Skip to content
2000
image of Natural Product-Based Virtual Screening Identifies Potential Inhibitors of Feline Coronavirus 3CLpro

Abstract

Introduction

Feline infectious peritonitis (FIP), a fatal disease caused by feline coronavirus (FCoV), poses a serious threat to feline health. Natural product-based virtual screening offers a promising avenue for identifying antiviral agents targeting FCoV. In this study, a structure-based computational approach was employed to discover potential inhibitors of the 3C-like protease (3CLpro) of FCoV.

Materials and Methods

A library of 96,677 natural compounds from the ZINC database was screened using molecular docking to assess their binding affinities to the protease. The initial hits were refined by evaluating ADMET properties and visually inspecting the binding poses, yielding 68 candidate molecules. These were further assessed through 100-nanosecond molecular dynamics simulations and binding free energy calculations.

Results

Through computational filtering, 14 compounds were identified that exhibited strong interaction stability and minimal conformational fluctuation. An analysis of the binding modes revealed that key residues, such as His162, Glu165, and Cys144, formed crucial hydrogen bonds and hydrophobic contacts, contributing to the stability of the protein-ligand complexes.

Discussion

The identified interactions highlighted the importance of specific residues in stabilizing the protein-ligand complex. Among the 14 compounds, eight maintained stable binding profiles throughout extended 500-nanosecond molecular dynamics simulations and also exhibited elevated binding free energy values, suggesting a stronger potential for antiviral development.

Conclusion

The findings indicated the compounds’ strong potential for further development as antiviral leads. The results also revealed several core molecular frameworks that may serve as an initial reference for designing FCoV 3CLpro inhibitors, laying the groundwork for structure-guided drug discovery efforts.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266426906251125112131
2026-01-14
2026-01-31
Loading full text...

Full text loading...

