    [Google Scholar]
  7. Pourhabib Mamaghani M. Mousavikia S.N. Azimian H. Ferroptosis in cancer: Mechanisms, therapeutic strategies, and clinical implications. Pathol. Res. Pract. 2025 269 155907 10.1016/j.prp.2025.155907 40101548
    [Google Scholar]
  8. Ojo O.A. Grant S. Nwafor-Ezeh P.I. Maduakolam-Aniobi T.C. Akinborode T.I. Ezenabor E.H. Ojo A.B. Ferroptosis as the new approach to cancer therapy. Cancer Treat Res. Commun 2025 43 100913 10.1016/j.ctarc.2025.100913] 40187205
    [Google Scholar]
  9. Wang Y. Wei Z. Pan K. Li J. Chen Q. The function and mechanism of ferroptosis in cancer. Apoptosis 2020 25 11-12 786 798 10.1007/s10495‑020‑01638‑w 32944829
    [Google Scholar]
  10. Ma X. Cao D. Zhang Y. Ding X. Hu Z. Wang J. Apatinib combined with paclitaxel suppresses synergistically TNBC progression through enhancing ferroptosis susceptibility regulated SLC7A11/GPX4/ACSL4 axis. Cell. Signal. 2025 131 111760 10.1016/j.cellsig.2025.111760 40120963
    [Google Scholar]
  11. Chen X. Cui H. Qin L. Liu R. Fang F. Wang Z. Soybean lecithin–gallic acid complex sensitizes lung cancer cells to radiation through ferroptosis regulated by Nrf2/SLC7A11/GPX4 pathway. Nutrients 2025 17 7 1262 10.3390/nu17071262 40219018
    [Google Scholar]
  12. Su Z. Liu Y. Wang L. Gu W. Regulation of SLC7A11 as an unconventional checkpoint in tumorigenesis through ferroptosis. Genes Dis. 2025 12 1 101254 10.1016/j.gendis.2024.101254 39569390
    [Google Scholar]
  13. Bharadwaj R. Jaiswal S. Velarde de la Cruz E.E. Thakare R.P. Targeting solute carrier transporters (SLCs) as a therapeutic target in different cancers. Diseases 2024 12 3 63 10.3390/diseases12030063 38534987
    [Google Scholar]
  14. Lang X. Green M.D. Wang W. Yu J. Choi J.E. Jiang L. Liao P. Zhou J. Zhang Q. Dow A. Saripalli A.L. Kryczek I. Wei S. Szeliga W. Vatan L. Stone E.M. Georgiou G. Cieslik M. Wahl D.R. Morgan M.A. Chinnaiyan A.M. Lawrence T.S. Zou W. Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. Cancer Discov. 2019 9 12 1673 1685 10.1158/2159‑8290.CD‑19‑0338 31554642
    [Google Scholar]
  15. Gong R. Wan X. Jiang S. Guan Y. Li Y. Jiang T. Chen Z. Zhong C. He L. Xiang Z. Yang J. Xu B. Yang J. Cheng Y. GPX4-AUTAC induces ferroptosis in breast cancer by promoting the selective autophagic degradation of GPX4 mediated by TRAF6-p62. Cell Death Differ. 2025 10.1038/s41418‑025‑01528‑1 40394165
    [Google Scholar]
  16. Lai J. Zhao L. Hong C. Zou Q. Su J. Li S. Zhou X. Li Z. Deng B. Cao J. Qi Q. Baicalein triggers ferroptosis in colorectal cancer cells via blocking the JAK2/STAT3/GPX4 axis. Acta Pharmacol. Sin. 2024 45 8 1715 1726 10.1038/s41401‑024‑01258‑z 38684798
    [Google Scholar]
  17. Shamsabadi S. Nazer Y. Ghasemi J. Mahzoon E. Baradaran Rahimi V. Ajiboye B.O. Askari V.R. Promising influences of zingerone against natural and chemical toxins: A comprehensive and mechanistic review. Toxicon 2023 233 107247 10.1016/j.toxicon.2023.107247 37562703
    [Google Scholar]
  18. Mahomoodally M.F. Aumeeruddy M.Z. Rengasamy K.R.R. Roshan S. Hammad S. Pandohee J. Hu X. Zengin G. Ginger and its active compounds in cancer therapy: From folk uses to nano-therapeutic applications. Semin. Cancer Biol. 2021 69 140 149 10.1016/j.semcancer.2019.08.009 31412298
    [Google Scholar]
  19. Qian S. Fang H. Zheng L. Liu M. Zingerone suppresses cell proliferation via inducing cellular apoptosis and inhibition of the PI3K/AKT/mTOR signaling pathway in human prostate cancer PC‐3 cells. J. Biochem. Mol. Toxicol. 2021 35 1 22611 10.1002/jbt.22611 32905641
    [Google Scholar]
