Skip to content
2000
image of Traditional Design and Modification of “Celastrol” Nano-Delivery Systems for Cancers - A Review

Abstract

Introduction

Cancer is a prevalent public health issue and a significant global problem. Patients receive different treatments, including Western Medicine (WM) and Traditional Chinese Medicine (TCM). This review article aims to discuss a Traditional Chinese Medicine (TCM), “Celastrol,” its traditional design, modification, and nano-drug delivery systems for the treatment of cancer.

Methods

Nine electronic databases, such as WanFang Data, PubMed, ScienceDirect, Scopus, Web of Science, SpringerLink, SciFinder, and China National Knowledge Infrastructure (CNKI), were used to find relevant information from the past twenty years, with searched keywords including “celastrol,” “cancer,” and “nano-drug delivery system,” ., without language restrictions.

Results

Celastrol is a therapeutic agent with anticancer properties against liver and breast cancers, ovarian cancer, multiple myeloma, and glioma. PI3K/Akt/mTOR, Bcl-2/Bax-caspases, EGFR, ROS/JNK, NF-κB, STAT3, JNK/Nrf2/HO-1, VEGF, AR/miR-101, HSF1-LKB1-AMPKα-YAP, Wnt/β-catenin, and CIP2A/c-MYC signaling pathways are the possible mechanisms by which celastrol acts against cancer.

Conclusion

A naturally occurring bioactive substance, “celastrol,” is extracted from the root of Tripterygium wilfordii Hook F. Its effectiveness can be enhanced with the support of nanotechnology to overcome its limitations in cancer treatment. However, the toxicity, dosage, and safety assessments of celastrol and nanocelastrol in cancer applications must be further investigated.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266418981250929223913
2025-10-14
2025-12-17
Loading full text...

Full text loading...

References

  1. Bray F. Laversanne M. Sung H. Ferlay J. Siegel R.L. Soerjomataram I. Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  2. Low W.Y. Lee Y.K. Samy A.L. Non-communicable diseases in the Asia-Pacific region: Prevalence, risk factors and community-based prevention. Int. J. Occup. Med. Environ. Health 2015 28 1 20 26 10.2478/s13382‑014‑0326‑0 26159943
    [Google Scholar]
  3. Navya P.N. Kaphle A. Srinivas S.P. Bhargava S.K. Rotello V.M. Daima H.K. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg. 2019 6 1 23 10.1186/s40580‑019‑0193‑2 31304563
    [Google Scholar]
  4. Wang J.W. Yang Z.Q. Liu C. Chen S.J. Shen Q. Zhang T.R. Yuan Z-P. Yu J-M. Partike N.S. Cancer survivors’ perspectives and experience on western medicine and traditional Chinese medicine treatment and rehabilitation: A qualitative study. Patient Prefer. Adherence 2014 9 9 16 10.2147/PPA.S76617 25565779
    [Google Scholar]
  5. Bai X. Ta N. Gong G.H. Zhang B. Wei C.X. Effects of integrated Chinese traditional medicine and conventional western medicine on the quality of life of breast cancer patients: A systematic review and meta-analysis. Evid. Based Complement. Alternat. Med. 2022 2022 1 19 10.1155/2022/3123878 35035500
    [Google Scholar]
  6. Wong K.F. Yuan Y. Luk J.M. Tripterygium wilfordii bioactive compounds as anticancer and anti‐inflammatory agents. Clin. Exp. Pharmacol. Physiol. 2012 39 3 311 320 10.1111/j.1440‑1681.2011.05586.x 21834865
    [Google Scholar]
  7. Cascão R. Fonseca J.E. Moita L.F. Celastrol: A spectrum of treatment opportunities in chronic diseases. Front. Med. 2017 4 69 10.3389/fmed.2017.00069 28664158
