Skip to content
2000
image of A Review on the Synthesis of Biologically Active Thiazoles

Abstract

Heterocycles have attracted the attention of researchers for a long time due to their applications in various fields. - and containing heterocyclic compounds have a significant impact in organic chemistry. They are important not only industrially and biologically but also in the development of human society. Thiazoles are essential components in medicinal chemistry as well as key structural elements in many naturally occurring substances. Because of their notable biological properties, thiazoles have been an interesting topic of research, and many drugs have been designed that possess the thiazole moiety. As a result, the development of innovative techniques for synthesizing these molecules remains highly interesting. Many methodologies have been developed for the preparation of thiazoles, and the emergence of novel, environmentally friendly synthetic approaches is highly desirable. The present review article provides an overview of the biological importance and synthetic methods for the formation of thiazoles, promoting further research on the development of thiazole-containing drugs. It encourages researchers to synthesize novel and potent thiazoles effective against mutant strains, and the development of synthetic protocols is a high priority in medicinal chemistry research. This review will help to advance the search for strategies for the synthesis of biologically active thiazoles.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266403938251124113840
2026-01-15
2026-01-31
Loading full text...

Full text loading...

References

  1. Chhabria M.T. Patel S. Modi P. Brahmkshatriya P.S. Thiazole: A review on chemistry, synthesis and therapeutic importance of its derivatives. Curr. Top. Med. Chem. 2016 16 26 2841 2862 10.2174/1568026616666160506130731 27150376
    [Google Scholar]
  2. Arshadi S. Vessally E. Edjlali L. Hosseinzadeh-Khanmiri R. Ghorbani-Kalhor E. N-Propargylamines: Versatile building blocks in the construction of thiazole cores. Beilstein J. Org. Chem. 2017 13 625 638 10.3762/bjoc.13.61 28487756
    [Google Scholar]
  3. Borcea A.M. Ionuț I. Crișan O. Oniga O. An overview of the synthesis and antimicrobial, antiprotozoal, and antitumor activity of thiazole and bisthiazole derivatives. Molecules 2021 26 3 624 649 10.3390/molecules26030624 33504100
    [Google Scholar]
  4. Xie W. Wu Y. Zhang J. Mei Q. Zhang Y. Zhu N. Liu R. Zhang H. Design, synthesis and biological evaluations of novel pyridone-thiazole hybrid molecules as antitumor agents. Eur. J. Med. Chem. 2018 145 35 40 10.1016/j.ejmech.2017.12.038 29316536
    [Google Scholar]
  5. Gomha S.M. Kheder N.A. Abdelaziz M.R. Mabkhot Y.N. Alhajoj A.M. A facile synthesis and anticancer activity of some novel thiazoles carrying 1,3,4-thiadiazole moiety. Chem. Cent. J. 2017 11 1 25 34 10.1186/s13065‑017‑0255‑7 29086817
    [Google Scholar]
  6. de Siqueira L.R.P. de Moraes Gomes P.A.T. de Lima Ferreira L.P. de Melo Rêgo M.J.B. Leite A.C.L. Multi-target compounds acting in cancer progression: Focus on thiosemicarbazone, thiazole and thiazolidinone analogues. Eur. J. Med. Chem. 2019 170 237 260 10.1016/j.ejmech.2019.03.024 30904782
    [Google Scholar]
  7. George R.F. Samir E.M. Abdelhamed M.N. Abdel-Aziz H.A. Abbas S.E.S. Synthesis and anti-proliferative activity of some new quinoline based 4,5-dihydropyrazoles and their thiazole hybrids as EGFR inhibitors. Bioorg. Chem. 2019 83 186 197 10.1016/j.bioorg.2018.10.038 30380447
    [Google Scholar]
  8. Sahu S. Ghosh S.K. Gahtori P. Pratap Singh U. Bhattacharyya D.R. Bhat H.R. In silico ADMET study, docking, synthesis and antimalarial evaluation of thiazole-1,3,5-triazine derivatives as Pf-DHFR inhibitor. Pharmacol. Rep. 2019 71 5 762 767 10.1016/j.pharep.2019.04.006 31351317
    [Google Scholar]
  9. a Mishra I. Mishra R. Mujwar S. Chandra P. Sachan N. A retrospect on antimicrobial potential of thiazole scaffold. J. Heterocycl. Chem. 2020 57 6 2304 2329 10.1002/jhet.3970
    [Google Scholar]
  10. b Singh I.P. Gupta S. Kumar S. Thiazole compounds as antiviral agents: An update. Med. Chem. 2020 16 1 4 23 10.2174/1573406415666190614101253 31203807
    [Google Scholar]
  11. Lino C.I. Gonçalves de Souza I. Borelli B.M. Silvério Matos T.T. Santos Teixeira I.N. Ramos J.P. Maria de Souza Fagundes E. de Oliveira Fernandes P. Maltarollo V.G. Johann S. de Oliveira R.B. Synthesis, molecular modeling studies and evaluation of antifungal activity of a novel series of thiazole derivatives. Eur. J. Med. Chem. 2018 151 248 260 10.1016/j.ejmech.2018.03.083 29626797
    [Google Scholar]
  12. Yurttaş L. Özkay Y. Kaplancıklı Z.A. Tunalı Y. Karaca H. Synthesis and antimicrobial activity of some new hydrazone-bridged thiazole-pyrrole derivatives. J. Enzyme Inhib. Med. Chem. 2013 28 4 830 835 10.3109/14756366.2012.688043 22651798
    [Google Scholar]
  13. a Abu-Melha S. Edrees M.M. Riyadh S.M. Abdelaziz M.R. Elfiky A.A. Gomha S.M. Clean grinding technique: A facile synthesis and in silico antiviral activity of hydrazones, pyrazoles, and pyrazines bearing thiazole moiety against SARS-CoV-2 main protease (Mpro). Molecules 2020 25 19 4565 4578 10.3390/molecules25194565 33036293
    [Google Scholar]
  14. b Kerru N. Gummidi L. Maddila S. Gangu K.K. Jonnalagadda S.B. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules 2020 25 8 1909 1951 10.3390/molecules25081909 32326131
    [Google Scholar]
  15. a Sharma P.C. Bansal K.K. Sharma A. Sharma D. Deep A. Thiazole-containing compounds as therapeutic targets for cancer therapy. Eur. J. Med. Chem. 2020 188 112016 112139 10.1016/j.ejmech.2019.112016 31926469
    [Google Scholar]
  16. b Wang G. Peng Z. Gong Z. Li Y. Synthesis, biological evaluation, and docking studies of novel 5,6-diaryl-1,2,4-triazine thiazole derivatives as a new class of α-glucosidase inhibitors. Bioorg. Chem. 2018 78 195 200 10.1016/j.bioorg.2018.03.015 29587132
    [Google Scholar]
  17. Nayak S. Gaonkar S.L. A review on recent synthetic strategies and pharmacological importance of 1,3-thiazole derivatives. Mini Rev. Med. Chem. 2019 19 3 215 238 10.2174/1389557518666180816112151 30112994