References

  1. Katz L. Baltz R.H. Natural product discovery: Past, present, and future. J. Ind. Microbiol. Biotechnol. 2016 43 2-3 155 176 10.1007/s10295‑015‑1723‑5 26739136
    [Google Scholar]
  2. Zhao W. Zheng X.D. Tang P.Y.Z. Li H.M. Liu X. Zhong J.J. Tang Y.J. Advances of antitumor drug discovery in traditional Chinese medicine and natural active products by using multi‐active components combination. Med. Res. Rev. 2023 43 5 1778 1808 10.1002/med.21963 37183170
    [Google Scholar]
  3. Atanasov A.G. Zotchev S.B. Dirsch V.M. Orhan I.E. Banach M. Rollinger J.M. Barreca D. Weckwerth W. Bauer R. Bayer E.A. Majeed M. Bishayee A. Bochkov V. Bonn G.K. Braidy N. Bucar F. Cifuentes A. D’Onofrio G. Bodkin M. Diederich M. Dinkova-Kostova A.T. Efferth T. El Bairi K. Arkells N. Fan T-P. Fiebich B.L. Freissmuth M. Georgiev M.I. Gibbons S. Godfrey K.M. Gruber C.W. Heer J. Huber L.A. Ibanez E. Kijjoa A. Kiss A.K. Lu A. Macias F.A. Miller M.J.S. Mocan A. Müller R. Nicoletti F. Perry G. Pittalà V. Rastrelli L. Ristow M. Russo G.L. Silva A.S. Schuster D. Sheridan H. Skalicka-Woźniak K. Skaltsounis L. Sobarzo-Sánchez E. Bredt D.S. Stuppner H. Sureda A. Tzvetkov N.T. Vacca R.A. Aggarwal B.B. Battino M. Giampieri F. Wink M. Wolfender J-L. Xiao J. Yeung A.W.K. Lizard G. Popp M.A. Heinrich M. Berindan-Neagoe I. Stadler M. Daglia M. Verpoorte R. Supuran C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021 20 3 200 216 10.1038/s41573‑020‑00114‑z 33510482
    [Google Scholar]
  4. Medina-Franco J.L. Computational approaches for the discovery and development of pharmacologically active natural products. Biomolecules 2021 11 5 630 10.3390/biom11050630 33922650
    [Google Scholar]
  5. Gryniukova A. Kaiser F. Myziuk I. Alieksieieva D. Leberecht C. Heym P.P. Tarkhanova O.O. Moroz Y.S. Borysko P. Haupt V.J. AI-powered virtual screening of large compound libraries leads to the discovery of novel inhibitors of Sirtuin-1. J. Med. Chem. 2023 66 15 10241 10251 10.1021/acs.jmedchem.3c00128 37499195
    [Google Scholar]
  6. Tavares F.M. Gomes A.C. Assunção E.M. de Medeiros J.L.S. Scotti M.T. Scotti L. Ishiki H.M. Virtual screening and molecular docking: Discovering novel c-KIT inhibitors. Curr. Med. Chem. 2022 29 2 166 188 10.2174/0929867328666210915102920 34525909
    [Google Scholar]
  7. Lin Y. Zhang Y. Wang D. Yang B. Shen Y.Q. Computer especially AI-assisted drug virtual screening and design in traditional Chinese medicine. Phytomedicine 2022 107 154481 10.1016/j.phymed.2022.154481 36215788
    [Google Scholar]
  8. Müller T.R. Penninck D.G. Webster C.R.L. Conrado F.O. Abdominal ultrasonographic findings of cats with feline infectious peritonitis: An update. J. Feline Med. Surg. 2023 25 12 1098612X231216000 10.1177/1098612X231216000 38095890
    [Google Scholar]
  9. Shepherd P.M. Elbe A. Lynch B.M. Lashnits E. Kirchdoerfer R.N. Detection of feline coronavirus RNA in cats with feline infectious peritonitis and their housemates. Viruses 2025 17 7 948 10.3390/v17070948 40733565
    [Google Scholar]
  10. Paltrinieri S. Giordano A. Stranieri A. Lauzi S. Feline infectious peritonitis (FIP) and coronavirus disease 19 (COVID‐19): Are they similar? Transbound. Emerg. Dis. 2021 68 4 1786 1799 10.1111/tbed.13856 32985113
    [Google Scholar]
  11. Attipa C. Warr A.S. Epaminondas D. O’Shea M. Hanton A.J. Fletcher S. Malbon A. Lyraki M. Hammond R. Hardas A. Zanti A. Loukaidou S. Gentil M. Gunn-Moore D. Lycett S.J. Mazeri S. Tait-Burkard C. Feline infectious peritonitis epizootic caused by a recombinant coronavirus. Nature 2025 645 8079 228 234 10.1038/s41586‑025‑09340‑0 40633571
    [Google Scholar]
  12. Tortorici M.A. Choi A. Gibson C.A. Lee J. Brown J.T. Stewart C. Joshi A. Harari S. Willoughby I. Treichel C. Leaf E.M. Bloom J.D. King N.P. Tait-Burkard C. Whittaker G.R. Veesler D. Loss of FCoV-23 spike domain 0 enhances fusogenicity and entry kinetics. Nature 2025 645 8079 235 243 10.1038/s41586‑025‑09155‑z 40634609
    [Google Scholar]
  13. Starling S. Emergence of pathogenic recombinant coronavirus in cats. Nat. Rev. Microbiol. 2025 23 9 545 545 10.1038/s41579‑025‑01222‑6 40702327
    [Google Scholar]
  14. Gao Y. Yan L. Huang Y. Liu F. Zhao Y. Cao L. Wang T. Sun Q. Ming Z. Zhang L. Ge J. Zheng L. Zhang Y. Wang H. Zhu Y. Zhu C. Hu T. Hua T. Zhang B. Yang X. Li J. Yang H. Liu Z. Xu W. Guddat L.W. Wang Q. Lou Z. Rao Z. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science 2020 368 6492 779 782 10.1126/science.abb7498 32277040
