Skip to content
2000
image of Schizophrenia Pathophysiology: Neurotransmitter Dysfunctions and Biomarker Frontiers

Abstract

Introduction

Schizophrenia is a heterogeneous chronic brain disorder driven by multiple pathophysiological processes. While dopaminergic theories dominate current therapies, emerging evidence highlights glutamatergic dysregulation, particularly N-methyl-D-aspartate receptor (NMDAR) hypofunction, as a key mechanism alongside dopaminergic, serotonergic, and neurodevelopmental pathways. This article synthesizes mechanistic insights, focusing on neurotransmitter disruptions, oxidative stress, neuroinflammation, and Wnt signaling, to elucidate the clinical diversity of schizophrenia and identify biomarkers for precise diagnostics and therapeutics.

Methods

A comprehensive literature search was conducted using Web of Science, Scopus, Google Scholar, and PubMed, with keywords including “schizophrenia,” “psychosis,” “pathophysiology,” “mechanism,” and “biomarker.” Studies were selected to explore NMDAR hypofunction, glutamatergic dysregulation, and associated signaling pathways, integrating preclinical and human data to map circuit-based interactions and biomarker profiles.

Results

We present a novel circuit-based model of schizophrenia pathophysiology, centered on NMDAR hypofunction and glutamatergic dysregulation, integrating dopaminergic, GABAergic, and inflammatory pathways. Key biomarkers, including inflammatory (., high-sensitivity C-reactive protein [hs-CRP], interleukin-6 [IL-6]), neurochemical (., brain-derived neurotrophic factor [BDNF]), and functional (., mismatch negativity [MMN]), are categorized by symptomatic domains and clinical stages, providing diagnostic and prognostic insights.

Discussions

The findings underscore NMDAR hypofunction’s role in driving schizophrenia’s symptomatic spectrum, though its interplay with other pathways highlights the disorder’s complexity. Neuronal loss, although not universal, is context-specific (., hippocampal interneurons), complementing functional biomarkers such as MMN. Limitations include the need for robust human validation of biomarkers and broader exploration of non-glutamatergic mechanisms.

Conclusion

Considering the multifaceted nature of the disorder, our emphasis on the NMDAR hypofunction model can help explain many of the synergies involved among the seemingly independent dysregulated events.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266389476250818112814
2025-09-25
2025-11-08
Loading full text...

Full text loading...