    [Google Scholar]
  8. Yousefian M. Shakour N. Hosseinzadeh H. Hayes A.W. Hadizadeh F. Karimi G. The natural phenolic compounds as modulators of NADPH oxidases in hypertension. Phytomedicine 2019 55 200 213 10.1016/j.phymed.2018.08.002 30668430
    [Google Scholar]
  9. Zhao Y. Miettinen K. Kampranis S.C. Celastrol: A century-long journey from the isolation to the biotechnological production and the development of an antiobesity drug. Curr. Opin. Plant Biol. 2024 81 102615 10.1016/j.pbi.2024.102615 39128271
    [Google Scholar]
  10. Shan Y. Zhao J. Wei K. Jiang P. Xu L. Chang C. Xu L. Shi Y. Zheng Y. Bian Y. Zhou M. Schrodi S.J. Guo S. He D. A comprehensive review of Tripterygium wilfordii hook. f. in the treatment of rheumatic and autoimmune diseases: Bioactive compounds, mechanisms of action, and future directions. Front. Pharmacol. 2023 14 1282610 10.3389/fphar.2023.1282610 38027004
    [Google Scholar]
  11. Du S. Song X. Li Y. Cao Y. Chu F. Durojaye O.A. Su Z. Shi X. Wang J. Cheng J. Wang T. Gao X. Chen Y. Zeng W. Wang F. Wang D. Liu X. Ding X. Celastrol inhibits ezrin-mediated migration of hepatocellular carcinoma cells. Sci. Rep. 2020 10 1 11273 10.1038/s41598‑020‑68238‑1 32647287
    [Google Scholar]
  12. Liu Z. Fan M. Xuan X. Xia C. Huang G. Ma L. Celastrol inhibits the migration and invasion and enhances the anti-cancer effects of docetaxel in human triple-negative breast cancer cells. Med. Oncol. 2022 39 12 189 10.1007/s12032‑022‑01792‑y 36071249
    [Google Scholar]
  13. Xu L.N. Zhao N. Chen J.Y. Ye P.P. Nan X.W. Zhou H.H. Jiang Q.W. Yang Y. Huang J.R. Yuan M.L. Xing Z.H. Wei M.N. Li Y. Shi Z. Yan X.J. Celastrol inhibits the growth of ovarian cancer cells in vitro and in vivo. Front. Oncol. 2019 9 2 10.3389/fonc.2019.00002 30746340
    [Google Scholar]
  14. Zhong Y. Xu G. Huang S. Zhao L. Zeng Y. Xiao X. An J. Liu J. Yang T. Celastrol induce apoptosis of human multiple myeloma cells involving inhibition of proteasome activity. Eur. J. Pharmacol. 2019 853 184 192 10.1016/j.ejphar.2019.03.036 30928629
    [Google Scholar]
  15. Zhu Y. Liu X. Zhao P. Zhao H. Gao W. Wang L. Celastrol suppresses glioma vasculogenic mimicry formation and angiogenesis by blocking the PI3K/Akt/mTOR signaling pathway. Front. Pharmacol. 2020 11 25 10.3389/fphar.2020.00025 32116702
    [Google Scholar]
  16. Wang C. Dai S. Zhao X. Zhang Y. Gong L. Fu K. Ma C. Peng C. Li Y. Celastrol as an emerging anticancer agent: Current status, challenges and therapeutic strategies. Biomed. Pharmacother. 2023 163 114882 10.1016/j.biopha.2023.114882 37196541
    [Google Scholar]
  17. Gao N. Zhang Z. Jiang B.H. Shi X. Role of PI3K/AKT/mTOR signaling in the cell cycle progression of human prostate cancer. Biochem. Biophys. Res. Commun. 2003 310 4 1124 1132 10.1016/j.bbrc.2003.09.132 14559232
    [Google Scholar]
  18. Ni H. Han Y. Jin X. Celastrol inhibits colon cancer cell proliferation by downregulating miR-21 and PI3K/AKT/GSK-3β pathway. Int. J. Clin. Exp. Pathol. 2019 12 3 808 816 31933888
    [Google Scholar]
  19. Wang Y. Liu Q. Chen H. You J. Peng B. Cao F. Zhang X. Chen Q. Uzan G. Xu L. Zhang D. Celastrol improves the therapeutic efficacy of EGFR-TKIs for non-small-cell lung cancer by overcoming EGFR T790M drug resistance. Anticancer Drugs 2018 29 8 748 755 10.1097/CAD.0000000000000647 29927769
