Skip to content
2000
image of A Purified Novel Protein Obtained from Chlorella vulgaris Against Toxoplasma gondii

Abstract

Introduction

This study aimed to investigate the effects of the extract and purified protein from the microalga against in infected Vero cells.

Method

The extract was obtained through magnetic stirring with Tris-HCl buffer and evaluated for cytotoxicity and anti-Toxoplasma activity. The purified protein was isolated using Sephadex G-75 chromatography and assessed in light microscopy assays.

Results

Results indicated that the CC of the extract was > 2000 μg/mL. Both the extract and the purified protein effectively inhibited parasite multiplication, with IC50 values of 132.6 and 8.6 μg/mL, respectively, and selectivity indices of 11.5 and > 20, respectively.

Discussion

Microscopic analysis showed that the purified protein, even at higher concentrations, did not exhibit toxicity to the cells and reduced the number of intracellular tachyzoites.

Conclusion

These findings suggest that both the extract and purified protein of possess the ability to inhibit tachyzoites without causing toxicity to healthy cells, indicating their potential as bioactive compounds for pharmacological applications against toxoplasmosis.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266411952251028115549
2026-01-09
2026-01-31
Loading full text...

Full text loading...

References

  1. Siegel S. Lunde M.N. Gelderman A.H. Halterman R.H. Brown J.A. Levine A.S. Graw R.G. Transmission of toxoplasmosis by leukocyte transfusion. Blood 1971 37 4 388 394 10.1182/blood.V37.4.388.388 4927414
    [Google Scholar]
  2. Robert-Gangneux F. Dardé M.L. Epidemiology of and diagnostic strategies for toxoplasmosis. Clin. Microbiol. Rev. 2012 25 2 264 296 10.1128/CMR.05013‑11 22491772
    [Google Scholar]
  3. Bollani L. Auriti C. Achille C. Garofoli F. De Rose D.U. Meroni V. Salvatori G. Tzialla C. Congenital Toxoplasmosis: The state of the art. Front Pediatr. 2022 10 894573 10.3389/fped.2022.894573 35874584
    [Google Scholar]
  4. Mamizadeh M. Maleki F. Mohammadi M.R. Shamsi L. Asghari A. Pouryousef A. Seroprevalence and risk factors for Toxoplasma gondii infection in solid organ transplant patients: A global systematic review and meta-analysis. Parasite Epidemiol. Control 2025 29 e00421 10.1016/j.parepi.2025.e00421 40129460
    [Google Scholar]
  5. Salari N. Rahimi A. Zarei H. Abdolmaleki A. Rasoulpoor S. Shohaimi S. Mohammadi M. Global seroprevalence of Toxoplasma gondiiS in pregnant women: A systematic review and meta-analysis. BMC Pregnancy Childbirth 2025 25 1 90 90 10.1186/s12884‑025‑07182‑2
    [Google Scholar]
  6. Madireddy S. Chacon E.D.R. Mangat R. Toxoplasmosis. StatPearls 2022 11021
    [Google Scholar]
  7. Batz M.B. Hoffmann S. Morris J.G. Ranking the disease burden of 14 pathogens in food sources in the United States using attribution data from outbreak investigations and expert elicitation. J. Food Prot. 2012 75 7 1278 1291 10.4315/0362‑028X.JFP‑11‑418 22980012
    [Google Scholar]
  8. Scallan E. Hoekstra R.M. Angulo F.J. Tauxe R.V. Widdowson M.A. Roy S.L. Jones J.L. Griffin P.M. Foodborne illness acquired in the United States--major pathogens. Emerg. Infect. Dis. 2011 17 1 7 15 10.3201/eid1701.P11101 21192848
    [Google Scholar]
  9. Molan A. Nosaka K. Hunter M. Wang W. Global status of Toxoplasma gondii infection: systematic review and prevalence snapshots. Trop. Biomed. 2019 36 4 898 925 33597463
    [Google Scholar]
  10. Ben-Harari R.R. Goodwin E. Casoy J. Adverse event profile of pyrimethamine-based therapy in Toxoplasmosis: A systematic review. Drugs R D. 2017 17 4 523 544 10.1007/s40268‑017‑0206‑8 28879584