References

  1. Stępnicki P. Kondej M. Kaczor A.A. Current concepts and treatments of schizophrenia. Molecules 2018 23 8 2087 10.3390/molecules23082087 30127324
    [Google Scholar]
  2. Allen J.A. Yost J.M. Setola V. Chen X. Sassano M.F. Chen M. Peterson S. Yadav P.N. Huang X. Feng B. Jensen N.H. Che X. Bai X. Frye S.V. Wetsel W.C. Caron M.G. Javitch J.A. Roth B.L. Jin J. Discovery of β-arrestin-biased dopamine D2 ligands for probing signal transduction pathways essential for antipsychotic efficacy. Proc. Natl. Acad. Sci. USA 2011 108 45 18488 18493 https://www.pnas.org/doi/abs/10.1073/pnas.1104807108 10.1073/pnas.1104807108 22025698
    [Google Scholar]
  3. Carbon M. Correll C.U. Clinical predictors of therapeutic response to antipsychotics in schizophrenia. Dialogues Clin. Neurosci. 2014 16 4 505 524 10.31887/DCNS.2014.16.4/mcarbon 25733955
    [Google Scholar]
  4. Stroup T.S. Gray N. Management of common adverse effects of antipsychotic medications. World Psychiatry 2018 17 3 341 356 10.1002/wps.20567 30192094
    [Google Scholar]
  5. Stroup T.S.A. Lieberman A. J.; S Swartz, M.; McEvoy, J.P. Comparative effectiveness of antipsychotic drugs in schizophrenia. Dialogues Clin. Neurosci. 2000 2 4 373 379 10.31887/DCNS.2000.2.4/tstroup 22033808
    [Google Scholar]
  6. Kirkpatrick B. Fenton W.S. Carpenter W.T. Marder S.R. The NIMH-MATRICS consensus statement on negative symptoms. Schizophr. Bull. 2006 32 2 214 219 10.1093/schbul/sbj053 16481659
    [Google Scholar]
  7. Goldberg T.E. Goldman R.S. Burdick K.E. Malhotra A.K. Lencz T. Patel R.C. Woerner M.G. Schooler N.R. Kane J.M. Robinson D.G. Cognitive improvement after treatment with second-generation antipsychotic medications in first-episode schizophrenia: is it a practice effect? Arch. Gen. Psychiatry 2007 64 10 1115 1122 10.1001/archpsyc.64.10.1115 17909123
    [Google Scholar]
  8. Li Y. Ang M.S. Yee J.Y. See Y.M. Lee J. Predictors of functioning in treatment-resistant schizophrenia: the role of negative symptoms and neurocognition. Front. Psychiatry 2024 15 1444843 10.3389/fpsyt.2024.1444843 39301219
    [Google Scholar]
  9. Meltzer H.Y. Arvanitis L. Bauer D. Rein W. Placebo-controlled evaluation of four novel compounds for the treatment of schizophrenia and schizoaffective disorder. Am. J. Psychiatry 2004 161 6 975 984 10.1176/appi.ajp.161.6.975 15169685
    [Google Scholar]
  10. Geyer M. Krebs-Thomson K. Varty G.B. The effects of M100907 in pharmacological and developmental animal models of prepulse inhibition deficits in schizophrenia. Neuropsychopharmacology 1999 21 6 S134 S142 10.1016/S0893‑133X(99)00123‑2
    [Google Scholar]
  11. Yang A. Tsai S.J. New targets for schizophrenia treatment beyond the dopamine hypothesis. Int. J. Mol. Sci. 2017 18 8 1689 10.3390/ijms18081689 28771182
    [Google Scholar]
  12. Goff D.C. Coyle J.T. The emerging role of glutamate in the pathophysiology and treatment of schizophrenia. Am. J. Psychiatry 2001 158 9 1367 1377 10.1176/appi.ajp.158.9.1367 11532718
    [Google Scholar]
  13. NORTH SW SHIELDS CG Schizophrenia: A Review. Am Fam. Physician 2007 75 1821 1829 https://www.aafp.org/pubs/afp/issues/2007/0615/p1821.html [Internet]