    [Google Scholar]
  20. Li H-Y. Zhang J. Sun L-L. Li B-H. Gao H-L. Xie T. Zhang N. Ye Z-M. Celastrol induces apoptosis and autophagy via the ROS/JNK signaling pathway in human osteosarcoma cells: An in vitro and in vivo study. Cell Death Dis. 2015 6 1 1604 10.1038/cddis.2014.543 25611379
    [Google Scholar]
  21. Ni H. Zhao W. Kong X. Li H. Ouyang J. NF-kappa B modulation is involved in celastrol induced human multiple myeloma cell apoptosis. PLoS One 2014 9 4 95846 10.1371/journal.pone.0095846 24755677
    [Google Scholar]
  22. Zhao Z. Wang Y. Gong Y. Wang X. Zhang L. Zhao H. Li J. Zhu J. Huang X. Zhao C. Yang L. Wang L. Celastrol elicits antitumor effects by inhibiting the STAT3 pathway through ROS accumulation in non-small cell lung cancer. J. Transl. Med. 2022 20 1 525 10.1186/s12967‑022‑03741‑9 36371217
    [Google Scholar]
  23. Zhang Q. Liu J. Duan H. Li R. Peng W. Wu C. Activation of Nrf2/HO-1 signaling: An important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress. J. Adv. Res. 2021 34 43 63 10.1016/j.jare.2021.06.023 35024180
    [Google Scholar]
  24. Parveen A. Subedi L. Kim H.W. Khan Z. Zahra Z. Farooqi M.Q. Kim S.Y. Phytochemicals targeting VEGF and VEGF-related multifactors as anticancer therapy. J. Clin. Med. 2019 8 3 350 10.3390/jcm8030350 30871059
    [Google Scholar]
  25. Guo J. Huang X. Wang H. Yang H. Celastrol induces autophagy by targeting AR/miR-101 in prostate cancer cells. PLoS One 2015 10 10 0140745 10.1371/journal.pone.0140745 26473737
    [Google Scholar]
  26. Wang S. Ma K. Zhou C. Wang Y. Hu G. Chen L. Li Z. Hu C. Xu Q. Zhu H. Liu M. Xu N. LKB1 and YAP phosphorylation play important roles in Celastrol-induced β-catenin degradation in colorectal cancer. Ther. Adv. Med. Oncol. 2019 11 1758835919843736 10.1177/1758835919843736 31040884
    [Google Scholar]
  27. Lu W. Jia G. Meng X. Zhao C. Zhang L. Ren Y. Pan H. Ni Y. Beta-catenin mediates the apoptosis induction effect of celastrol in HT29 cells. Life Sci. 2012 91 7-8 279 283 10.1016/j.lfs.2012.07.032 22877649
    [Google Scholar]
  28. Wu J. Ye F. Xu T. Celastrol impairs tumor growth by modulating the CIP2A-GSK3β-MCL-1 axis in gastric cancer cells. Aging 2023 15 14 6894 6904 10.18632/aging.204879 37470692
    [Google Scholar]
  29. Shi J. Li J. Xu Z. Chen L. Luo R. Zhang C. Gao F. Zhang J. Fu C. Celastrol: A review of useful strategies overcoming its limitation in anticancer application. Front. Pharmacol. 2020 11 558741 10.3389/fphar.2020.558741 33364939
    [Google Scholar]
  30. Qi X. Qin J. Ma N. Chou X. Wu Z. Solid self-microemulsifying dispersible tablets of celastrol: Formulation development, charaterization and bioavailability evaluation. Int. J. Pharm. 2014 472 1-2 40 47 10.1016/j.ijpharm.2014.06.019 24929011
    [Google Scholar]
  31. Amir Yusri M.A. Sekar M. Wong L.S. Gan S.H. Ravi S. Subramaniyan V. Mat Rani N.N.I. Chidambaram K. Begum M.Y. Ramar M. Safi S.Z. Selvaraj S. Wu Y.S. Revathy P. Fuloria S. Fuloria N.K. Lum P.T. Djearamane S. Celastrol: A potential natural lead molecule for new drug design, development and therapy for memory impairment. Drug Des. Devel. Ther. 2023 17 1079 1096 10.2147/DDDT.S389977 37064431
    [Google Scholar]
  32. Lim H.Y. Ong P.S. Wang L. Goel A. Ding L. Li-Ann Wong A. Ho P.C. Sethi G. Xiang X. Goh B.C. Celastrol in cancer therapy: Recent developments, challenges and prospects. Cancer Lett. 2021 521 252 267 10.1016/j.canlet.2021.08.030 34508794