  20. Ahmad B. Rehman M.U. Amin I. Arif A. Rasool S. Bhat S.A. Afzal I. Hussain I. Bilal S. Mir M.R. A review on pharmacological properties of Zingerone (4‐(4‐Hydroxy‐3‐methoxyphenyl)‐2‐butanone). ScientificWorldJournal 2015 2015 1 816364 10.1155/2015/816364 26106644
    [Google Scholar]
  21. Al-Oqail M.M. Farshori N.N. Al-Sheddi E.S. Al-Massarani S.M. Saquib Q. Siddiqui M.A. Al-Khedhairy A.A. Oxidative stress mediated cytotoxicity, cell cycle arrest, and apoptosis induced by Rosa damascena in human cervical cancer hela cells. Oxid. Med. Cell. Longev. 2021 2021 1 6695634 10.1155/2021/6695634 33574980
    [Google Scholar]
  22. Pandey P. Khan F. Alzahrani F.A. Qari H.A. Oves M. A novel approach to unraveling the apoptotic potential of rutin (Bioflavonoid) via targeting Jab1 in cervical cancer cells. Molecules 2021 26 18 5529 10.3390/molecules26185529 34577000
    [Google Scholar]
  23. Karthikeyan S. Kanimozhi G. Prasad N.R. Mahalakshmi R. Radiosensitizing effect of ferulic acid on human cervical carcinoma cells in vitro. Toxicol. In vitro 2011 25 7 1366 1375 10.1016/j.tiv.2011.05.007 21600977
    [Google Scholar]
  24. Jafri A. Siddiqui S. Rais J. Ahmad M.S. Kumar S. Jafar T. Afzal M. Arshad M. Induction of apoptosis by piperine in human cervical adenocarcinoma via ROS mediated mitochondrial pathway and caspase-3 activation. EXCLI J. 2019 18 154 164 10.17179/excli2018‑1928 31217779
    [Google Scholar]
  25. Jiao C. Chen W. Tan X. Liang H. Li J. Yun H. He C. Chen J. Ma X. Xie Y. Yang B.B. Ganoderma lucidum spore oil induces apoptosis of breast cancer cells in vitro and in vivo by activating caspase-3 and caspase-9. J. Ethnopharmacol. 2020 247 112256 10.1016/j.jep.2019.112256 31586690
    [Google Scholar]
  26. Ashoub M.H. Amiri M. Razavi R. Dawi E.A. Farsinejad A. Divsalar F. Salavati-Niasari M. Induction of ferroptosis cell death in acute promyelocytic leukemia cell lines (NB4 and HL-60) using hydrothermally synthesized ZnO NPs in the presence of black cardamom extract. Results Eng. 2023 20 101479 10.1016/j.rineng.2023.101479
    [Google Scholar]
  27. Liu Y. Yang X. Gan J. Chen S. Xiao Z.X. Cao Y. CB-Dock2: Improved protein–ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Res. 2022 50 W1 W159 W164 10.1093/nar/gkac394 35609983
    [Google Scholar]
  28. Allani M. Akhilesh; Tiwari, V. Caspase‐driven cancer therapies: Navigating the bridge between lab discoveries and clinical applications. Cell Biochem. Funct. 2024 42 2 3944 10.1002/cbf.3944 38348642
    [Google Scholar]
  29. Ding Z. Li Z. Sun K. Liu Y. Fang Z. Sun S. Li C. Wang Z. Mitochondrial regulation of ferroptosis in cancer cells. Int. J. Biol. Sci. 2025 21 5 2179 2200 10.7150/ijbs.105446 40083691
    [Google Scholar]
  30. Lu C. Zhang Z. Fan Y. Wang X. Qian J. Bian Z. Shikonin induces ferroptosis in osteosarcomas through the mitochondrial ROS-regulated HIF-1α/HO-1 axis. Phytomedicine 2024 135 156139 10.1016/j.phymed.2024.156139 39423479
    [Google Scholar]
  31. Zhou W. Lim A. Elmadbouh O.H.M. Edderkaoui M. Osipov A. Mathison A.J. Urrutia R. Liu T. Wang Q. Pandol S.J. Verteporfin induces lipid peroxidation and ferroptosis in pancreatic cancer cells. Free Radic. Biol. Med. 2024 212 493 504 10.1016/j.freeradbiomed.2024.01.003 38184120
    [Google Scholar]
  32. Yang X. Liu Y. Wang Z. Jin Y. Gu W. Ferroptosis as a new tool for tumor suppression through lipid peroxidation. Commun. Biol. 2024 7 1 1475 10.1038/s42003‑024‑07180‑8 39521912
    [Google Scholar]
  33. Wang B. Wang Y. Zhang J. Hu C. Jiang J. Li Y. Peng Z. ROS-induced lipid peroxidation modulates cell death outcome: Mechanisms behind apoptosis, autophagy, and ferroptosis. Arch. Toxicol. 2023 97 6 1439 1451 10.1007/s00204‑023‑03476‑6 37127681