    [Google Scholar]
  11. Dunay I.R. Gajurel K. Dhakal R. Liesenfeld O. Montoya J.G. Treatment of Toxoplasmosis: Historical perspective, animal models, and current clinical practice. Clin. Microbiol. Rev. 2018 31 4 e00057 e17 10.1128/CMR.00057‑17 30209035
    [Google Scholar]
  12. Alday H. Doggett J. Drugs in development for toxoplasmosis: advances, challenges, and current status. Drug Des. Devel. Ther. 2017 11 273 293 10.2147/DDDT.S60973 28182168
    [Google Scholar]
  13. Hajj R. El; Tawk, L.; Itani, S.; Hamie, M.; Ezzeddine, J.; Sabban, M.; El; Hajj, H.; El, Toxoplasmosis: Current and emerging parasite druggable targets. Microorganisms 2021 9 253
    [Google Scholar]
  14. Murata F.H.A. Previato M. Frederico F.B. Barbosa A.P. Nakashima F. Faria G.M. Silveira Carvalho A.P. Meira Strejevitch C.S. Pereira-Chioccola V.L. Castiglioni L. de Mattos L.C. Siqueira R.C. Brandão de Mattos C.C. Evaluation of serological and molecular tests used for the identification of Toxoplasma gondii infection in patients treated in an ophthalmology clinic of a public health service in São Paulo state, Brazil. Front. Cell. Infect. Microbiol. 2020 9 472 10.3389/fcimb.2019.00472
    [Google Scholar]
  15. Montazeri M. Mehrzadi S. Sharif M. Sarvi S. Tanzifi A. Aghayan S.A. Daryani A. Drug resistance in Toxoplasma gondii. Front. Microbiol. 2018 9 2587 10.3389/fmicb.2018.02587 30420849
    [Google Scholar]
  16. Jiang Y. Shi Y. Hu D. Song X. The anti-Toxoplasma activity of the plant natural phenolic compound piceatannol. Front. Vet. Sci. 2022 9 972500 10.3389/fvets.2022.972500 35982927
    [Google Scholar]
  17. Silva S.C. Ferreira I.C.F.R. Dias M.M. Filomena Barreiro M. Microalgae-derived pigments: A 10-year bibliometric review and industry and market trend analysis. Molecules 2020 25 3406
    [Google Scholar]
  18. Melo M.G.N. Reino I.B.S.M. Vaitkevicius-Antão V. Silva J.M. Júnior J.N.S. Andrade A.F. Bezerra R.P. Marques D.A.V. Silva S.F.F. Araújo P.S.R. Lorena V.M.B. Morais R.C.S. Paiva-Cavalcanti M. Chlorella vulgaris extract and Imiquimod as new therapeutic targets for leishmaniasis: An immunological approach. Immunobiology 2024 229 1 152779 10.1016/j.imbio.2023.152779
    [Google Scholar]
  19. Júnior J.N.S. da Silva A.C. Oliveira K.K.S. Moreira L.R. Caires S.F.F.S. da Silva A.J. Moura Y.A.S. Marques D.A.V. Bezerra R.P. de Lorena V.M.B. Porto A.L.F. Green microalgae as a potential source of trypanocide compounds. Nat. Prod. Res. 2024 38 13 2329 2335 10.1080/14786419.2023.2169688 36661179
    [Google Scholar]
  20. Panahi Y. Darvishi B. Jowzi N. Beiraghdar F. Sahebkar A. Chlorella vulgaris: A multifunctional dietary supplement with diverse medicinal properties. Curr. Pharm. Des. 2015 22 2 164 173 10.2174/1381612822666151112145226 26561078
    [Google Scholar]
  21. Zainul Azlan N. Anum Mohd Yusof Y. Alias E. Makpol S. Yaacob Latif J. Tun Razak B. Lumpur K. Chlorella vulgaris modulates genes and muscle-specific micrornas expression to promote myoblast differentiation in culture. eCAM 2019 2019, 8394648
    [Google Scholar]
  22. Barboríková J. Šutovská M. Kazimierová I. Jošková M. Fraňová S. Kopecký J. Capek P. Extracellular polysaccharide produced by Chlorella vulgaris - Chemical characterization and anti-asthmatic profile. Int. J. Biol. Macromol. 2019 135 1 11 10.1016/j.ijbiomac.2019.05.104 31121228
    [Google Scholar]
  23. Cao Y. Yang S. Wang J. Kong W. Guo B. Xi Y. Zhang A. Yue B. Metabolomic exploration of the physiological regulatory mechanism of the growth and metabolism characteristics of Chlorella vulgaris under photoautotrophic, mixotrophic, and heterotrophic cultivation conditions. Biomass Bioenergy 2023 173 106775 10.1016/j.biombioe.2023.106775