    [Google Scholar]
  33. Wang S. Liu K. Wang X. He Q. Chen X. Toxic effects of celastrol on embryonic development of zebrafish (Danio rerio). Drug Chem. Toxicol. 2011 34 1 61 65 10.3109/01480545.2010.494664 20954803
    [Google Scholar]
  34. Hou W. Liu B. Xu H. Celastrol: Progresses in structure-modifications, structure-activity relationships, pharmacology and toxicology. Eur. J. Med. Chem. 2020 189 112081 10.1016/j.ejmech.2020.112081 31991334
    [Google Scholar]
  35. Xu L. Ho Y. Ding X. Zhou Su. Tang L. Shi J. Comparison on acute toxicity of celastrol derived from in vivo and in vitro methods. Huanjing Yu Zhiye Yixue 2015 32 535 538
    [Google Scholar]
  36. Tang K. Huang Q. Zeng J. Wu G. Huang J. Pan J. Lu W. Design, synthesis and biological evaluation of C6-modified celastrol derivatives as potential antitumor agents. Molecules 2014 19 7 10177 10188 10.3390/molecules190710177 25025148
    [Google Scholar]
  37. Xu M. Li N. Zhao Z. Shi Z. Sun J. Chen L. Design, synthesis and antitumor evaluation of novel celastrol derivatives. Eur. J. Med. Chem. 2019 174 265 276 10.1016/j.ejmech.2019.04.050 31051401
    [Google Scholar]
  38. Figueiredo S.A.C. Salvador J.A.R. Cortés R. Cascante M. Novel celastrol derivatives with improved selectivity and enhanced antitumour activity: Design, synthesis and biological evaluation. Eur. J. Med. Chem. 2017 138 422 437 10.1016/j.ejmech.2017.06.029 28688281
    [Google Scholar]
  39. Haroon M. Kang S.C. Celastrol-mediated autophagy regulation in cancer. Appl. Biol. Chem. 2020 63 1 81 10.1186/s13765‑020‑00565‑3
    [Google Scholar]
  40. Feng Y. Wang W. Zhang Y. Fu X. Ping K. Zhao J. Lei Y. Mou Y. Wang S. Synthesis and biological evaluation of celastrol derivatives as potential anti-glioma agents by activating RIP1/RIP3/MLKL pathway to induce necroptosis. Eur. J. Med. Chem. 2022 229 114070 10.1016/j.ejmech.2021.114070 34968902
    [Google Scholar]
  41. Bonifácio B.V. Silva P.B. Ramos M.A. Negri K.M. Bauab T.M. Chorilli M. Nanotechnology-based drug delivery systems and herbal medicines: A review. Int. J. Nanomedicine 2014 9 1 15 10.2147/IJN.S52634 24363556
    [Google Scholar]
  42. Watkins R. Wu L. Zhang C. Davis R.M. Xu B. Natural product-based nanomedicine: Recent advances and issues. Int. J. Nanomedicine 2015 10 6055 6074 10.2147/IJN.S92162 26451111
    [Google Scholar]
  43. Mazayen Z.M. Ghoneim A.M. Elbatanony R.S. Basalious E.B. Bendas E.R. Pharmaceutical nanotechnology: From the bench to the market. Future J. Pharm. Sci. 2022 8 1 12 10.1186/s43094‑022‑00400‑0 35071609
    [Google Scholar]
  44. Adjei I.M. Peetla C. Labhasetwar V. Heterogeneity in nanoparticles influences biodistribution and targeting. Nanomedicine 2014 9 2 267 278 10.2217/nnm.13.70 23799984
    [Google Scholar]
  45. Kinnear C. Moore T.L. Rodriguez-Lorenzo L. Rothen-Rutishauser B. Petri-Fink A. Form follows function: Nanoparticle shape and its implications for nanomedicine. Chem. Rev. 2017 117 17 11476 11521 10.1021/acs.chemrev.7b00194 28862437
    [Google Scholar]
  46. Arvizo R.R. Miranda O.R. Thompson M.A. Pabelick C.M. Bhattacharya R. Robertson J.D. Rotello V.M. Prakash Y.S. Mukherjee P. Effect of nanoparticle surface charge at the plasma membrane and beyond. Nano Lett. 2010 10 7 2543 2548 10.1021/nl101140t 20533851