    [Google Scholar]
  18. Prajapati N.P. Patel K.D. Vekariya R.H. Patel H.D. Rajani D.P. Thiazole fused thiosemicarbazones: Microwave-assisted synthesis, biological evaluation and molecular docking study. J. Mol. Struct. 2019 1179 401 410 10.1016/j.molstruc.2018.11.025
    [Google Scholar]
  19. Gümüş M. Yakan M. Koca İ. Recent advances of thiazole hybrids in biological applications. Future Med. Chem. 2019 11 15 1979 1998 10.4155/fmc‑2018‑0196 31517529
    [Google Scholar]
  20. a Anuradha; Patel, S.; Patle, R.; Parameswaran, P.; Jain, A.; Shard, A. Design, computational studies, synthesis and biological evaluation of thiazole-based molecules as anticancer agents. Eur. J. Pharm. Sci. 2019 134 20 30 10.1016/j.ejps.2019.04.005 30965082
    [Google Scholar]
  21. b Hosny M. Salem M.E. Darweesh A.F. Elwahy A.H.M. Synthesis of novel bis(thiazolylchromen-2-one) derivatives linked to alkyl spacer via phenoxy group. J. Heterocycl. Chem. 2018 55 10 2342 2348 10.1002/jhet.3296
    [Google Scholar]
  22. a Borcea A-M. Marc G. Pîrnău A. Vlase L. Ionut I. Tiperciuc B. Oniga O. Synthesis and molecular docking study of some new 1,4-phenylene-bisthiazoles as fungal lanosterol 14α-demethylase inhibitors. Farmacia 2017 65 683 689
    [Google Scholar]
  23. b Althagafi I. El-Metwaly N. Farghaly T.A. New series of thiazole derivatives: synthesis, structural elucidation, antimicrobial activity, molecular modeling and MOE docking. Molecules 2019 24 9 1741 1764 10.3390/molecules24091741 31060260
    [Google Scholar]
  24. Matysiak J. Synthesis, antiproliferative and antifungal activities of some 2-(2,4-dihydroxyphenyl)-4H-3,1-benzothiazines. Bioorg. Med. Chem. 2006 14 8 2613 2619 10.1016/j.bmc.2005.11.053 16377195
    [Google Scholar]
  25. Macchiarulo A. Costantino G. Fringuelli D. Vecchiarelli A. Schiaffella F. Fringuelli R. 1,4-Benzothiazine and 1,4-Benzoxazine imidazole derivatives with antifungal activity: A docking study. Bioorg. Med. Chem. 2002 10 11 3415 3423 10.1016/S0968‑0896(02)00263‑8 12213454
    [Google Scholar]
  26. Schiaffella R.F. Vecchiarelli A. Vecchiarelli A. Antifungal and immunomodulating activities of 1,4-benzothiazine azole derivatives (Review). J. Chemother. 2001 13 1 9 14 10.1179/joc.2001.13.1.9 11233807
    [Google Scholar]
  27. Rathore B.S. Kumar M. Synthesis of 7-chloro-5-trifluoromethyl/7-fluoro/7-trifluoromethyl-4H-1,4-benzothiazines as antimicrobial agents. Bioorg. Med. Chem. 2006 14 16 5678 5682 10.1016/j.bmc.2006.04.009 16650998
    [Google Scholar]
  28. Hirokawa Y. Kinoshita H. Tanaka T. Nakamura T. Fujimoto K. Kashimoto S. Kojima T. Kato S. Pleuromutilin derivatives having a purine ring. Part 2: Influence of the central spacer on the antibacterial activity against Gram-positive pathogens. Bioorg. Med. Chem. Lett. 2009 19 1 170 174 10.1016/j.bmcl.2008.10.123 19028096
    [Google Scholar]
  29. Sharma P.K. Kaur G. A review on antimicrobial activities of important thiazines based heterocycles. Drug Invent Today 2017 9 23 25
    [Google Scholar]
  30. Liu Z. Larock R.C. Synthesis of carbazoles and dibenzofurans via cross-coupling of o-iodoanilines and o-iodophenols with silylaryl triflates. Org. Lett. 2004 6 21 3739 3741 10.1021/ol048564l 15469337
    [Google Scholar]
  31. Cai X. Snieckus V. Combined directed ortho and remote metalation-cross-coupling strategies. General method for benzo[a]carbazoles and the synthesis of an unnamed indolo[2,3-a]carbazole alkaloid. Org. Lett. 2004 6 14 2293 2295 10.1021/ol049780x 15228262
    [Google Scholar]
  32. Banik B.K. Samajdar S. Banik I. Simple synthesis of substituted pyrroles. J. Org. Chem. 2004 69 1 213 216 10.1021/jo035200i 14703403
    [Google Scholar]
  33. Daştan A. Kulkarni A. Török B. Environmentally benign synthesis of heterocyclic compounds by combined microwave-assisted heterogeneous catalytic approaches †. Green Chem. 2012 14 1 17 37 10.1039/C1GC15837F
    [Google Scholar]
  34. a Ali S.H. Sayed A.R. Review of the synthesis and biological activity of thiazoles. Synth. Commun. 2021 51 5 670 700 10.1080/00397911.2020.1854787
    [Google Scholar]
  35. b Ali S.H. Sayed A.R. Review of the synthesis and biological activity of thiazoles. Synth. Commun. 2020 50 1 31
    [Google Scholar]
  36. Kaur N. Metal and non-metal catalysts in the synthesis of five-membered S-heterocycles. Curr. Org. Synth. 2019 16 2 258 275 10.2174/1570179416666181207144430 31975675
    [Google Scholar]
  37. Kaur N. Solid-phase synthesis of sulfur containing heterocycles. J. Sulfur Chem. 2018 39 5 544 577 10.1080/17415993.2018.1457673
    [Google Scholar]
  38. Kaur N. Kishore D. Microwave-assisted synthesis of six-membered S-heterocycles. Synth. Commun. 2014 44 18 2615 2644 10.1080/00397911.2013.792354
    [Google Scholar]
  39. Yang J. Zhao W. Wei L. Zhang Q. Zhao Y. Hu W. Wu L. Li X. Pavuluri C.M. Pan X. Sun Y. Wang Z. Liu C.Q. Kawamura K. Fu P. Molecular and spatial distributions of dicarboxylic acids, oxocarboxylic acids, and α -dicarbonyls in marine aerosols from the South China Sea to the eastern Indian Ocean. Atmos. Chem. Phys. 2020 20 11 6841 6860 10.5194/acp‑20‑6841‑2020
    [Google Scholar]
  40. Nazarov M.A. Tolmacheva I.A. Grishko V.V. Synthesis and heterocyclization of triterpenic 1,3-diketones. ARKIVOC 2020 2020 8 70 80 10.24820/ark.5550190.p011.344
    [Google Scholar]
  41. a Kel’in A. Recent advances in the synthesis of 1,3-diketones. Curr. Org. Chem. 2003 7 16 1691 1711 10.2174/1385272033486233
    [Google Scholar]
  42. b Chen L. lin, Z.; Zhang, X.; Tan, L.; Zhang, M.; Li, Y. Catalyst-free visible-light induced synthesis of nitrogen- and oxygen-containing heterocycles from 1,3-diketones. Environ. Chem. Lett. 2021 19 2 1831 1837 10.1007/s10311‑020‑01150‑2
    [Google Scholar]
  43. c Mohareb R.M. Kamel M.M. Milad Y.R. Uses of β-diketones for the synthesis of novel heterocyclic compounds and their antitumor evaluations. Bull. Chem. Soc. Ethiop. 2020 34 385 405 10.4314/bcse.v34i2.15
    [Google Scholar]