    [Google Scholar]
  34. Jiang Y. Glandorff C. Sun M. GSH and Ferroptosis: Side-by-Side Partners in the Fight against Tumors. Antioxidants 2024 13 6 697 10.3390/antiox13060697 38929136
    [Google Scholar]
  35. Lin S.R. Chang C.H. Hsu C.F. Tsai M.J. Cheng H. Leong M.K. Sung P.J. Chen J.C. Weng C.F. Natural compounds as potential adjuvants to cancer therapy: Preclinical evidence. Br. J. Pharmacol. 2020 177 6 1409 1423 10.1111/bph.14816 31368509
    [Google Scholar]
  36. Haque A. Brazeau D. Amin A.R. Perspectives on natural compounds in chemoprevention and treatment of cancer: An update with new promising compounds. Eur. J. Cancer 2021 149 165 183 10.1016/j.ejca.2021.03.009 33865202
    [Google Scholar]
  37. Consoli V. Fallica A.N. Sorrenti V. Pittalà V. Vanella L. Novel insights on ferroptosis modulation as potential strategy for cancer treatment: When nature kills. Antioxid. Redox Signal. 2024 40 1-3 40 85 10.1089/ars.2022.0179 37132605
    [Google Scholar]
  38. Su Y. Zhao B. Zhou L. Zhang Z. Shen Y. Lv H. AlQudsy L.H.H. Shang P. Ferroptosis, a novel pharmacological mechanism of anti-cancer drugs. Cancer Lett. 2020 483 127 136 10.1016/j.canlet.2020.02.015 32067993
    [Google Scholar]
  39. Choi J.S. Ryu J. Bae W.Y. Park A. Nam S. Kim J.E. Jeong J.W. Zingerone suppresses tumor development through decreasing Cyclin D1 expression and inducing mitotic arrest. Int. J. Mol. Sci. 2018 19 9 2832 10.3390/ijms19092832 30235818
    [Google Scholar]
  40. Kazemi M. Jafarzadeh A. Nemati M. Taghipour F. Oladpour O. Rezayati M.T. Khorramdelazad H. Hassan Z.M. Zingerone improves the immune responses in an animal model of breast cancer. J. Complement. Integr. Med. 2021 18 2 303 310 10.1515/jcim‑2019‑0135 33544516
    [Google Scholar]
  41. Martelli A.M. Zweyer M. Ochs R.L. Tazzari P.L. Tabellini G. Narducci P. Bortul R. Nuclear apoptotic changes: An overview. J. Cell. Biochem. 2001 82 4 634 646 10.1002/jcb.1186 11500941
    [Google Scholar]
  42. Jiang P. Jiang W. Li X. Zhu Q. Combination of formononetin and sulforaphane natural drug repress the proliferation of cervical cancer cells via impeding PI3K/AKT/mTOR pathway. Appl. Biochem. Biotechnol. 2024 196 10 6726 6744 10.1007/s12010‑024‑04873‑y 38401043
    [Google Scholar]
  43. Zhang H. Zhou M. Ye C. Qin J. Lu X. Wang C. Wang X. Jin X. Betulinic acid inhibits the proliferation of human laryngeal carcinoma cells through reactive oxygen species-mediate mitochondrial apoptotic pathway. Toxicol. In Vitro 2024 95 105756 10.1016/j.tiv.2023.105756 38061603
    [Google Scholar]
  44. Mohanty D. Padhee S. Priyadarshini A. Champati B.B. Das P.K. Jena S. Sahoo A. Chandra Panda P. Nayak S. Ray A. Elucidating the anti-cancer potential of Cinnamomum tamala essential oil against non-small cell lung cancer: A multifaceted approach involving GC-MS profiling, network pharmacology, and molecular dynamics simulations. Heliyon 2024 10 6 28026 10.1016/j.heliyon.2024.e28026 38533033
    [Google Scholar]
  45. Ursini F. Maiorino M. Lipid peroxidation and ferroptosis: The role of GSH and GPx4. Free Radic. Biol. Med. 2020 152 175 185 10.1016/j.freeradbiomed.2020.02.027 32165281
    [Google Scholar]
  46. Endale H.T. Tesfaye W. Mengstie T.A. ROS induced lipid peroxidation and their role in ferroptosis. Front. Cell Dev. Biol. 2023 11 1226044 10.3389/fcell.2023.1226044 37601095
    [Google Scholar]