    [Google Scholar]
  47. Wilczewska A.Z. Niemirowicz K. Markiewicz K.H. Car H. Nanoparticles as drug delivery systems. Pharmacol. Rep. 2012 64 5 1020 1037 10.1016/S1734‑1140(12)70901‑5 23238461
    [Google Scholar]
  48. Karewicz A. Polymeric and liposomal nanocarriers for controlled drug delivery. Biomaterials for Bone Regeneration. Woodhead Publishing 2014 351 373 10.1533/9780857098104.3.351
    [Google Scholar]
  49. Alshawwa S.Z. Kassem A.A. Farid R.M. Mostafa S.K. Labib G.S. Nanocarrier drug delivery systems: Characterization, limitations, future perspectives and implementation of Artificial Intelligence. Pharmaceutics 2022 14 4 883 10.3390/pharmaceutics14040883 35456717
    [Google Scholar]
  50. Palmerston Mendes L. Pan J. Torchilin V. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules 2017 22 9 1401 10.3390/molecules22091401 28832535
    [Google Scholar]
  51. Cheng X. Yan H. Pang S. Ya M. Qiu F. Qin P. Zeng C. Lu Y. Liposomes as multifunctional nano-carriers for medicinal natural products. Front Chem. 2022 10 963004 10.3389/fchem.2022.963004 36003616
    [Google Scholar]
  52. Luo W.C. Lu X. Solid lipid nanoparticles for drug delivery. Methods Mol. Biol. 2023 2622 139 146 10.1007/978‑1‑0716‑2954‑3_12 36781757
    [Google Scholar]
  53. Discher D.E. Ahmed F. Polymersomes. Annu. Rev. Biomed. Eng. 2006 8 1 323 341 10.1146/annurev.bioeng.8.061505.095838 16834559
    [Google Scholar]
  54. Thakor P. Bhavana V. Sharma R. Srivastava S. Singh S.B. Mehra N.K. Polymer-drug conjugates: Recent advances and future perspectives. Drug Discov. Today 2020 25 9 1718 1726 10.1016/j.drudis.2020.06.028 32629170
    [Google Scholar]
  55. Banik B.L. Fattahi P. Brown J.L. Polymeric nanoparticles: The future of nanomedicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2016 8 2 271 299 10.1002/wnan.1364 26314803
    [Google Scholar]
  56. Li X. Jian M. Sun Y. Zhu Q. Wang Z. The peptide functionalized inorganic nanoparticles for cancer-related bioanalytical and biomedical applications. Molecules 2021 26 11 3228 10.3390/molecules26113228 34072160
    [Google Scholar]
  57. Kushwaha P. Aqeel R. Srivastava N. Micelles in cancer therapy: An update on preclinical and clinical status. Recent Pat. Nanotechnol. 2022 16 4 283 294 10.2174/1872210515666210720125717 34303336
    [Google Scholar]
  58. Sánchez-López E. Guerra M. Dias-Ferreira J. Lopez-Machado A. Ettcheto M. Cano A. Espina M. Camins A. Garcia M.L. Souto E.B. Current applications of nanoemulsions in cancer therapeutics. Nanomaterials 2019 9 6 821 10.3390/nano9060821 31159219
    [Google Scholar]
  59. Mahjoubin-Tehran M. Rezaei S. Kesharwani P. Sahebkar A. Nanospheres for curcumin delivery as a precision nanomedicine in cancer therapy. J. Biomater. Sci. Polym. Ed. 2024 35 14 2250 2274 10.1080/09205063.2024.2371186 38958210
    [Google Scholar]
  60. Yurgel V. Collares T. Seixas F. Developments in the use of nanocapsules in oncology. Braz. J. Med. Biol. Res. 2013 46 6 486 501 10.1590/1414‑431X20132643 23802234
    [Google Scholar]
  61. Ahmadi A. Arami S. Potential applications of nanoshells in biomedical sciences. J. Drug Target. 2014 22 3 175 190 10.3109/1061186X.2013.839684 24099618
    [Google Scholar]
  62. Sharma M. Alessandro P. Cheriyamundath S. Lopus M. Therapeutic and diagnostic applications of carbon nanotubes in cancer: Recent advances and challenges. J. Drug Target. 2024 32 3 287 299 10.1080/1061186X.2024.2309575 38252035