    [Google Scholar]
  15. Murphy B.G. Perron M. Murakami E. Bauer K. Park Y. Eckstrand C. Liepnieks M. Pedersen N.C. The nucleoside analog GS-441524 strongly inhibits feline infectious peritonitis (FIP) virus in tissue culture and experimental cat infection studies. Vet. Microbiol. 2018 219 226 233 10.1016/j.vetmic.2018.04.026 29778200
    [Google Scholar]
  16. Calleja D.J. Lessene G. Komander D. Inhibitors of SARS-CoV-2 PLpro. Front Chem. 2022 10 10.3389/fchem.2022.876212 35559224
    [Google Scholar]
  17. Hu Q. Xiong Y. Zhu G.H. Zhang Y.N. Zhang Y.W. Huang P. Ge G.B. The SARS‐CoV‐2 main protease (M pro): Structure, function, and emerging therapies for COVID‐19. MedComm 2022 3 3 151 10.1002/mco2.151 35845352
    [Google Scholar]
  18. Blair H.A. Remdesivir: A review in COVID-19. Drugs 2023 83 13 1215 1237 10.1007/s40265‑023‑01926‑0 37589788
    [Google Scholar]
  19. Abe K. Kabe Y. Uchiyama S. Iwasaki Y.W. Ishizu H. Uwamino Y. Takenouchi T. Uno S. Ishii M. Maruno T. Noda M. Murata M. Hasegawa N. Saya H. Kitagawa Y. Fukunaga K. Amagai M. Siomi H. Suematsu M. Kosaki K. Pro108Ser mutation of SARS-CoV-2 3CLpro reduces the enzyme activity and ameliorates the clinical severity of COVID-19. Sci. Rep. 2022 12 1 1299 10.1038/s41598‑022‑05424‑3 35079088
    [Google Scholar]
  20. Fu L. Ye F. Feng Y. Yu F. Wang Q. Wu Y. Zhao C. Sun H. Huang B. Niu P. Song H. Shi Y. Li X. Tan W. Qi J. Gao G.F. Both Boceprevir and GC376 efficaciously inhibit SARS-CoV-2 by targeting its main protease. Nat. Commun. 2020 11 1 4417 10.1038/s41467‑020‑18233‑x 32887884
    [Google Scholar]
  21. Delaplace M. Huet H. Gambino A. Le Poder S. Feline coronavirus antivirals: A review. Pathogens 2021 10 9 1150 10.3390/pathogens10091150 34578182
    [Google Scholar]
  22. Lu J. Chen S.A. Khan M.B. Brassard R. Arutyunova E. Lamer T. Vuong W. Fischer C. Young H.S. Vederas J.C. Lemieux M.J. Crystallization of feline coronavirus Mpro With GC376 reveals mechanism of inhibition. Front Chem. 2022 10 852210 10.3389/fchem.2022.852210 35281564
    [Google Scholar]
  23. Rhodin M.H.J. Reyes A.C. Balakrishnan A. Bisht N. Kelly N.M. Gibbons J.S. Lloyd J. Vaine M. Cressey T. Crepeau M. Shen R. Manalo N. Castillo J. Levene R.E. Leonard D. Zang T. Jiang L. Daniels K. Cox R.M. Lieber C.M. Wolf J.D. Plemper R.K. Leist S.R. Scobey T. Baric R.S. Wang G. Goodwin B. Or Y.S. The small molecule inhibitor of SARS-CoV-2 3CLpro EDP-235 prevents viral replication and transmission in vivo. Nat. Commun. 2024 15 1 6503 10.1038/s41467‑024‑50931‑8 39090095
    [Google Scholar]
  24. Unoh Y. Uehara S. Nakahara K. Nobori H. Yamatsu Y. Yamamoto S. Maruyama Y. Taoda Y. Kasamatsu K. Suto T. Kouki K. Nakahashi A. Kawashima S. Sanaki T. Toba S. Uemura K. Mizutare T. Ando S. Sasaki M. Orba Y. Sawa H. Sato A. Sato T. Kato T. Tachibana Y. Discovery of S-217622, a noncovalent oral SARS-CoV-2 3CL protease inhibitor clinical candidate for treating COVID-19. J. Med. Chem. 2022 65 9 6499 6512 10.1021/acs.jmedchem.2c00117 35352927
    [Google Scholar]
  25. Green J. Syme H. Tayler S. Thirty‐two cats with effusive or non‐effusive feline infectious peritonitis treated with a combination of remdesivir and GS‐441524. J. Vet. Intern. Med. 2023 37 5 1784 1793 10.1111/jvim.16804 37403259
    [Google Scholar]
  26. Anandakrishnan R. Aguilar B. Onufriev A.V.H. ++ 3.0: Automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Res. 2012 40 W1 W537 W541 10.1093/nar/gks375 22570416
    [Google Scholar]
  27. Feinstein W.P. Brylinski M. Calculating an optimal box size for ligand docking and virtual screening against experimental and predicted binding pockets. J. Cheminform. 2015 7 1 18 10.1186/s13321‑015‑0067‑5 26082804
    [Google Scholar]
  28. Eberhardt J. Santos-Martins D. Tillack A.F. Forli S. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model. 2021 61 8 3891 3898 10.1021/acs.jcim.1c00203 34278794
    [Google Scholar]
  29. Trott O. Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010 31 2 455 461 10.1002/jcc.21334 19499576
    [Google Scholar]
  30. Irwin J.J. Tang K.G. Young J. Dandarchuluun C. Wong B.R. Khurelbaatar M. Moroz Y.S. Mayfield J. Sayle R.A. ZINC20—A free ultralarge-scale chemical database for ligand discovery. J. Chem. Inf. Model. 2020 60 12 6065 6073 10.1021/acs.jcim.0c00675 33118813