  44. a Nevar N.M. Kel’in A.V. Kulinkovich O.G. One step preparation of 1,4-diketones from methyl ketones and α-bromomethyl ketones in the presence of ZnCl2·t-BuOH·Et2NR as a condensation agent. Synthesis 2000 2000 9 1259 1262 10.1055/s‑2000‑6418
    [Google Scholar]
  45. b Zhang T. Xie C. Sakata H. Nakajima K. Shimoyama T. Watanabe T. Maekawa H. A simple protocol from benzalacetones to 1,1,1-trifluoro-2,5-diketones and 2-(trifluoromethyl)furans by reductive trifluoroacetylation. Eur. J. Org. Chem. 2020 2020 15 2237 2243 10.1002/ejoc.202000160
    [Google Scholar]
  46. a Liu L. Feng S. Li C. A green synthesis of highly substituted 1,5-diketones. RSC Advances 2015 5 70 56949 56953 10.1039/C5RA08682E
    [Google Scholar]
  47. b Zhang Y. Zhang J. Yuan Y. Liu L. Chen B. Sun T. Synthesis of polysubstituted 2H-pyran-2-ones or phenols via one-pot reaction of (E)-β-chlorovinyl ketones and electron-withdrawing group substituted acetates or β-diketones. Eur. J. Org. Chem. 2020 2020 13 1976 1986 10.1002/ejoc.202000199
    [Google Scholar]
  48. c Secci F. Porcu S. Luridiana A. Frongia A. Ricci P.C. Visible light promoted continuous flow photocyclization of 1,2-diketones. Org. Biomol. Chem. 2020 18 19 3684 3689 10.1039/D0OB00532K 32352131
    [Google Scholar]
  49. Kaur N. Lawesson’s Reagent in Heterocycle Synthesis. Singapore Springer 2021 10.1007/978‑981‑16‑4655‑3
    [Google Scholar]
  50. Beyzaei H. Aryan R. Molashahi H. Zahedi M.M. Samzadeh-Kermani A. Ghasemi B. Moghaddam-Manesh M. MgO nanoparticle-catalyzed, solvent-free Hantzsch synthesis and antibacterial evaluation of new substituted thiazoles. J. Indian Chem. Soc. 2017 14 5 1023 1031 10.1007/s13738‑017‑1052‑x
    [Google Scholar]
  51. Tsai C.Y. Kapoor M. Huang Y.P. Lin H.H. Liang Y.C. Lin Y.L. Huang S.C. Liao W.N. Chen J.K. Huang J.S. Hsu M.H. Synthesis and evaluation of aminothiazole-paeonol derivatives as potential anticancer agents. Molecules 2016 21 2 145 153 10.3390/molecules21020145 26821004
    [Google Scholar]
  52. Castell R.M. Villanueva N.C. Caceres C.D. Carballi R. Quijano Q.R. Quesadas R.M. Cantilo C. Cedillo R.R. 2-Amino-4-arylthiazole derivatives as anti-giardial agents: synthesis, biological evaluation and QSAR studies. Open Chem. 2015 13 1127 1136
    [Google Scholar]
  53. Madhav B. Narayana Murthy S. Anil Kumar B.S.P. Ramesh K. Nageswar Y.V.D. A tandem one-pot aqueous phase synthesis of thiazoles/selenazoles. Tetrahedron Lett. 2012 53 30 3835 3838 10.1016/j.tetlet.2012.04.097
    [Google Scholar]
  54. Hantzsch A. Weber J.H. Mechanism of the Hantzsch thiazole synthesis. Ber. Dtsch. Chem. Ges. 1887 20 3118 3132 10.1002/cber.188702002200
    [Google Scholar]
  55. Ziyaei Halimehjani A. Hasani L. Ali Alaei M. Saidi M.R. Dithiocarbamates as an efficient intermediate for the synthesis of 2-(alkylsulfanyl)thiazoles in water. Tetrahedron Lett. 2016 57 8 883 886 10.1016/j.tetlet.2016.01.045
    [Google Scholar]
  56. Xiabing M. Ablajan K. Obul M. Seydimemet M. Ruzi R. Wenbo L. Facial one-pot, three-component synthesis of thiazole compounds by the reactions of aldehyde/ketone, thiosemicarbazide and chlorinated carboxylic ester derivatives. Tetrahedron 2016 72 18 2349 2353 10.1016/j.tet.2016.03.053
    [Google Scholar]
  57. Reddy G.M. Garcia J.R. Reddy V.H. de Andrade A.M. Camilo A. Pontes Ribeiro R.A. de Lazaro S.R. Synthesis, antimicrobial activity and advances in structure-activity relationships (SARs) of novel tri-substituted thiazole derivatives. Eur. J. Med. Chem. 2016 123 508 513 10.1016/j.ejmech.2016.07.062 27494167
    [Google Scholar]
  58. Cheng K. McClory A. Walker W. Xu J. Zhang H. Angelaud R. Gosselin F. A Strecker approach to 2-substituted ethyl 5-aminothiazole-4-carboxylates. Tetrahedron Lett. 2016 57 16 1736 1738 10.1016/j.tetlet.2015.12.069
    [Google Scholar]
  59. Vaddula B.R. Tantak M.P. Sadana R. Gonzalez M.A. Kumar D. Kumar D. One-pot synthesis and in-vitro anticancer evaluation of 5-(2′-indolyl)thiazoles. Sci. Rep. 2016 6 1 23401 23406 10.1038/srep23401 27021742
    [Google Scholar]
  60. Aliança A.S.S. Oliveira A.R. Feitosa A.P.S. Ribeiro K.R.C. de Castro M.C.A.B. Leite A.C.L. Alves L.C. Brayner F.A. In vitro evaluation of cytotoxicity and leishmanicidal activity of phthalimido-thiazole derivatives. Eur. J. Pharm. Sci. 2017 105 1 10 10.1016/j.ejps.2017.05.005 28478133
    [Google Scholar]
  61. Arunkumar K. Naresh Kumar Reddy D. Chandrasekhar K.B. Rajender Kumar P. Shiva Kumar K. Pal M. Catalysis by zeolite leading to the construction of thiazole ring: An improved synthesis of 4-alkynyl substituted thiazoles. Tetrahedron Lett. 2012 53 30 3885 3889 10.1016/j.tetlet.2012.05.062
    [Google Scholar]
  62. Zali-Boeini H. Mansouri S.G. One-step three-component and solvent-free synthesis of thiazoles from tertiary thioamides. J. Indian Chem. Soc. 2016 13 9 1571 1577 10.1007/s13738‑016‑0873‑3
    [Google Scholar]
  63. Aguilar E. Meyers A.I. Reinvestigation of a modified Hantzsch thiazole synthesis. Tetrahedron Lett. 1994 35 16 2473 2476 10.1016/S0040‑4039(00)77147‑4
    [Google Scholar]
  64. Bredenkamp M.W. Holzapfel C.W. van Zyl W.J. The chiral synthesis of thiazole amino acid enantiomers. Synth. Commun. 1990 20 15 2235 2249 10.1080/00397919008053164
    [Google Scholar]
  65. Foss F.W. Mathews T.P. Kharel Y. Kennedy P.C. Snyder A.H. Davis M.D. Lynch K.R. Macdonald T.L. Synthesis and biological evaluation of sphingosine kinase substrates as sphingosine-1-phosphate receptor prodrugs. Bioorg. Med. Chem. 2009 17 16 6123 6136 10.1016/j.bmc.2009.04.015 19632123
    [Google Scholar]
  66. Schiess R. Total synthesis of cyclopropyl-epothilone B analogs and studies towards the total synthesis of michaolide E. Doctor of Sciences. ETH Zurich 2013
    [Google Scholar]
  67. Pons J.F. Mishir Q. Nouvet A. Brookfield F. Thiazole formation via traceless cleavage of Rink resin. Tetrahedron Lett. 2000 41 25 4965 4968 10.1016/S0040‑4039(00)00748‑6
    [Google Scholar]
  68. Krchňák V. Holladay M.W. Solid phase heterocyclic chemistry. Chem. Rev. 2002 102 1 61 92 10.1021/cr010123h 11782129
    [Google Scholar]
  69. Owusu-Ansah E. Durow A.C. Harding J.R. Jordan A.C. O’Connell S.J. Willis C.L. Synthesis of dysideaproline E using organocatalysis. Org. Biomol. Chem. 2011 9 1 265 272 10.1039/C0OB00617C 21076771