    [Google Scholar]
  63. Sztandera K. Gorzkiewicz M. Klajnert-Maculewicz B. Gold Nanoparticles in Cancer Treatment. Mol. Pharm. 2019 16 1 1 23 10.1021/acs.molpharmaceut.8b00810 30452861
    [Google Scholar]
  64. Abdelmoneem M.A. Abd Elwakil M.M. Khattab S.N. Helmy M.W. Bekhit A.A. Abdulkader M.A. Zaky A. Teleb M. Elkhodairy K.A. Albericio F. Elzoghby A.O. Lactoferrin-dual drug nanoconjugate: Synergistic anti-tumor efficacy of docetaxel and the NF-κB inhibitor celastrol. Mater. Sci. Eng. C 2021 118 111422 10.1016/j.msec.2020.111422 33255023
    [Google Scholar]
  65. Law S. Leung A.W. Xu C. Folic acid-modified celastrol nanoparticles: Synthesis, characterization, anticancer activity in 2D and 3D breast cancer models. Artif. Cells Nanomed. Biotechnol. 2020 48 1 542 559 10.1080/21691401.2020.1725025 32054336
    [Google Scholar]
  66. Qin Y. Wang Z. Wang X. Zhang T. Hu Y. Wang D. Sun H. Zhang L. Zhu Y. Development of multifunctional celastrol nanoparticles to enhance antitumor effects by interfering with the function of mitochondria in breast cancer. Research Square 2022 10.21203/rs.3.rs‑1983232/v1
    [Google Scholar]
  67. Lu S. Li Y. Yu Y. Glutathione‐scavenging celastrol‐Cu nanoparticles induce self‐amplified cuproptosis for augmented cancer immunotherapy. Adv. Mater. 2024 36 35 2404971 10.1002/adma.202404971 38935977
    [Google Scholar]
  68. Liang J. Song X. Zhu R. Guo D. Dai W. Celastrol loaded PEGylated nanographene oxide for highly efficient synergistic chemo/photothermal therapy. Anticancer. Agents Med. Chem. 2023 23 3 306 316 10.2174/1871520622666220519094936 35598248
    [Google Scholar]
  69. Zhang Y. Ding L. Wang T. Wang X. Yu B. Jia F. Han M. Guo Y. A celastrol drug delivery system based on PEG derivatives: The structural effects of nanocarriers. Molecules 2023 28 3 1040 10.3390/molecules28031040 36770710
    [Google Scholar]
  70. Huang T. Wang Y. Shen Y. Ao H. Guo Y. Han M. Wang X. Preparation of high drug-loading celastrol nanosuspensions and their anti-breast cancer activities in vitro and in vivo. Sci. Rep. 2020 10 1 8851 10.1038/s41598‑020‑65773‑9 32483248
    [Google Scholar]
  71. Zhou M. Liao J. Lai W. Xu R. Liu W. Xie D. Wang F. Zhang Z. Huang J. Zhang R. Li G. A celastrol-based nanodrug with reduced hepatotoxicity for primary and metastatic cancer treatment. EBioMedicine 2023 94 104724 10.1016/j.ebiom.2023.104724 37480625
    [Google Scholar]
  72. Li C. Wang Z. Zhang Y. Zhu Y. Xu M. Lei H. Zhang D. Efficient sequential co-delivery nanosystem for inhibition of tumor and tumor-associated fibroblast-induced resistance and metastasis. Int. J. Nanomedicine 2024 19 1749 1766 10.2147/IJN.S427783 38414527
    [Google Scholar]
  73. Wang D. Zhang T. Hu Y. Luo Y. Li Y. Duan D. Zhang L. Zhu Y. Peptide-modified cyclodextrin-based nanosystem for co-delivery of celastrol and siPD-L1 to tumors. ACS Appl. Nano Mater. 2024 7 10 11432 11444 10.1021/acsanm.4c01064
    [Google Scholar]
  74. Li H. Li Y. Zhang L. Wang N. Lu D. Tang D. Lv Y. Zhang J. Yan H. Gong H. Zhang M. Nie K. Hou Y. Yu Y. Xiao H. Liu C. Prodrug-inspired adenosine triphosphate–activatable celastrol-Fe(III) chelate for cancer therapy. Sci. Adv. 2024 10 28 eadn0960 10.1126/sciadv.adn0960 38996025
    [Google Scholar]