    [Google Scholar]
  14. Brasso C. Bellino S. Bozzatello P. Del Favero E. Montemagni C. Rocca P. Inter-relationships among psychopathology, cognition, and real-life functioning in early and late phase schizophrenia: A network analysis approach. Schizophr. Res. 2023 256 8 16 10.1016/j.schres.2023.04.011 37120939
    [Google Scholar]
  15. Zhang G. Ye X. Wang X. Lin Y. Zhu C. Pan J. Yin X. Ye M. Lv W. Tang W. Liu J. Yang X. Hui L. Zheng K. Serum total cholesterol levels associated with immediate memory performance in patients with chronic schizophrenia. Schizophr. Res. 2023 255 256 260 10.1016/j.schres.2023.03.046 37060796
    [Google Scholar]
  16. Depressive Disorders DSM-5® Selections. American Psychiatric Publishing 2015
    [Google Scholar]
  17. Charlson F.J. Ferrari A.J. Santomauro D.F. Diminic S. Stockings E. Scott J.G. McGrath J.J. Whiteford H.A. Global epidemiology and burden of schizophrenia: Findings from the global burden of disease study 2016. Schizophr. Bull. 2018 44 6 1195 1203 10.1093/schbul/sby058 29762765
    [Google Scholar]
  18. Vos T. Abajobir A.A. Abate K.H. Abbafati C. Abbas K.M. Abd-Allah F. Abdulkader R.S. Abdulle A.M. Abebo T.A. Abera S.F. Aboyans V. Abu-Raddad L.J. Ackerman I.N. Adamu A.A. Adetokunboh O. Afarideh M. Afshin A. Agarwal S.K. Aggarwal R. Agrawal A. Agrawal S. Ahmadieh H. Ahmed M.B. Aichour M.T.E. Aichour A.N. Aichour I. Aiyar S. Akinyemi R.O. Akseer N. Al Lami F.H. Alahdab F. Al-Aly Z. Alam K. Alam N. Alam T. Alasfoor D. Alene K.A. Ali R. Alizadeh-Navaei R. Alkerwi A. Alla F. Allebeck P. Allen C. Al-Maskari F. Al-Raddadi R. Alsharif U. Alsowaidi S. Altirkawi K.A. Amare A.T. Amini E. Ammar W. Amoako Y.A. Andersen H.H. Antonio C.A.T. Anwari P. Ärnlöv J. Artaman A. Aryal K.K. Asayesh H. Asgedom S.W. Assadi R. Atey T.M. Atnafu N.T. Atre S.R. Avila-Burgos L. Avokphako E.F.G.A. Awasthi A. Bacha U. Badawi A. Balakrishnan K. Banerjee A. Bannick M.S. Barac A. Barber R.M. Barker-Collo S.L. Bärnighausen T. Barquera S. Barregard L. Barrero L.H. Basu S. Battista B. Battle K.E. Baune B.T. Bazargan-Hejazi S. Beardsley J. Bedi N. Beghi E. Béjot Y. Bekele B.B. Bell M.L. Bennett D.A. Bensenor I.M. Benson J. Berhane A. Berhe D.F. Bernabé E. Betsu B.D. Beuran M. Beyene A.S. Bhala N. Bhansali A. Bhatt S. Bhutta Z.A. Biadgilign S. Bicer B.K. Bienhoff K. Bikbov B. Birungi C. Biryukov S. Bisanzio D. Bizuayehu H.M. Boneya D.J. Boufous S. Bourne R.R.A. Brazinova A. Brugha T.S. Buchbinder R. Bulto L.N.B. Bumgarner B.R. Butt Z.A. Cahuana-Hurtado L. Cameron E. Car M. Carabin H. Carapetis J.R. Cárdenas R. Carpenter D.O. Carrero J.J. Carter A. Carvalho F. Casey D.C. Caso V. Castañeda-Orjuela C.A. Castle C.D. Catalá-López F. Chang H-Y. Chang J-C. Charlson F.J. Chen H. Chibalabala M. Chibueze C.E. Chisumpa V.H. Chitheer A.A. Christopher D.J. Ciobanu L.G. Cirillo M. Colombara D. Cooper C. Cortesi P.A. Criqui M.H. Crump J.A. Dadi A.F. Dalal K. Dandona L. Dandona R. das Neves, J.; Davitoiu, D.V.; de Courten, B.; De Leo, D.D.; Defo, B.K.; Degenhardt, L.; Deiparine, S.; Dellavalle, R.P.; Deribe, K.; Des Jarlais, D.C.; Dey, S.; Dharmaratne, S.D.; Dhillon, P.K.; Dicker, D.; Ding, E.L.; Djalalinia, S.; Do, H.P.; Dorsey, E.R.; dos