    [Google Scholar]
  70. Lloyd J. Finlay H.J. Vacarro W. Hyunh T. Kover A. Bhandaru R. Yan L. Atwal K. Conder M.L. Jenkins-West T. Shi H. Huang C. Li D. Sun H. Levesque P. Pyrrolidine amides of pyrazolodihydropyrimidines as potent and selective KV1.5 blockers. Bioorg. Med. Chem. Lett. 2010 20 4 1436 1439 10.1016/j.bmcl.2009.12.085 20097068
    [Google Scholar]
  71. Pichota A. Duraiswamy J. Yin Z. Keller T. Schreiber M. Peptide deformylase inhibitors of Mycobacterium tuberculosis: Synthesis, structural investigations, and biological results. Bioorg. Med. Chem. Lett. 2007 18 6568 6572
    [Google Scholar]
  72. Dox A.W. Yoder L. Amide formation from esters of secondary alkyl malonic acids. J. Am. Chem. Soc. 1922 44 7 1564 1567 10.1021/ja01428a026
    [Google Scholar]
  73. Zaitsev A.B. Adolfsson H. Enantioswitchable catalysts for the asymmetric transfer hydrogenation of aryl alkyl ketones. Org. Lett. 2006 8 22 5129 5132 10.1021/ol062227q 17048860
    [Google Scholar]
  74. Rudolph J. Chen L. Majumdar D. Bullock W.H. Burns M. Claus T. Dela Cruz F.E. Daly M. Ehrgott F.J. Johnson J.S. Livingston J.N. Schoenleber R.W. Shapiro J. Yang L. Tsutsumi M. Ma X. Indanylacetic acid derivatives carrying 4-thiazolyl-phenoxy tail groups, a new class of potent PPAR α/γ/δ pan agonists: Synthesis, structure-activity relationship, and in vivo efficacy. J. Med. Chem. 2007 50 5 984 1000 10.1021/jm061299k 17274610
    [Google Scholar]
  75. Skov R. Smyth R. Larsen A.R. Frimodt-Møller N. Kahlmeter G. Evaluation of cefoxitin 5 and 10 μg discs for the detection of methicillin resistance in staphylococci. J. Antimicrob. Chemother. 2005 55 2 157 161 10.1093/jac/dkh514 15650006
    [Google Scholar]
  76. Arthington-Skaggs B.A. Motley M. Warnock D.W. Morrison C.J. Comparative evaluation of PASCO and national committee for clinical laboratory standards M27-A broth microdilution methods for antifungal drug susceptibility testing of yeasts. J. Clin. Microbiol. 2000 38 6 2254 2260 10.1128/JCM.38.6.2254‑2260.2000 10834985
    [Google Scholar]
  77. Sivagurunathan K. Kamil S.R.M. Shafi S.S. Efficient synthesis of novel pyrazolo thiazole derivatives and its antifungal activity studies. J. Pharm. Res. 2013 2 1 3
    [Google Scholar]
  78. Carbone A. Pennati M. Barraja P. Montalbano A. Parrino B. Spanò V. Lopergolo A. Sbarra S. Doldi V. Zaffaroni N. Cirrincione G. Diana P. Synthesis and antiproliferative activity of substituted 3[2-(1H-indol-3-yl)- 1,3-thiazol-4-yl]-1H-pyrrolo[3,2-b]pyridines, marine alkaloid nortopsentin analogues. Curr. Med. Chem. 2014 21 14 1654 1666 10.2174/09298673113206660307 24180279
    [Google Scholar]
  79. Carbone A. Pennati M. Parrino B. Lopergolo A. Barraja P. Montalbano A. Spanò V. Sbarra S. Doldi V. De Cesare M. Cirrincione G. Diana P. Zaffaroni N. Novel 1H-pyrrolo[2,3-b]pyridine derivative nortopsentin analogues: Synthesis and antitumor activity in peritoneal mesothelioma experimental models. J. Med. Chem. 2013 56 17 7060 7072 10.1021/jm400842x 23919303
    [Google Scholar]
  80. Ganser C. Lauermann E. Maderer A. Stauder T. Kramb J.P. Plutizki S. Kindler T. Moehler M. Dannhardt G. Novel 3-Azaindolyl-4-arylmaleimides exhibiting potent antiangiogenic efficacy, protein kinase inhibition, and antiproliferative activity. J. Med. Chem. 2012 55 22 9531 9540 10.1021/jm301217c 23088521
    [Google Scholar]
  81. Diana P. Carbone A. Barraja P. Montalbano A. Parrino B. Lopergolo A. Pennati M. Zaffaroni N. Cirrincione G. Synthesis and antitumor activity of 3‐(2‐Phenyl‐1,3‐thiazol‐4‐yl)‐1 H‐indoles and 3‐(2‐Phenyl‐1,3‐thiazol‐4‐yl)‐1 H ‐7‐azaindoles. ChemMedChem 2011 6 7 1300 1309 10.1002/cmdc.201100078 21523912
    [Google Scholar]
  82. Parrino B. Carbone A. Di Vita G. Ciancimino C. Attanzio A. Spanò V. Montalbano A. Barraja P. Tesoriere L. Livrea M. Diana P. Cirrincione G. 3-[4-(1H-indol-3-yl)-1,3-thiazol-2-yl]-1H-pyrrolo[2,3-b]pyridines, Nortopsentin analogues with antiproliferative activity. Mar. Drugs 2015 13 4 1901 1924 10.3390/md13041901 25854642
    [Google Scholar]
  83. Carbone A. Parrino B. Vita G. Attanzio A. Spanò V. Montalbano A. Barraja P. Tesoriere L. Livrea M. Diana P. Cirrincione G. Synthesis and antiproliferative activity of thiazolyl-bis-pyrrolo[2,3-b]pyridines and indolyl-thiazolyl-pyrrolo[2,3-c]pyridines, nortopsentin analogues. Mar. Drugs 2015 13 1 460 492 10.3390/md13010460 25603343
    [Google Scholar]
  84. Schmidt U. Gleich P. Griesser H. Utz R. Amino acids and peptides; 581. Synthesis of optically active 2-(1-hydroxyalkyl)-thiazole-4-carboxylic acids and 2-(1-aminoalkyl)-thiazole-4-carboxylic acids. Synthesis 1986 1986 12 992 998 10.1055/s‑1986‑31847
    [Google Scholar]
  85. Pirovani R. Brito G. Barcelos R. Pilli R. Enantioselective total synthesis of (+)-lyngbyabellin M. Mar. Drugs 2015 13 6 3309 3324 10.3390/md13063309 26023838
    [Google Scholar]
  86. Pan C.M. Lin C.C. Kim S.J. Sellers R.P. McAlpine S.R. Progress toward the synthesis of Urukthapelstatin A and two analogues. Tetrahedron Lett. 2012 53 32 4065 4069 10.1016/j.tetlet.2012.05.105 22945384
    [Google Scholar]
  87. Landeira L. Imbriago Y. Serra G. Manta E. Saldana J. Scarone L. Synthesis and anthelmintic evaluation of [2,5′]-bis-heterocycles as bengazole analogs. Rev. Latinoam. Quím. 2013 41 38 49
    [Google Scholar]
  88. Moody C.J. Hunt J.C.A. Synthesis of virenamide B, a cytotoxic thiazole-containing peptide. J. Org. Chem. 1999 64 23 8715 8717 10.1021/jo9908694
    [Google Scholar]
  89. Bagley M.C. Buck R.T. Hind S.L. Moody C.J. Synthesis of functionalised oxazoles and bis-oxazoles 1. J. Chem. Soc., Perkin Trans. 1 1998 3 3 591 600 10.1039/a704093h
    [Google Scholar]
  90. Lecher H.Z. Greenwood R.A. Whitehouse K.C. Chao T.H. The phosphonation of aromatic compounds with phosphorus pentasulfide. J. Am. Chem. Soc. 1956 78 19 5018 5022 10.1021/ja01600a058
    [Google Scholar]
  91. Sureshbabu V.V. Naik S.A. Nagendra G. Synthesis of Boc-amino tetrazoles derived from α-amino acids. Synth. Commun. 2009 39 3 395 406 10.1080/00397910802374133
    [Google Scholar]