    [Google Scholar]
  24. Chu C.Y. Huang R. Ling L.P. Purification and characterization of a novel haemagglutinin from Chlorella pyrenoidosa. J. Ind. Microbiol. Biotechnol. 2006 33 11 967 973 10.1007/s10295‑006‑0145‑9 16775687
    [Google Scholar]
  25. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970 227 5259 680 685 10.1038/227680a0 5432063
    [Google Scholar]
  26. Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983 65 1-2 55 63 10.1016/0022‑1759(83)90303‑4 6606682
    [Google Scholar]
  27. Soares A.M.S. Carvalho L.P. Melo E.J.T. Costa H.P.S. Vasconcelos I.M. Oliveira J.T.A. A protein extract and a cysteine protease inhibitor enriched fraction from Jatropha curcas seed cake have in vitro anti-Toxoplasma gondii activity. Exp. Parasitol. 2015 153 111 117 10.1016/j.exppara.2015.03.011 25816973
    [Google Scholar]
  28. Kavitha N. Noordin R. Chan K.L. Sasidharan S. In vitro anti-Toxoplasma gondii activity of root extract/fractions of Eurycoma longifolia Jack. BMC Complement. Altern. Med. 2012 12 1 91 10.1186/1472‑6882‑12‑91 22781137
    [Google Scholar]
  29. Coronado-Reyes J.A. Salazar-Torres J.A. Juárez-Campos B. González-Hernández J.C. Chlorella vulgaris, a microalgae important to be used in Biotechnology: A review. Food Sci. Technol. (Campinas) 2022 42 e37320 10.1590/fst.37320
    [Google Scholar]
  30. Ursu A.V. Marcati A. Sayd T. Sante-Lhoutellier V. Djelveh G. Michaud P. Extraction, fractionation and functional properties of proteins from the microalgae Chlorella vulgaris. Bioresour. Technol. 2014 157 134 139 10.1016/j.biortech.2014.01.071 24534795
    [Google Scholar]
  31. Villarejo A. Orús M.I. Ramazanov Z. Martínez F. A 38-kilodalton low-CO 2 -inducible polypeptide is associated with the pyrenoid in Chlorella vulgaris. Planta 1998 206 3 416 425 10.1007/s004250050417
    [Google Scholar]
  32. Ramazanov Z. Shiraiwa Y. del Río M.J. Rubio J. Effect of external CO2 concentrations on protein synthesis in the green algae Scenedesmus obliquus (Turp.) Kütz and Chlorella vulgaris (Kosikov). Planta 1995 197 2 272 277 10.1007/BF00202647
    [Google Scholar]
  33. Montazeri M. Sharif M. Sarvi S. Mehrzadi S. Ahmadpour E. Daryani A. A systematic review of in vitro and in vivo activities of anti-Toxoplasma drugs and compounds (2006-2016). Front. Microbiol. 2017 8 25 10.3389/fmicb.2017.00025 28163699
    [Google Scholar]
  34. Sibi G. Rabina S. Inhibition of Pro-inflammatory mediators and cytokines by Chlorella Vulgaris extracts. Pharmacognosy Res. 2016 8 2 118 122 10.4103/0974‑8490.172660 27034602
    [Google Scholar]
  35. Çeli̇k Payçu D.G. Büyükbaba Boral Ö. Effects of azithromycin and Chlorella vulgaris treatment on certain cytokine values and NK cell activity in an acute murine toxoplasmosis model Mikrobiyol Bul 2017 51 1 52 61 10.5578/mb.48568 28283010
    [Google Scholar]
  36. Powers J.L. Zhang X. Kim C.Y. Abugri D.A. Witola W.H. Activity of green algae extracts against Toxoplasma gondii. Med. Aromatic Plant. 2017 06 3 10.4172/2167‑0412.1000293
    [Google Scholar]
  37. Choi W. Jiang M. Chu J. Antiparasitic effects of Zingiber officinale (Ginger) extract against Toxoplasma gondii. J. Appl. Biomed. 2013 11 1 15 26 10.2478/v10136‑012‑0014‑y
    [Google Scholar]
  38. Devanthran K. Unyah Z. Majid R.A. Abdullah W.O. In vitro activity of Piper sarmentosum ethanol leaf extract against Toxoplasma gondii tachyzoites. Trop. J. Pharm. Res. 2018 16 11 2667 2673 10.4314/tjpr.v16i11.14
    [Google Scholar]