    [Google Scholar]
  31. Weininger D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 1988 28 1 31 36 10.1021/ci00057a005
    [Google Scholar]
  32. Bai Q. Tan S. Xu T. Liu H. Huang J. Yao X. MolAICal: A soft tool for 3D drug design of protein targets by artificial intelligence and classical algorithm. Brief. Bioinform. 2021 22 3 bbaa161 10.1093/bib/bbaa161 32778891
    [Google Scholar]
  33. Bickerton G.R. Paolini G.V. Besnard J. Muresan S. Hopkins A.L. Quantifying the chemical beauty of drugs. Nat. Chem. 2012 4 2 90 98 10.1038/nchem.1243 22270643
    [Google Scholar]
  34. Betapudi V. Life without double-headed non-muscle myosin II motor proteins. Front Chem. 2014 2 45 10.3389/fchem.2014.00045 25072053
    [Google Scholar]
  35. Lipinski C.A. Lombardo F. Dominy B.W. Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001 46 1-3 3 26 10.1016/S0169‑409X(00)00129‑0 11259830
    [Google Scholar]
  36. Vuong W. Khan M.B. Fischer C. Arutyunova E. Lamer T. Shields J. Saffran H.A. McKay R.T. van Belkum M.J. Joyce M.A. Young H.S. Tyrrell D.L. Vederas J.C. Lemieux M.J. Feline coronavirus drug inhibits the main protease of SARS-CoV-2 and blocks virus replication. Nat. Commun. 2020 11 1 4282 10.1038/s41467‑020‑18096‑2 32855413
    [Google Scholar]
  37. Genheden S. Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov. 2015 10 5 449 461 10.1517/17460441.2015.1032936 25835573
    [Google Scholar]
  38. Case D.A. Belfon K. AMBER University of California: San Francisco 2020
    [Google Scholar]
  39. Case D.A. Aktulga H.M. Belfon K. Cerutti D.S. Cisneros G.A. Cruzeiro V.W.D. Forouzesh N. Giese T.J. Götz A.W. Gohlke H. Izadi S. Kasavajhala K. Kaymak M.C. King E. Kurtzman T. Lee T.S. Li P. Liu J. Luchko T. Luo R. Manathunga M. Machado M.R. Nguyen H.M. O’Hearn K.A. Onufriev A.V. Pan F. Pantano S. Qi R. Rahnamoun A. Risheh A. Schott-Verdugo S. Shajan A. Swails J. Wang J. Wei H. Wu X. Wu Y. Zhang S. Zhao S. Zhu Q. Cheatham T.E. Roe D.R. Roitberg A. Simmerling C. York D.M. Nagan M.C. Merz K.M. AmberTools. J. Chem. Inf. Model. 2023 63 20 6183 6191 10.1021/acs.jcim.3c01153 37805934
    [Google Scholar]
  40. Lu T. Chen F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012 33 5 580 592 10.1002/jcc.22885 22162017
    [Google Scholar]
  41. Tian L.U. Fei-Wu C.H.E.N. Comparison of computational methods for atomic charges. Wuli Huaxue Xuebao 2012 28 1 1 18 10.3866/PKU.WHXB2012281
    [Google Scholar]
  42. Maier J.A. Martinez C. Kasavajhala K. Wickstrom L. Hauser K.E. Simmerling C. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 2015 11 8 3696 3713 10.1021/acs.jctc.5b00255 26574453
    [Google Scholar]
  43. Wang J. Wolf R.M. Caldwell J.W. Kollman P.A. Case D.A. Development and testing of a general amber force field. J. Comput. Chem. 2004 25 9 1157 1174 10.1002/jcc.20035 15116359
    [Google Scholar]
  44. Jorgensen W.L. Chandrasekhar J. Madura J.D. Impey R.W. Klein M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983 79 2 926 935 10.1063/1.445869
    [Google Scholar]
  45. Darden T. York D. Pedersen L. Particle mesh Ewald: An N ⋅log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993 98 12 10089 10092 10.1063/1.464397
    [Google Scholar]
  46. Ryckaert J.P. Ciccotti G. Berendsen H.J.C. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys. 1977 23 3 327 341 10.1016/0021‑9991(77)90098‑5
    [Google Scholar]
  47. Miller B.R. McGee T.D. Swails J.M. Homeyer N. Gohlke H. Roitberg A.E. MMPBSA.py: An efficient program for end-state free energy calculations. J. Chem. Theory Comput. 2012 8 9 3314 3321 10.1021/ct300418h 26605738
    [Google Scholar]
  48. Ferreira J.C. Fadl S. Villanueva A.J. Rabeh W.M. Catalytic dyad residues His41 and Cys145 impact the catalytic activity and overall conformational fold of the main SARS-CoV-2 protease 3-Chymotrypsin-like protease. Front Chem. 2021 9 692168 10.3389/fchem.2021.692168 34249864
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266426906251125112131
Loading
/content/journals/ctmc/10.2174/0115680266426906251125112131
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: Natural products ; 3CLpro ; Anti-virus ; FCoV ; Virtual screening ; Molecular dynamics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test