Santos, K.P.B.; Douwes-Schultz, D.; Doyle, K.E.; Driscoll, T.R.; Dubey, M.; Duncan, B.B.; El-Khatib, Z.Z.; Ellerstrand, J.; Enayati, A.; Endries, A.Y.; Ermakov, S.P.; Erskine, H.E.; Eshrati, B.; Eskandarieh, S.; Esteghamati, A.; Estep, K.; Fanuel, F.B.B.; Farinha, C.S.E.S.; Faro, A.; Farzadfar, F.; Fazeli, M.S.; Feigin, V.L.; Fereshtehnejad, S-M.; Fernandes, J.C.; Ferrari, A.J.; Feyissa, T.R.; Filip, I.; Fischer, F.; Fitzmaurice, C.; Flaxman, A.D.; Flor, L.S.; Foigt, N.; Foreman, K.J.; Franklin, R.C.; Fullman, N.; Fürst, T.; Furtado, J.M.; Futran, N.D.; Gakidou, E.; Ganji, M.; Garcia-Basteiro, A.L.; Gebre, T.; Gebrehiwot, T.T.; Geleto, A.; Gemechu, B.L.; Gesesew, H.A.; Gething, P.W.; Ghajar, A.; Gibney, K.B.; Gill, P.S.; Gillum, R.F.; Ginawi, I.A.M.; Giref, A.Z.; Gishu, M.D.; Giussani, G.; Godwin, W.W.; Gold, A.L.; Goldberg, E.M.; Gona, P.N.; Goodridge, A.; Gopalani, S.V.; Goto, A.; Goulart, A.C.; Griswold, M.; Gugnani, H.C.; Gupta, R.; Gupta, R.; Gupta, T.; Gupta, V.; Hafezi-Nejad, N.; Hailu, G.B.; Hailu, A.D.; Hamadeh, R.R.; Hamidi, S.; Handal, A.J.; Hankey, G.J.; Hanson, S.W.; Hao, Y.; Harb, H.L.; Hareri, H.A.; Haro, J.M.; Harvey, J.; Hassanvand, M.S.; Havmoeller, R.; Hawley, C.; Hay, S.I.; Hay, R.J.; Henry, N.J.; Heredia-Pi, I.B.; Hernandez, J.M.; Heydarpour, P.; Hoek, H.W.; Hoffman, H.J.; Horita, N.; Hosgood, H.D.; Hostiuc, S.; Hotez, P.J.; Hoy, D.G.; Htet, A.S.; Hu, G.; Huang, H.; Huynh, C.; Iburg, K.M.; Igumbor, E.U.; Ikeda, C.; Irvine, C.M.S.; Jacobsen, K.H.; Jahanmehr, N.; Jakovljevic, M.B.; Jassal, S.K.; Javanbakht, M.; Jayaraman, S.P.; Jeemon, P.; Jensen, P.N.; Jha, V.; Jiang, G.; John, D.; Johnson, S.C.; Johnson, C.O.; Jonas, J.B.; Jürisson, M.; Kabir, Z.; Kadel, R.; Kahsay, A.; Kamal, R.; Kan, H.; Karam, N.E.; Karch, A.; Karema, C.K.; Kasaeian, A.; Kassa, G.M.; Kassaw, N.A.; Kassebaum, N.J.; Kastor, A.; Katikireddi, S.V.; Kaul, A.; Kawakami, N.; Keiyoro, P.N.; Kengne, A.P.; Keren, A.; Khader, Y.S.; Khalil, I.A.; Khan, E.A.; Khang, Y-H.; Khosravi, A.; Khubchandani, J.; Kiadaliri, A.A.; Kieling, C.; Kim, Y.J.; Kim, D.; Kim, P.; Kimokoti, R.W.; Kinfu, Y.; Kisa, A.; Kissimova-Skarbek, K.A.; Kivimaki, M.; Knudsen, A.K.; Kokubo, Y.; Kolte, D.; Kopec, J.A.; Kosen, S.; Koul, P.A.; Koyanagi, A.; Kravchenko, M.; Krishnaswami, S.; Krohn, K.J.; Kumar, G.A.; Kumar, P.; Kumar, S.; Kyu, H.H.; Lal, D.K.; Lalloo, R.; Lambert, N.; Lan, Q.; Larsson, A.; Lavados, P.M.; Leasher, J.L.; Lee, P.H.; Lee, J-T.; Leigh, J.; Leshargie, C.T.; Leung, J.; Leung, R.; Levi, M.; Li, Y.; Li, Y.; Li Kappe, D.; Liang, X.; Liben, M.L.; Lim, S.S.; Linn, S.; Liu, P.Y.; Liu, A.; Liu, S.; Liu, Y.; Lodha, R.; Logroscino, G.; London, S.J.; Looker, K.J.; Lopez, A.D.; Lorkowski, S.; Lotufo, P.A.; Low, N.; Lozano, R.; Lucas, T.C.D.; Macarayan, E.R.K.; Magdy Abd El Razek, H.; Magdy Abd El