  39. Alomar M.L. Yañuk J.G. Angel S.O. Gonzalez M.M. Cabrerizo F.M. In vitro effect of harmine alkaloid and its n-methyl derivatives against Toxoplasma gondii. Front. Microbiol. 2021 12 716534 10.3389/fmicb.2021.716534 34421876
    [Google Scholar]
  40. Nishi L. Sanfelice R.A.S. da Silva Bortoleti B.T. Tomiotto-Pellissier F. Silva T.F. Evangelista F.F. Lazarin-Bidóia D. Costa I.N. Pavanelli W.R. Conchon Costa I. Baptista A.T.A. Bergamasco R. Falavigna-Guilherme A.L. Moringa oleifera extract promotes apoptosis-like death in Toxoplasma gondii tachyzoites in vitro. Parasitology 2021 148 12 1447 1457 10.1017/S0031182021001086 34187608
    [Google Scholar]
  41. Giovati L. Santinoli C. Mangia C. Vismarra A. Belletti S. D’Adda T. Fumarola C. Ciociola T. Bacci C. Magliani W. Polonelli L. Conti S. Kramer L.H. Novel activity of a synthetic decapeptide against Toxoplasma gondii tachyzoites. Front. Microbiol. 2018 9 753 753 10.3389/fmicb.2018.00753 29731744
    [Google Scholar]
  42. Yusof Y.A.M. Saad S.M. Makpol S. Shamaan N.A. Ngah W.Z.W. Hot water extract of Chlorella vulgaris induced DNA damage and apoptosis. Clinics (São Paulo) 2010 65 12 1371 1377 10.1590/S1807‑59322010001200023 21340229
    [Google Scholar]
  43. Zhang Z.D. Liang K. Li K. Wang G.Q. Zhang K.W. Cai L. Zhai S.T. Chou K.C. Chlorella vulgaris induces apoptosis of human non-small cell lung carcinoma (NSCLC) Cells. Med. Chem. 2017 13 6 560 568 28494726
    [Google Scholar]
  44. Yusof Y.A.M. Zurinah W. Ngah W. Anum Y. Yusof M. Comparison between locally produced Chlorella vulgaris and Chlorella vulgaris from Japan on proliferation and apoptosis of liver cancer cell line, HepG2. MJBMB 2006 13 32 36
    [Google Scholar]
  45. Bortner C.D. Oldenburg N.B.E. Cidlowski J.A. The role of DNA fragmentation in apoptosis. Trends Cell Biol. 1995 5 1 21 26 10.1016/S0962‑8924(00)88932‑1 14731429
    [Google Scholar]
  46. Ibusuki K. Minamishima Y. Effect of Chlorella vulgaris extracts on murine cytomegalovirus infections. Nat. Immun. Cell Growth Regul. 1990 9 2 121 128 1693753
    [Google Scholar]
  47. Ullah F. Ayaz M. Sadiq A. Ullah F. Hussain I. Shahid M. Yessimbekov Z. Adhikari-Devkota A. Devkota H.P. Potential role of plant extracts and phytochemicals against foodborne pathogens. Appl. Sci. 2020 10 13 4597 10.3390/app10134597
    [Google Scholar]
  48. Sharif A.A. Unyah N.Z. Nordin N. Basir R. Wana M.N. Alapid Ahmad A. Mustapha T. Majid R.A. Susceptibility of Toxoplasma gondii to ethanolic extract of Tinospora crispa in Vero cells. Evid Based Complement Alternat Med. 2019 2019 10.1155/2019/2916547 31827548
    [Google Scholar]
  49. Murata Y. Sugi T. Weiss L.M. Kato K. Identification of compounds that suppress Toxoplasma gondii tachyzoites and bradyzoites. PLoS One 2017 12 6 e0178203 10.1371/journal.pone.0178203 28609444
    [Google Scholar]
  50. Kerboeuf D. Riou M. Guégnard F. Flavonoids and related compounds in parasitic disease control. Mini Rev. Med. Chem. 2008 8 2 116 128 10.2174/138955708783498168 18289094
    [Google Scholar]
  51. Barkia I. Saari N. Manning S.R. Microalgae for high-value products towards human health and nutrition. Mar. Drugs 2019 17 5 304 10.3390/md17050304 31137657
    [Google Scholar]
  52. Alanazi A.D. Majeed Q.A.H. Alnomasy S.F. Almohammed H.I. Potent in vitro and in vivo effects of Stachys lavandulifolia methanolic extract against Toxoplasma gondii infection. Trop. Med. Infect. Dis. 2023 8 7 355 10.3390/tropicalmed8070355 37505651
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266411952251028115549
Loading
/content/journals/ctmc/10.2174/0115680266411952251028115549
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test