  47. Lyamzaev K.G. Panteleeva A.A. Simonyan R.A. Avetisyan A.V. Chernyak B.V. Mitochondrial lipid peroxidation is responsible for ferroptosis. Cells 2023 12 4 611 10.3390/cells12040611 36831278
    [Google Scholar]
  48. Lan J. Liu L. Zhao W. Li Z. Zeng R. Fang S. Chen L. Shen Y. Wei H. Zhang T. Ding Y. Unlocking the anticancer activity of gambogic acid: A shift towards ferroptosis via a GSH/Trx dual antioxidant system. Free Radic. Biol. Med. 2024 218 26 40 10.1016/j.freeradbiomed.2024.03.023 38570172
    [Google Scholar]
  49. Lyamzaev K.G. Panteleeva A.A. Simonyan R.A. Avetisyan A.V. Chernyak B.V. The critical role of mitochondrial lipid peroxidation in ferroptosis: Insights from recent studies. Biophys. Rev. 2023 15 5 875 885 10.1007/s12551‑023‑01126‑w 37974984
    [Google Scholar]
  50. Kong Y. Li J. Lin R. Lu S. Rong L. Xue Y. Fang Y. Understanding the unique mechanism of ferroptosis: A promising therapeutic target. Front. Cell Dev. Biol. 2024 11 1329147 10.3389/fcell.2023.1329147 38562992
    [Google Scholar]
  51. Wang S.J. Li D. Ou Y. Jiang L. Chen Y. Zhao Y. Gu W. Acetylation is crucial for p53-mediated ferroptosis and tumor suppression. Cell Rep. 2016 17 2 366 373 10.1016/j.celrep.2016.09.022 27705786
    [Google Scholar]
  52. Tsubouchi K. Araya J. Yoshida M. Sakamoto T. Koumura T. Minagawa S. Hara H. Hosaka Y. Ichikawa A. Saito N. Kadota T. Kurita Y. Kobayashi K. Ito S. Fujita Y. Utsumi H. Hashimoto M. Wakui H. Numata T. Kaneko Y. Mori S. Asano H. Matsudaira H. Ohtsuka T. Nakayama K. Nakanishi Y. Imai H. Kuwano K. Involvement of GPx4-regulated lipid peroxidation in idiopathic pulmonary fibrosis pathogenesis. J. Immunol. 2019 203 8 2076 2087 10.4049/jimmunol.1801232 31534007
    [Google Scholar]
  53. Hangauer M.J. Viswanathan V.S. Ryan M.J. Bole D. Eaton J.K. Matov A. Galeas J. Dhruv H.D. Berens M.E. Schreiber S.L. McCormick F. McManus M.T. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature 2017 551 7679 247 250 10.1038/nature24297 29088702
    [Google Scholar]
  54. Hacioglu C. Kar F. Capsaicin induces redox imbalance and ferroptosis through ACSL4/GPx4 signaling pathways in U87-MG and U251 glioblastoma cells. Metab. Brain Dis. 2023 38 2 393 408 10.1007/s11011‑022‑00983‑w 35438378
    [Google Scholar]
  55. Liu X.Y. Wei D.G. Li R.S. Capsaicin induces ferroptosis of NSCLC by regulating SLC7A11/GPX4 signaling in vitro. Sci. Rep. 2022 12 1 11996 10.1038/s41598‑022‑16372‑3 35835852
    [Google Scholar]
  56. Chen P. Lv X. Zheng Z. Gigantol exerts anti-lung cancer activity by inducing ferroptosis via SLC7A11-GPX4 axis. Biochem. Biophys. Res. Commun. 2024 690 149274 10.1016/j.bbrc.2023.149274 37995455
    [Google Scholar]
  57. Lei M. Zhang Y.L. Huang F.Y. Chen H.Y. Chen M.H. Wu R.H. Dai S.Z. He G.S. Tan G.H. Zheng W.P. Gankyrin inhibits ferroptosis through the p53/SLC7A11/GPX4 axis in triple-negative breast cancer cells. Sci. Rep. 2023 13 1 21916 10.1038/s41598‑023‑49136‑8 38081931
    [Google Scholar]
  58. Alshammari N. Pandey P. Redhwan A. Bakhsh H.R. Lakhanpal S. Rab S.O. Singh A. Saeed M. Khan F. Shah M.A. Unraveling the ferroptosis-inducing potential of methanol leaves extract of Prosopis Julifloravia downregulation of SLC7A11 and GPX4 mRNA expression in A549 lung cancer cells. Curr. Med. Chem. 2025 32 7 1442 1456 10.2174/0109298673343133241011072425 39449336
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266411570250929101928
Loading
/content/journals/ctmc/10.2174/0115680266411570250929101928
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: DU145 cells ; Zingerone ; Apoptosis ; Ferroptosis ; Natural compound ; Prostate Cancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test