  92. Tavecchia P. Gentili P. Kurz M. Sottani C. Bonfichi R. Selva E. Lociuro S. Restelli E. Ciabatti R. Degradation studies of antibiotic MDL 62,879 (GE2270A) and revision of the structure. Tetrahedron 1995 51 16 4867 4890 10.1016/0040‑4020(95)00171‑4
    [Google Scholar]
  93. Müller H.M. Delgado O. Bach T. Total synthesis of the thiazolyl peptide GE2270 A. Angew. Chem. Int. Ed. 2007 46 25 4771 4774 10.1002/anie.200700684 17503407
    [Google Scholar]
  94. Merritt E.A. Bagley M.C. Holzapfel-Meyers-Nicolaou modification of the Hantzsch thiazole synthesis. Synthesis 2007 22 3535 3541
    [Google Scholar]
  95. Hamada Y. Hayashi K. Shioiri T. Efficient stereoselective synthesis of dolastatin 10, an antineoplastic peptide from a sea hare. Tetrahedron Lett. 1991 32 7 931 934 10.1016/S0040‑4039(00)92123‑3
    [Google Scholar]
  96. Ray S. Drew M.G.B. Das A.K. Banerjee A. The role of terminal tyrosine residues in the formation of tripeptide nanotubes: A crystallographic insight. Tetrahedron 2006 62 31 7274 7283 10.1016/j.tet.2006.05.042
    [Google Scholar]
  97. Fu Y. Xu B. Zou X. Ma C. Yang X. Mou K. Fu G. Lü Y. Xu P. Design and synthesis of a novel class of furan-based molecules as potential 20S proteasome inhibitors. Bioorg. Med. Chem. Lett. 2007 17 4 1102 1106 10.1016/j.bmcl.2006.11.020 17134894
    [Google Scholar]
  98. Chen Z. Ye T. The first total synthesis of aeruginosamide. New J. Chem. 2006 30 4 518 520 10.1039/b515571a
    [Google Scholar]
  99. Gan H. Chen Z. Fang Z. Guo K. Concise and efficient total syntheses of virenamides A and D. J. Adv. Chem. 2013 4 488 493
    [Google Scholar]
  100. Kim D. Baek D.J. Lee D. Liu K-H. Bae J-S. Gong Y-D. Min K.H. Lee T. Efficient solid-phase synthesis of 2,4-disubstituted 5-carbamoyl-thiazole derivatives using a traceless support. Tetrahedron 2015 71 21 3367 3377 10.1016/j.tet.2015.03.104
    [Google Scholar]
  101. Babar A. Khalid H. Ayub K. Saleem S. Waseem A. Mahmood T. Munawar M.A. Abbas G. Khan A.F. Synthesis, characterization and density functional theory study of some new 2-anilinothiazoles. J. Mol. Struct. 2014 1072 221 227 10.1016/j.molstruc.2014.05.009
    [Google Scholar]
  102. Miura T. Funakoshi Y. Fujimoto Y. Nakahashi J. Murakami M. Facile synthesis of 2,5-disubstituted thiazoles from terminal alkynes, sulfonyl azides, and thionoesters. Org. Lett. 2015 17 10 2454 2457 10.1021/acs.orglett.5b00960 25927965
    [Google Scholar]
  103. Bray C. Olasoji J. A total synthesis of (+)-bacillamide B. Synlett 2010 2010 4 599 601 10.1055/s‑0029‑1219153
    [Google Scholar]
  104. Ishikura M. Abe T. Choshi T. Hibino S. Simple indole alkaloids and those with a non-rearranged monoterpenoid unit. Nat. Prod. Rep. 2013 30 5 694 752 10.1039/c3np20118j 23467716
    [Google Scholar]
  105. Falb E. Nudelman A. Hassner A. A convenient synthesis of chiral oxazolidin-2-ones and thiazolidin-2-ones and an improved preparation of triphosgene. Synth. Commun. 1993 23 20 2839 2844 10.1080/00397919308012605
    [Google Scholar]
  106. Cotarca L. Delogu P. Nardelli A. Šunjić V. Bis(trichloromethyl) carbonate in organic synthesis. Synthesis 1996 1996 5 553 576 10.1055/s‑1996‑4273
    [Google Scholar]
  107. Tirumala Venkata Ankayya Srinivas P. Bhavani S. Rambabu D. Venkata Basaveswara Rao M. Kapavarapu R. Pal M. FeCl3/ultrasound mediated reaction of 2-aminothiophenol with aldehydes in water: Synthesis of 2-substituted benzothiazoles of pharmacological interest. Lett. Drug Des. Discov. 2015 12 6 457 465 10.2174/1570180812666141216211045
    [Google Scholar]
  108. Prajapati N.P. Vekariya R.H. Patel H.D. Microwave induced facile one-pot access to diverse 2-cyanobenzothiazole - A key intermediate for the synthesis of firefly luciferin. Int. Lett Chem. Phys. Astron. 2015 5 2 81 89
    [Google Scholar]
  109. Robinson R. CCXXXII.—A new synthesis of oxazole derivatives. J. Chem. Soc. Trans. 1909 95 0 2167 2174 10.1039/CT9099502167
    [Google Scholar]
  110. Gabriel S. A synthesis of oxazoles and thiazoles I. Rep German Chem. Soc. 1910 43 134 138
    [Google Scholar]
  111. Gabriel S. Synthesis of oxazoles and thiazoles II. Rep German Chem. Soc. 1910 43 1283 1287
    [Google Scholar]
  112. Yamakuchi M. Matsunaga H. Tokuda R. Ishizuka T. Nakajima M. Kunieda T. Sterically congested ‘roofed’ 2-thiazolines as new chiral ligands for copper(II)-catalyzed asymmetric Diels-Alder reactions. Tetrahedron Lett. 2005 46 23 4019 4022 10.1016/j.tetlet.2005.04.025
    [Google Scholar]
  113. Mellah M. Voituriez A. Schulz E. Chiral sulfur ligands for asymmetric catalysis. Chem. Rev. 2007 107 11 5133 5209 10.1021/cr068440h 17944520
    [Google Scholar]
  114. Zhan Z. Yu J. Liu H. Cui Y. Yang R. Yang W. Li J. A general and efficient FeCl3-catalyzed nucleophilic substitution of propargylic alcohols. J. Org. Chem. 2006 71 21 8298 8301 10.1021/jo061234p 17025331
    [Google Scholar]
  115. Belhadj T. Nowicki A. Moody C.J. Synthesis of the ‘Northern-hemisphere’ fragments of the thiopeptide antibiotic nosiheptide. Synlett 2006 18 3033 3036
    [Google Scholar]
  116. Hanessian S. Margarita R. 1,3-Asymmetric induction in dianionic allylation reactions of amino acid derivatives-synthesis of functionally useful enantiopure glutamates, pipecolates and pyroglutamates. Tetrahedron Lett. 1998 39 33 5887 5890 10.1016/S0040‑4039(98)00900‑9
    [Google Scholar]
  117. Kelly R.C. Gebhard I. Wicnienski N. Synthesis of (R)- and (S)-(glu)thz and the corresponding bisthiazole dipeptide of dolastatin 3. J. Org. Chem. 1986 51 24 4590 4594 10.1021/jo00374a019
    [Google Scholar]
  118. Kimber M.C. Moody C.J. Construction of macrocyclic thiodepsipeptides: Synthesis of a nosiheptide ‘southern hemisphere’ model system. Chem. Commun. 2008 5 5 591 593 10.1039/B715644H 18209799
    [Google Scholar]
  119. Gao X. Pan Y. Lin M. Chen L. Zhan Z. Facile one-pot synthesis of three different substituted thiazoles from propargylic alcohols. Org. Biomol. Chem. 2010 8 14 3259 3266 10.1039/c002093a 20502779
    [Google Scholar]
  120. Scheibye S. Pedersen B.S. Lawesson S.O. Studies on organophosphorus compounds XXI. The dimer of p ‐methoxyphenylthionophosphine sulfide as thiation reagent. a new route to thiocarboxamides. Bull. Soc. Chim. Belg. 1978 87 3 229 238 10.1002/bscb.19780870311