Razek, M.; Mahdavi, M.; Majdan, M.; Majdzadeh, R.; Majeed, A.; Malekzadeh, R.; Malhotra, R.; Malta, D.C.; Mamun, A.A.; Manguerra, H.; Manhertz, T.; Mantilla, A.; Mantovani, L.G.; Mapoma, C.C.; Marczak, L.B.; Martinez-Raga, J.; Martins-Melo, F.R.; Martopullo, I.; März, W.; Mathur, M.R.; Mazidi, M.; McAlinden, C.; McGaughey, M.; McGrath, J.J.; McKee, M.; McNellan, C.; Mehata, S.; Mehndiratta, M.M.; Mekonnen, T.C.; Memiah, P.; Memish, Z.A.; Mendoza, W.; Mengistie, M.A.; Mengistu, D.T.; Mensah, G.A.; Meretoja, T.J.; Meretoja, A.; Mezgebe, H.B.; Micha, R.; Millear, A.; Miller, T.R.; Mills, E.J.; Mirarefin, M.; Mirrakhimov, E.M.; Misganaw, A.; Mishra, S.R.; Mitchell, P.B.; Mohammad, K.A.; Mohammadi, A.; Mohammed, K.E.; Mohammed, S.; Mohanty, S.K.; Mokdad, A.H.; Mollenkopf, S.K.; Monasta, L.; Montico, M.; Moradi-Lakeh, M.; Moraga, P.; Mori, R.; Morozoff, C.; Morrison, S.D.; Moses, M.; Mountjoy-Venning, C.; Mruts, K.B.; Mueller, U.O.; Muller, K.; Murdoch, M.E.; Murthy, G.V.S.; Musa, K.I.; Nachega, J.B.; Nagel, G.; Naghavi, M.; Naheed, A.; Naidoo, K.S.; Naldi, L.; Nangia, V.; Natarajan, G.; Negasa, D.E.; Negoi, R.I.; Negoi, I.; Newton, C.R.; Ngunjiri, J.W.; Nguyen, T.H.; Nguyen, Q.L.; Nguyen, C.T.; Nguyen, G.; Nguyen, M.; Nichols, E.; Ningrum, D.N.A.; Nolte, S.; Nong, V.M.; Norrving, B.; Noubiap, J.J.N.; O’Donnell, M.J.; Ogbo, F.A.; Oh, I-H.; Okoro, A.; Oladimeji, O.; Olagunju, T.O.; Olagunju, A.T.; Olsen, H.E.; Olusanya, B.O.; Olusanya, J.O.; Ong, K.; Opio, J.N.; Oren, E.; Ortiz, A.; Osgood-Zimmerman, A.; Osman, M.; Owolabi, M.O.; Pa, M.; Pacella, R.E.; Pana, A.; Panda, B.K.; Papachristou, C.; Park, E-K.; Parry, C.D.; Parsaeian, M.; Patten, S.B.; Patton, G.C.; Paulson, K.; Pearce, N.; Pereira, D.M.; Perico, N.; Pesudovs, K.; Peterson, C.B.; Petzold, M.; Phillips, M.R.; Pigott, D.M.; Pillay, J.D.; Pinho, C.; Plass, D.; Pletcher, M.A.; Popova, S.; Poulton, R.G.; Pourmalek, F.; Prabhakaran, D.; Prasad, N.M.; Prasad, N.; Purcell, C.; Qorbani, M.; Quansah, R.; Quintanilla, B.P.A.; Rabiee, R.H.S.; Radfar, A.; Rafay, A.; Rahimi, K.; Rahimi-Movaghar, A.; Rahimi-Movaghar, V.; Rahman, M.H.U.; Rahman, M.; Rai, R.K.; Rajsic, S.; Ram, U.; Ranabhat, C.L.; Rankin, Z.; Rao, P.C.; Rao, P.V.; Rawaf, S.; Ray, S.E.; Reiner, R.C.; Reinig, N.; Reitsma, M.B.; Remuzzi, G.; Renzaho, A.M.N.; Resnikoff, S.; Rezaei, S.; Ribeiro, A.L.; Ronfani, L.; Roshandel, G.; Roth, G.A.; Roy, A.; Rubagotti, E.; Ruhago, G.M.; Saadat, S.; Sadat, N.; Safdarian, M.; Safi, S.; Safiri, S.; Sagar, R.; Sahathevan, R.; Salama, J.; Saleem, H.O.B.; Salomon, J.A.; Salvi, S.S.; Samy, A.M.; Sanabria, J.R.; Santomauro, D.; Santos, I.S.; Santos, J.V.; Santric Milicevic, M.M.; Sartorius, B.; Satpathy, M.; Sawhney, M.; Saxena, S.; Schmidt, M.I.; Schneider, I.J.C.; Schöttker, B.; Schwebel, D.C.; Schwendicke, F.; Seedat, S.; Sepanlou, S.G.; Servan-Mori, E.E.; Setegn, T.; Shackelford, K.A.; Shaheen, A.; Shaikh, M.A.; Shamsipour, M.; Shariful Islam, S.M.; Sharma, J.; Sharma, R.; She, J.; Shi, P.; Shields, C.; Shifa, G.T.; Shigematsu, M.; Shinohara, Y.; Shiri, R.; Shirkoohi, R.; Shirude, S.; Shishani, K.; Shrime, M.G.; Sibai, A.M.; Sigfusdottir, I.D.; Silva, D.A.S.; Silva, J.P.; Silveira, D.G.A.; Singh, J.A.; Singh, N.P.; Sinha, D.N.; Skiadaresi, E.; Skirbekk, V.; Slepak, E.L.; Sligar, A.; Smith, D.L.; Smith, M.; Sobaih, B.H.A.; Sobngwi, E.; Sorensen, R.J.D.; Sousa, T.C.M.; Sposato, L.A.; Sreeramareddy, C.T.; Srinivasan, V.; Stanaway, J.D.; Stathopoulou, V.; Steel, N.; Stein, M.B.; Stein, D.J.; Steiner, T.J.; Steiner, C.; Steinke, S.; Stokes, M.A.; Stovner, L.J.; Strub, B.; Subart, M.; Sufiyan, M.B.; Sunguya, B.F.; Sur, P.J.; Swaminathan, S.; Sykes, B.L.; Sylte, D.O.; Tabarés-Seisdedos, R.; Taffere, G.R.; Takala, J.S.; Tandon, N.; Tavakkoli, M.; Taveira, N.; Taylor, H.R.; Tehrani-Banihashemi, A.; Tekelab, T.; Terkawi, A.S.; Tesfaye, D.J.; Tesssema, B.; Thamsuwan, O.; Thomas, K.E.; Thrift, A.G.; Tiruye, T.Y.; Tobe-Gai, R.; Tollanes, M.C.; Tonelli, M.; Topor-Madry, R.; Tortajada, M.; Touvier, M.; Tran, B.X.; Tripathi, S.; Troeger, C.; Truelsen, T.; Tsoi, D.; Tuem, K.B.; Tuzcu, E.M.; Tyrovolas, S.; Ukwaja, K.N.; Undurraga, E.A.; Uneke, C.J.; Updike, R.; Uthman, O.A.; Uzochukwu, B.S.C.; van Boven, J.F.M.; Varughese, S.; Vasankari, T.; Venkatesh, S.; Venketasubramanian, N.; Vidavalur, R.; Violante, F.S.; Vladimirov, S.K.; Vlassov, V.V.; Vollset, S.E.; Wadilo, F.; Wakayo, T.; Wang, Y-P.; Weaver, M.; Weichenthal, S.; Weiderpass, E.; Weintraub, R.G.; Werdecker, A.; Westerman, R.; Whiteford, H.A.; Wijeratne, T.; Wiysonge, C.S.; Wolfe, C.D.A.; Woodbrook, R.; Woolf, A.D.; Workicho, A.; Xavier, D.; Xu, G.; Yadgir, S.; Yaghoubi, M.; Yakob, B.; Yan, L.L.; Yano, Y.; Ye, P.; Yimam, H.H.; Yip, P.; Yonemoto, N.; Yoon, S-J.; Yotebieng, M.; Younis, M.Z.; Zaidi, Z.; Zaki, M.E.S.; Zegeye, E.A.; Zenebe, Z.M.; Zhang, X.; Zhou, M.; Zipkin, B.; Zodpey, S.; Zuhlke, L.J.; Murray, C.J.L. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017 390 10100 1211 1259 10.1016/S0140‑6736(17)32154‑2 28919117
    [Google Scholar]
  19. Hjorthøj C. Stürup A.E. McGrath J.J. Nordentoft M. Years of potential life lost and life expectancy in schizophrenia: a systematic review and meta-analysis. Lancet Psychiatry 2017 4 4 295 301 10.1016/S2215‑0366(17)30078‑0 28237639
    [Google Scholar]
  20. Burns J.K. The Social Determinants of Schizophrenia: An African Journey in Social Epidemiology. Public Health Rev. 2012 34 2 8 10.1007/BF03391676
    [Google Scholar]
  21. Balkrishna A. Verma S. Singh S.K. Arya V. Alzheimer’s disease: A role of biomarkers in early diagnosis and evidences from African ethnomedicinal knowledge. Eur. J. Neurosci. 2023 58 1 2406 2425 10.1111/ejn.16050 37203306
    [Google Scholar]
  22. Tsuang M.T. Stone W.S. Faraone S.V. Toward reformulating the diagnosis of schizophrenia. Am. J. Psychiatry 2000 157 7 1041 1050 10.1176/appi.ajp.157.7.1041 10873908
    [Google Scholar]
  23. Ahmed G.K. Ramadan H.K.A. Elbeh K. Haridy N.A. The role of infections and inflammation in schizophrenia: Review of the evidence. Middle East Curr. Psychiatry 2024 31 9 10.1186/s43045‑024‑00397‑7
    [Google Scholar]
  24. Allen A.J. Griss M.E. Folley B.S. Hawkins K.A. Pearlson G.D. Endophenotypes in schizophrenia: A selective review. Schizophr. Res. 2009 109 1-3 24 37 10.1016/j.schres.2009.01.016 19223268
    [Google Scholar]
  25. Tishler T.A. Ellingson B.M. Salvadore G. Baker P. Turkoz I. Subotnik K.L. de la Fuente-Sandoval C. Nuechterlein K.H. Alphs L. Effect of treatment with paliperidone palmitate versus oral antipsychotics on frontal lobe intracortical myelin volume in participants with recent-onset schizophrenia: Magnetic resonance imaging results from the DREaM study. Schizophr. Res. 2023 255 195 202 10.1016/j.schres.2023.03.023 37004331