  75. Goncalves B.G. Phan C.A.N. Biggs M.A. Hunt H.L. Banerjee I.A. Design and investigation of celastrol‐peptide nanoassemblies and their binding interactions with superoxide dismutase 1 and its mutants. Nano Select 2024 5 11 2400042 10.1002/nano.202400042
    [Google Scholar]
  76. Zhou R. You Y. Zha Z. Chen J. Li Y. Chen X. Chen X. Jiang X. Chen J. Kwan H.Y. Zhao X. Huang L. Liu Y. Biotin decorated celastrol-loaded ZIF-8 nano-drug delivery system targeted epithelial ovarian cancer therapy. Biomed. Pharmacother. 2023 167 115573 10.1016/j.biopha.2023.115573 37769391
    [Google Scholar]
  77. Yadav P. Jaswal V. Sharma A. Kashyap D. Tuli H.S. Garg V.K. Das S.K. Srinivas R. Celastrol as a pentacyclic triterpenoid with chemopreventive properties. Pharm. Pat. Anal. 2018 7 4 155 167 10.4155/ppa‑2017‑0035 29882724
    [Google Scholar]
  78. Sun Y. Wang C. Li X. Lu J. Wang M. Recent advances in drug delivery of celastrol for enhancing efficiency and reducing the toxicity. Front. Pharmacol. 2024 15 1137289 10.3389/fphar.2024.1137289 38434700
    [Google Scholar]
  79. Wagh P.R. Desai P. Prabhu S. Wang J. Nanotechnology-based celastrol formulations and their therapeutic applications. Front. Pharmacol. 2021 12 673209 10.3389/fphar.2021.673209 34177584
    [Google Scholar]
  80. Pinto Reis C. Neufeld R.J. Ribeiro A.J. Veiga F. Nanoencapsulation I. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine 2006 2 1 8 21 10.1016/j.nano.2005.12.003 17292111
    [Google Scholar]
  81. Amgoth C. Phan C. Banavoth M. Rompivalasa S. Tang G. Polymer Properties: Functionalization and Surface Modified Nanoparticles. In: Role of Novel Drug Delivery Vehicles in Nanobiomedicine; IntechOpen 2019
    [Google Scholar]
  82. Bennet D. Kim S. Application of Nanotechnology in Drug Delivery. In: Polymer nanoparticles for smart drug delivery. IntechOpen 2014
    [Google Scholar]
  83. Hernández-Giottonini K.Y. Rodríguez-Córdova R.J. Gutiérrez-Valenzuela C.A. Peñuñuri-Miranda O. Zavala-Rivera P. Guerrero-Germán P. Lucero-Acuña A. PLGA nanoparticle preparations by emulsification and nanoprecipitation techniques: Effects of formulation parameters. RSC Advances 2020 10 8 4218 4231 10.1039/C9RA10857B 35495261
    [Google Scholar]
  84. Jawahar N. Meyyanathan S.N. Polymeric nanoparticles for drug delivery and targeting: A comprehensive review. Int. J. Health Allied Sci. 2012 1 4 217 10.4103/2278‑344X.107832
    [Google Scholar]
  85. Vieira R. Souto S.B. Sánchez-López E. López Machado A. Severino P. Jose S. Santini A. Fortuna A. García M.L. Silva A.M. Souto E.B. Sugar-lowering drugs for type 2 diabetes mellitus and metabolic syndrome—Review of classical and new compounds: Part-I. Pharmaceuticals 2019 12 4 152 10.3390/ph12040152 31658729
    [Google Scholar]
  86. Jose S. Sowmya S. Cinu T.A. Aleykutty N.A. Thomas S. Souto E.B. Surface modified PLGA nanoparticles for brain targeting of Bacoside-A. Eur. J. Pharm. Sci. 2014 63 29 35 10.1016/j.ejps.2014.06.024 25010261
    [Google Scholar]
  87. Bohrey S. Chourasiya V. Pandey A. Polymeric nanoparticles containing diazepam: Preparation, optimization, characterization, in-vitro drug release and release kinetic study. Nano Converg. 2016 3 1 3 10.1186/s40580‑016‑0061‑2 28191413
    [Google Scholar]