    [Google Scholar]
  121. Cava M.P. Levinson M.I. Thionation reactions of lawesson’s reagents. Tetrahedron 1985 41 22 5061 5087 10.1016/S0040‑4020(01)96753‑5
    [Google Scholar]
  122. Metzner P. Lempereur C. Plé N. Turck A. Quéguiner G. Corbin F. Alayrac C. Selective thiophilic addition of alkyl- and aryl lithiums to dithio esters and a sulfine in the pyridine series. Heterocycles 1998 48 10 2019 2034 10.3987/COM‑98‑8241
    [Google Scholar]
  123. Umemura K. Noda H. Yoshimura J. Konn A. Yonezawa Y. Shin C. The synthesis of fragment A of an antibiotic, nosiheptide. Tetrahedron Lett. 1997 38 20 3539 3542 10.1016/S0040‑4039(97)00697‑7
    [Google Scholar]
  124. Bagley M.C. Bashford K.E. Hesketh C.L. Moody C.J. Total synthesis of the thiopeptide promothiocin A. J. Am. Chem. Soc. 2000 122 14 3301 3313 10.1021/ja994247b
    [Google Scholar]
  125. Xi N. Ciufolini M.A. A protection scheme for the preparation of acid chlorides of serine and threonine. Tetrahedron Lett. 1995 36 37 6595 6598 10.1016/00404‑0399(50)1348‑L
    [Google Scholar]
  126. Ozturk T. Ertas E. Mert O. A Berzelius reagent, phosphorus decasulfide (P4S10), in organic syntheses. Chem. Rev. 2010 110 6 3419 3478 10.1021/cr900243d 20429553
    [Google Scholar]
  127. Sheldrake P. McDonald E. Matteucci M. Facile generation of a library of 5-aryl-2-arylsulfonyl-1,3-thiazoles. Synlett 2006 2006 3 0460 0462 10.1055/s‑2006‑926243
    [Google Scholar]
  128. Saito M. Nakayama J. Sulfuration with elemental sulfur or phosphorus pentasulfide under microwave irradiation. Sci. Synth 2008 39 1 10.1055/sos‑SD‑039‑00734
    [Google Scholar]
  129. Fu B. Lu X. Qi Q. Xiao Y. Li N. A convenient one-pot synthesis of arene-centered tris(thiazoline) compounds. Heterocycles 2009 78 4 1031 1039 10.3987/COM‑08‑11586
    [Google Scholar]
  130. Xiang Y. Teng Q. Chu C.K. Novel C-nucleoside analogs of 1,3-dioxolane: Synthesis of enantiomeric (2′R,4′S)- and (2′S,4′R)-2-[4-(hydroxymethyl)-1,3-dioxolan-2-yl]-1,3-thiazol-4-carboxamide. Tetrahedron Lett. 1995 36 22 3781 3784 10.1016/0040‑4039(95)00625‑M
    [Google Scholar]
  131. Ayer W.A. Craw P.A. Ma Y. Miao S. Synthesis of camalexin and related phytoalexins. Tetrahedron 1992 48 14 2919 2924 10.1016/S0040‑4020(01)90973‑1
    [Google Scholar]
  132. Qiao Q. Dominique R. Goodnow R. 2,4-Disubstituted-5-acetoxythiazoles: Useful intermediates for the synthesis of thiazolones and 2,4,5-trisubstituted thiazoles. Tetrahedron Lett. 2008 49 22 3682 3686 10.1016/j.tetlet.2008.03.140
    [Google Scholar]
  133. Vingiello F.A. Rorer M.P. Ogliaruso M.A. 2-(3- and 4-benz[α]anthracen-7-ylphenyl)-Δ2-thiazolines and 2-(3- and 4-anthracen-9-ylphenyl)-Δ2-thiazolines. A new preparation of thiazolines. Chem 1971 0 329 329
    [Google Scholar]
  134. Cook A.H. Heilbron I. Levy A.L. 318. Studies in the azole series. Part I. A novel route to 5-aminothiazoles. J. Chem. Soc. 1947 1 1594 1598 10.1039/jr9470001594 18898853
    [Google Scholar]
  135. Li J. Heterocyclic Chemistry in Drug Discovery. Hoboken, N.J. Wiley 2013
    [Google Scholar]
  136. Li J. Name Reactions: A Collection of Detailed Mechanisms and Synthetic Applications Fifth Edition Springer 2004
    [Google Scholar]
  137. Mallia C.J. Englert L. Walter G.C. Baxendale I.R. Thiazole formation through a modified Gewald reaction. Beilstein J. Org. Chem. 2015 11 875 883 10.3762/bjoc.11.98 26124889
    [Google Scholar]
  138. Kavitha K. Srikrishna D. Dubey P.K. Aparna P. An efficient one-pot four-component Gewald reaction: Synthesis of substituted 2-aminothiophenes with coumarin-thiazole scaffolds under environmentally benign conditions. J. Sulfur Chem. 2019 40 2 195 208 10.1080/17415993.2018.1556275
    [Google Scholar]
  139. Lefranc D. Total synthesis of micrococcin P1. Doctor of Philosophy, The University of British Columbia 2008
    [Google Scholar]
  140. Ciufolini M.A. Shen Y.C. Studies toward thiostrepton antibiotics: Assembly of the central pyridine-thiazole cluster of micrococcins. J. Org. Chem. 1997 62 12 3804 3805 10.1021/jo9704422
    [Google Scholar]
  141. Katritzky A.R. Rachwal S. Caster K.C. Mahni F. Law K.W. Rubio O. The chemistry of N-substituted benzotriazoles. Part 1.1-(chloromethyl)benzotriazole. J. Chem. Soc., Perkin Trans. 1 1987 0 781 789 10.1039/p19870000781
    [Google Scholar]
  142. Katritzky A.R. Chen J. Yang Z. 1-(Cyanomethyl)benzotriazole as a convenient precursor for the synthesis of 2-substituted thiazoles. J. Org. Chem. 1995 60 17 5638 5642 10.1021/jo00122a053
    [Google Scholar]
  143. Tetko I.V. Gasteiger J. Todeschini R. Mauri A. Livingstone D. Ertl P. Palyulin V.A. Radchenko E.V. Zefirov N.S. Makarenko A.S. Tanchuk V.Y. Prokopenko V.V. Virtual computational chemistry laboratory--design and description. J. Comput. Aided Mol. Des. 2005 19 6 453 463 10.1007/s10822‑005‑8694‑y 16231203
    [Google Scholar]
  144. Alagille D. Baldwin R.M. Tamagnan G.D. One-step synthesis of 2-arylbenzothiazole (‘BTA’) and -benzoxazole precursors for in vivo imaging of β-amyloid plaques. Tetrahedron Lett. 2005 46 8 1349 1351 10.1016/j.tetlet.2004.12.111
    [Google Scholar]
  145. Jordan A. Hadfield J.A. Lawrence N.J. McGown A.T. Tubulin as a target for anticancer drugs: Agents which interact with the mitotic spindle. Med. Res. Rev. 1998 18 4 259 296 10.1002/(SICI)1098‑1128(199807)18:4<259:AID‑MED3>3.0.CO;2‑U 9664292
    [Google Scholar]
  146. Hadfield J.A. Ducki S. Hirst N. McGown A.T. Tubulin and microtubules as targets for anticancer drugs. Prog. Cell Cycle Res. 2003 5 309 325 [PMID: 14593726
    [Google Scholar]
  147. Qiu X.L. Li G. Wu G. Zhu J. Zhou L. Chen P.L. Chamberlin A.R. Lee W.H. Synthesis and biological evaluation of a series of novel inhibitor of Nek2/Hec1 analogues. J. Med. Chem. 2009 52 6 1757 1767 10.1021/jm8015969 19243176
    [Google Scholar]
  148. Tsou H.R. MacEwan G. Birnberg G. Grosu G. Bursavich M.G. Bard J. Brooijmans N. Toral-Barza L. Hollander I. Mansour T.S. Ayral-Kaloustian S. Yu K. Discovery and optimization of 2-(4-substituted-pyrrolo[2,3-b]pyridin-3-yl)methylene-4-hydroxybenzofuran-3(2H)-ones as potent and selective ATP-competitive inhibitors of the mammalian target of rapamycin (mTOR). Bioorg. Med. Chem. Lett. 2010 20 7 2321 2325 10.1016/j.bmcl.2010.01.135 20188552
    [Google Scholar]
  149. Mavrova A.T. Wesselinova D. Tsenov Y.A. Denkova P. Synthesis, cytotoxicity and effects of some 1,2,4-triazole and 1,3,4-thiadiazole derivatives on immunocompetent cells. Eur. J. Med. Chem. 2009 44 1 63 69 10.1016/j.ejmech.2008.03.006 18439727
    [Google Scholar]
  150. Oleson J.J. Sloboda A. Troy W.P. Halliday S.L. Landes M.J. Angier R.B. Semb J. Cyr K. Williams J.H. The carcinostatic activity of some 2-amino-1,3,4-thiadiazoles. J. Am. Chem. Soc. 1955 77 24 6713 6714 10.1021/ja01629a133
    [Google Scholar]
  151. Matysiak J. Opolski A. Synthesis and antiproliferative activity of N-substituted 2-amino-5-(2,4-dihydroxyphenyl)-1,3,4-thiadiazoles. Bioorg. Med. Chem. 2006 14 13 4483 4489 10.1016/j.bmc.2006.02.027 16517170
    [Google Scholar]
  152. Kaminskyy D. Kryshchyshyn A. Nektegayev I. Vasylenko O. Grellier P. Lesyk R. Isothiocoumarin-3-carboxylic acid derivatives: Synthesis, anticancer and antitrypanosomal activity evaluation. Eur. J. Med. Chem. 2014 75 57 66 10.1016/j.ejmech.2014.01.028 24530491
    [Google Scholar]
  153. Popsavin M. Spaić S. Svirčev M. Kojić V. Bogdanović G. Popsavin V. Synthesis and in vitro antitumour screening of 2-(β-d-xylofuranosyl)thiazole-4-carboxamide and two novel tiazofurin analogues with substituted tetrahydrofurodioxol moiety as a sugar mimic. Bioorg. Med. Chem. Lett. 2012 22 21 6700 6704 10.1016/j.bmcl.2012.08.093 23010263
    [Google Scholar]
  154. Gomha S. Salaheldin T. Hassaneen H. Abdel-Aziz H. Khedr M. Synthesis, characterization and molecular docking of novel bioactive thiazolyl-thiazole derivatives as promising cytotoxic antitumor drug. Molecules 2015 21 1 3 10.3390/molecules21010003 26703554
    [Google Scholar]
  155. Ayati A. Emami S. Moghimi S. Foroumadi A. Thiazole in the targeted anticancer drug discovery. Future Med. Chem. 2019 11 15 1929 1952 10.4155/fmc‑2018‑0416 31313595
    [Google Scholar]
  156. Finiuk N.S. Hreniuh V.P. Ostapiuk Y.V. Matiychuk V.S. Frolov D.A. Obushak M.D. Stoika R.S. Babsky A.M. Antineoplastic activity of novel thiazole derivatives. Biopolim. Kletka 2017 33 2 135 146 10.7124/bc.00094B
    [Google Scholar]
  157. Tan H.Y. Wang N. Lam W. Guo W. Feng Y. Cheng Y.C. Targeting tumour microenvironment by tyrosine kinase inhibitor. Mol. Cancer 2018 17 1 43 55 10.1186/s12943‑018‑0800‑6 29455663
    [Google Scholar]
  158. Wang Y. Wu C. Zhang Q. Shan Y. Gu W. Wang S. Design, synthesis and biological evaluation of novel β-pinene-based thiazole derivatives as potential anticancer agents via mitochondrial-mediated apoptosis pathway. Bioorg. Chem. 2019 84 468 477 10.1016/j.bioorg.2018.12.010 30576910
    [Google Scholar]
  159. Turan-Zitouni G. Altıntop M.D. Özdemir A. Kaplancıklı Z.A. Çiftçi G.A. Temel H.E. Synthesis and evaluation of bis-thiazole derivatives as new anticancer agents. Eur. J. Med. Chem. 2016 107 288 294 10.1016/j.ejmech.2015.11.002 26599534
    [Google Scholar]
  160. Rodriguez-Lucena D. Gaboriau F. Rivault F. Schalk I.J. Lescoat G. Mislin G.L.A. Synthesis and biological properties of iron chelators based on a bis-2-(2-hydroxy-phenyl)-thiazole-4-carboxamide or -thiocarboxamide (BHPTC) scaffold. Bioorg. Med. Chem. 2010 18 2 689 695 10.1016/j.bmc.2009.11.057 20036563
    [Google Scholar]
  161. Farghaly T.A. El-Metwaly N. Al-Soliemy A.M. Katouah H.A. Muhammad Z.A. Sabour R. Synthesis, molecular docking and antitumor activity of new dithiazoles. Polycycl. Aromat. Compd. 2019 1 17
    [Google Scholar]
  162. Sayed A.R. Gomha S.M. Taher E.A. Muhammad Z.A. El-Seedi H.R. Gaber H.M. Ahmed M.M. One-pot synthesis of novel thiazoles as potential anti-cancer agents. Drug Des. Devel. Ther. 2020 14 1363 1375 10.2147/DDDT.S221263 32308369
    [Google Scholar]
  163. Gong C.J. Gao A.H. Zhang Y.M. Su M.B. Chen F. Sheng L. Zhou Y.B. Li J.Y. Li J. Nan F.J. Design, synthesis and biological evaluation of bisthiazole-based trifluoromethyl ketone derivatives as potent HDAC inhibitors with improved cellular efficacy. Eur. J. Med. Chem. 2016 112 81 90 10.1016/j.ejmech.2016.02.003 26890114
    [Google Scholar]
  164. Fairhurst R.A. Imbach-Weese P. Gerspacher M. Caravatti G. Furet P. Zoller T. Fritsch C. Haasen D. Trappe J. Guthy D.A. Arz D. Wirth J. Identification and optimisation of a 4′,5-bisthiazole series of selective phosphatidylinositol-3 kinase alpha inhibitors. Bioorg. Med. Chem. Lett. 2015 25 17 3569 3574 10.1016/j.bmcl.2015.06.078 26206504
    [Google Scholar]
  165. Fairhurst R.A. Gerspacher M. Imbach-Weese P. Mah R. Caravatti G. Furet P. Fritsch C. Schnell C. Blanz J. Blasco F. Desrayaud S. Guthy D.A. Knapp M. Arz D. Wirth J. Roehn-Carnemolla E. Luu V.H. Identification and optimisation of 4,5-dihydrobenzo[1,2-d:3,4-d]bisthiazole and 4,5-dihydrothiazolo[4,5-h]quinazoline series of selective phosphatidylinositol-3 kinase alpha inhibitors. Bioorg. Med. Chem. Lett. 2015 25 17 3575 3581 10.1016/j.bmcl.2015.06.067 26199119
    [Google Scholar]
  166. van Duin D. Paterson D.L. Multidrug-resistant bacteria in the community. Infect. Dis. Clin. North Am. 2016 30 2 377 390 10.1016/j.idc.2016.02.004 27208764
    [Google Scholar]
  167. Berkow E. Lockhart S. Fluconazole resistance in Candida species: A current perspective. Infect. Drug Resist. 2017 10 237 245 10.2147/IDR.S118892 28814889
    [Google Scholar]
  168. Stoica C.I. Ionuț I. Vlase L. Tiperciuc B. Marc G. Oniga S. Araniciu C. Oniga O. Lipophilicity evaluation of some thiazolyl‐1,3,4‐oxadiazole derivatives with antifungal activity. Biomed. Chromatogr. 2018 32 7 e4221 e4240 10.1002/bmc.4221 29485694
    [Google Scholar]
  169. Edrees M.M. Melha S.A. Saad A.M. Kheder N.A. Gomha S.M. Muhammad Z.A. Eco-friendly synthesis, characterization and biological evaluation of some novel pyrazolines containing thiazole moiety as potential anticancer and antimicrobial agents. Molecules 2018 23 11 2970 2983 10.3390/molecules23112970 30441815
    [Google Scholar]