  88. Sharma N. Madan P. Lin S. Effect of process and formulation variables on the preparation of parenteral paclitaxel-loaded biodegradable polymeric nanoparticles: A co-surfactant study. Asian J. Pharm. Sci. 2016 11 3 404 416 10.1016/j.ajps.2015.09.004
    [Google Scholar]
  89. Szczęch M. Szczepanowicz K. Polymeric core-shell nanoparticles prepared by spontaneous emulsification solvent evaporation and functionalized by the layer-by-layer method. Nanomaterials 2020 10 3 496 10.3390/nano10030496 32164194
    [Google Scholar]
  90. Kumar S. Dilbaghi N. Saharan R. Bhanjana G. Nanotechnology as emerging tool for enhancing solubility of poorly water-soluble drugs. Bionanoscience 2012 2 4 227 250 10.1007/s12668‑012‑0060‑7
    [Google Scholar]
  91. Souto E.B. Souto S.B. Campos J.R. Severino P. Pashirova T.N. Zakharova L.Y. Silva A.M. Durazzo A. Lucarini M. Izzo A.A. Santini A. Nanoparticle delivery systems in the treatment of diabetes complications. Molecules 2019 24 23 4209 10.3390/molecules24234209 31756981
    [Google Scholar]
  92. Quintanar-Guerrero D. Allémann E. Doelker E. Fessi H. Preparation and characterization of nanocapsules from preformed polymers by a new process based on emulsification-diffusion technique. Pharm. Res. 1998 15 7 1056 1062 10.1023/A:1011934328471 9688060
    [Google Scholar]
  93. Vasile C. Polymeric Nanomaterials in Nanotherapeutics. London, UK Elsevier 2018
    [Google Scholar]
  94. Wang Y. Li P. Truong-Dinh Tran T. Zhang J. Kong L. Manufacturing techniques and surface engineering of polymer based nanoparticles for targeted drug delivery to cancer. Nanomaterials 2016 6 2 26 10.3390/nano6020026 28344283
    [Google Scholar]
  95. Jelvehgari M. Salatin S. Barar J. Barzegar-Jalali M. Adibkia K. Kiafar F. Development of a nanoprecipitation method for the entrapment of a very water soluble drug into Eudragit RL nanoparticles. Res. Pharm. Sci. 2017 12 1 1 14 10.4103/1735‑5362.199041 28255308
    [Google Scholar]
  96. Martínez Rivas C.J. Tarhini M. Badri W. Miladi K. Greige-Gerges H. Nazari Q.A. Galindo Rodríguez S.A. Román R.Á. Fessi H. Elaissari A. Nanoprecipitation process: From encapsulation to drug delivery. Int. J. Pharm. 2017 532 1 66 81 10.1016/j.ijpharm.2017.08.064 28801107
    [Google Scholar]
  97. Salapa J. Bushman A. Lowe K. Irudayaraj J. Nano drug delivery systems in upper gastrointestinal cancer therapy. Nano Converg. 2020 7 1 38 10.1186/s40580‑020‑00247‑2 33301056
    [Google Scholar]
  98. He P. Zou M. Zhang C. Shi Y. Qin L. Celastrol-loaded hyaluronic acid/cancer cell membrane lipid nanoparticles for targeted hepatocellular carcinoma prevention. Cells 2024 13 21 1819 10.3390/cells13211819 39513925
    [Google Scholar]
  99. Song J. Shi F. Zhang Z. Zhu F. Xue J. Tan X. Zhang L. Jia X. Formulation and evaluation of celastrol-loaded liposomes. Molecules 2011 16 9 7880 7892 10.3390/molecules16097880 22143548
    [Google Scholar]
  100. Zhu Y. Meng Y. Zhang J. Liu R. Shen S. Gu L. Wong Y. Ma A. Chai X. Zhang Y. Liu Y. Wang J. Recent Trends in anti-tumor mechanisms and molecular targets of celastrol. Int. J. Biol. Sci. 2024 20 14 5510 5530 10.7150/ijbs.99592 39494324
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266418981250929223913
Loading
/content/journals/ctmc/10.2174/0115680266418981250929223913
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Cancer ; Nano drug delivery system ; Celastrol ; Traditional Chinese medicine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test