  170. Stana A. Enache A. Vodnar D. Nastasă C. Benedec D. Ionuț I. Login C. Marc G. Oniga O. Tiperciuc B. New thiazolyltriazole Schiff bases: Synthesis and evaluation of the anti-Candida potential. Molecules 2016 21 11 1595 1594 10.3390/molecules21111595 27879678
    [Google Scholar]
  171. Sarojini B.K. Krishna B.G. Darshanraj C.G. Bharath B.R. Manjunatha H. Synthesis, characterization, in vitro and molecular docking studies of new 2,5-dichloro thienyl substituted thiazole derivatives for antimicrobial properties. Eur. J. Med. Chem. 2010 45 8 3490 3496 10.1016/j.ejmech.2010.03.039 20451305
    [Google Scholar]
  172. Karegoudar P. Karthikeyan M.S. Prasad D.J. Mahalinga M. Holla B.S. Kumari N.S. Synthesis of some novel 2,4-disubstituted thiazoles as possible antimicrobial agents. Eur. J. Med. Chem. 2008 43 2 261 267 10.1016/j.ejmech.2007.03.014 17540482
    [Google Scholar]
  173. Perez M. Castillo Y. Bacterial β-ketoacyl-acyl carrier protein synthase III (FabH): An attractive target for the design of new broad-spectrum antimicrobial agents. Mini Rev. Med. Chem. 2008 8 1 36 45 10.2174/138955708783331559 18220983
    [Google Scholar]
  174. Cheng K. Xue J.Y. Zhu H.L. Design, synthesis and antibacterial activity studies of thiazole derivatives as potent ecKAS III inhibitors. Bioorg. Med. Chem. Lett. 2013 23 14 4235 4238 10.1016/j.bmcl.2013.05.006 23731945
    [Google Scholar]
  175. Lv P.C. Wang K.R. Yang Y. Mao W.J. Chen J. Xiong J. Zhu H.L. Design, synthesis and biological evaluation of novel thiazole derivatives as potent FabH inhibitors. Bioorg. Med. Chem. Lett. 2009 19 23 6750 6754 10.1016/j.bmcl.2009.09.111 19836235
    [Google Scholar]
  176. Williams D.R. Patnaik S. Clark M.P. Total synthesis of cystothiazoles A and C. J. Org. Chem. 2001 66 25 8463 8469 10.1021/jo0106905 11735526
    [Google Scholar]
  177. de Souza M.V.N. Synthesis and biological activity of natural thiazoles: An important class of heterocyclic compounds. J. Sulfur Chem. 2005 26 4-5 429 449 10.1080/17415990500322792
    [Google Scholar]
  178. Ahn J.W. Jang K.H. Yang H.C. Oh K.B. Lee H.S. Shin J. Bithiazole metabolites from the myxobacterium Myxococcus fulvus. Chem. Pharm. Bull. (Tokyo) 2007 55 3 477 479 10.1248/cpb.55.477 17329897
    [Google Scholar]
  179. Mahmoodi N.O. Parvizi J. Sharifzadeh B. Rassa M. Facile regioselective synthesis of novel bis-thiazole derivatives and their antimicrobial activity. Arch. Pharm. 2013 346 12 860 864 10.1002/ardp.201300187 24136795
    [Google Scholar]
  180. Bikobo D.S.N. Vodnar D.C. Stana A. Tiperciuc B. Nastasă C. Douchet M. Oniga O. Synthesis of 2-phenylamino-thiazole derivatives as antimicrobial agents. J. Saudi Chem. Soc. 2017 21 7 861 868 10.1016/j.jscs.2017.04.007
    [Google Scholar]
  181. Abhale Y.K. Sasane A.V. Chavan A.P. Deshmukh K.K. Kotapalli S.S. Ummanni R. Sayyad S.F. Mhaske P.C. Synthesis and biological screening of 2′-aryl/benzyl-2-aryl-4-methyl-4′,5-bithiazolyls as possible anti-tubercular and antimicrobial agents. Eur. J. Med. Chem. 2015 94 340 347 10.1016/j.ejmech.2015.03.016 25778990
    [Google Scholar]
  182. Abhale Y.K. Shinde A.D. Deshmukh K.K. Nawale L. Sarkar D. Choudhari P.B. Kumbhar S.S. Mhaske P.C. Synthesis, antimycobacterial screening and molecular docking studies of 4-aryl-4′-methyl-2′-aryl-2,5′-bisthiazole derivatives. Med. Chem. Res. 2017 26 11 2889 2899 10.1007/s00044‑017‑1988‑5
    [Google Scholar]
  183. Bondock S. Fouda A.M. Synthesis and evaluation of some new 5-(hetaryl)thiazoles as potential antimicrobial agents. Synth. Commun. 2018 48 5 561 573 10.1080/00397911.2017.1412465
    [Google Scholar]
  184. Borcea A.M. Marc G. Ionuț I. Vodnar D.C. Vlase L. Gligor F. Pricopie A. Pîrnău A. Tiperciuc B. Oniga O. A novel series of acylhydrazones as potential anti-Candida agents: Design, synthesis, biological evaluation and in silico studies. Molecules 2019 24 1 184 198 10.3390/molecules24010184 30621322
    [Google Scholar]
  185. Kaiser M. Mäser P. Tadoori L.P. Ioset J.R. Brun R. Antiprotozoal activity profiling of approved drugs: A starting point toward drug repositioning. PLoS One 2015 10 8 e0135556 e0135557 10.1371/journal.pone.0135556 26270335
    [Google Scholar]
  186. de Oliveira Filho G.B. Cardoso M.V.O. Espíndola J.W.P. Oliveira e Silva D.A. Ferreira R.S. Coelho P.L. Anjos P.S. Santos E.S. Meira C.S. Moreira D.R.M. Soares M.B.P. Leite A.C.L. Structural design, synthesis and pharmacological evaluation of thiazoles against Trypanosoma cruzi. Eur. J. Med. Chem. 2017 141 346 361 10.1016/j.ejmech.2017.09.047 29031078
    [Google Scholar]
  187. Nava-Zuazo C. Chávez-Silva F. Moo-Puc R. Chan-Bacab M.J. Ortega-Morales B.O. Moreno-Díaz H. Díaz-Coutiño D. Hernández-Núñez E. Navarrete-Vázquez G. 2-Acylamino-5-nitro-1,3-thiazoles: Preparation and in vitro bioevaluation against four neglected protozoan parasites. Bioorg. Med. Chem. 2014 22 5 1626 1633 10.1016/j.bmc.2014.01.029 24529307
    [Google Scholar]
  188. Bueno J.M. Carda M. Crespo B. Cuñat A.C. de Cozar C. León M.L. Marco J.A. Roda N. Sanz-Cervera J.F. Design, synthesis and antimalarial evaluation of novel thiazole derivatives. Bioorg. Med. Chem. Lett. 2016 26 16 3938 3944 10.1016/j.bmcl.2016.07.010 27432764
    [Google Scholar]
  189. Makam P. Thakur P.K. Kannan T. In vitro and in silico antimalarial activity of 2-(2-hydrazinyl)thiazole derivatives. Eur. J. Pharm. Sci. 2014 52 138 145 10.1016/j.ejps.2013.11.001 24231338
    [Google Scholar]
  190. Liu Z. Wenzler T. Brun R. Zhu X. Boykin D.W. Synthesis and antiparasitic activity of new bis-arylimidamides: DB766 analogs modified in the terminal groups. Eur. J. Med. Chem. 2014 83 167 173 10.1016/j.ejmech.2014.06.022 24956553
    [Google Scholar]
  191. Bansal K.K. Bhardwaj J.K. Saraf P. Thakur V.K. Sharma P.C. Synthesis of thiazole clubbed pyrazole derivatives as apoptosis inducers and anti-infective agents. Mater. Today Chem. 2020 17 100335 100334 10.1016/j.mtchem.2020.100335
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266403938251124113840
Loading
/content/journals/ctmc/10.2174/0115680266403938251124113840
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test