    [Google Scholar]
  26. McCreadie R.G. Srinivasan T.N. Padmavati R. Thara R. Extrapyramidal symptoms in unmedicated schizophrenia. J. Psychiatr. Res. 2005 39 3 261 266 10.1016/j.jpsychires.2004.08.002 15725424
    [Google Scholar]
  27. Yadav M. Parle M. Sharma N. Jindal D.K. Bhidhasra A. Dhingra M.S. Kumar A. Dhingra S. Protective effects of Spinacia oleracea seeds extract in an experimental model of schizophrenia: Possible behavior, biochemical, neurochemical and cellular alterations. Biomed. Pharmacother. 2018 105 1015 1025 10.1016/j.biopha.2018.06.043 30021336
    [Google Scholar]
  28. Girdler S.J. Confino J.E. Woesner M.E. Exercise as a treatment for schizophrenia: A review. Psychopharmacol. Bull. 2019 49 56
    [Google Scholar]
  29. Murray R.M. Lappin J. Di Forti M. Schizophrenia: From developmental deviance to dopamine dysregulation. Eur Neuropsychopharmacol 2008 18 S129 S134.(Suppl. 3) 10.1016/j.euroneuro.2008.04.002 18499406
    [Google Scholar]
  30. Leucht S. Corves C. Arbter D. Engel R.R. Li C. Davis J.M. Second-generation versus first-generation antipsychotic drugs for schizophrenia: a meta-analysis. Lancet 2009 373 9657 31 41 10.1016/S0140‑6736(08)61764‑X 19058842
    [Google Scholar]
  31. Featherstone R.E. Rizos Z. Kapur S. Fletcher P.J. A sensitizing regimen of amphetamine that disrupts attentional set-shifting does not disrupt working or long-term memory. Behav. Brain Res. 2008 189 1 170 179 10.1016/j.bbr.2007.12.032 18299157
    [Google Scholar]
  32. Mueser K.T. McGurk S.R. Schizophrenia. Lancet 2004 363 9426 2063 2072 10.1016/S0140‑6736(04)16458‑1 15207959
    [Google Scholar]
  33. Javitt D.C. Twenty-five years of glutamate in schizophrenia: Are we there yet? Schizophr. Bull. 2012 38 5 911 913 10.1093/schbul/sbs100 22987849
    [Google Scholar]
  34. Jentsch J. Roth R.H. The neuropsychopharmacology of phencyclidine: From NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 1999 20 3 201 225 10.1016/S0893‑133X(98)00060‑8 10063482
    [Google Scholar]
  35. Becker A. Grecksch G. Ketamine-induced changes in rat behaviour: A possible animal model of schizophrenia. Test of predictive validity. Prog. Neuropsychopharmacol. Biol. Psychiatry 2004 28 8 1267 1277 10.1016/j.pnpbp.2004.06.019 15588753
    [Google Scholar]
  36. Chatterjee M. Singh S. Kumari R. Verma A.K. Palit G. Evaluation of the antipsychotic potential of Panax quinquefolium in ketamine induced experimental psychosis model in mice. Neurochem. Res. 2012 37 4 759 770 10.1007/s11064‑011‑0670‑4 22189635
    [Google Scholar]
  37. Forsyth J.K. Lewis D.A. Mapping the consequences of impaired synaptic plasticity in schizophrenia through development: An integrative model for diverse clinical features. Trends Cogn. Sci. 2017 21 10 760 778 10.1016/j.tics.2017.06.006 28754595
    [Google Scholar]
  38. Ng F. Berk M. Dean O. Bush A.I. Oxidative stress in psychiatric disorders: Evidence base and therapeutic implications. Int. J. Neuropsychopharmacol. 2008 11 6 851 876 10.1017/S1461145707008401 18205981
    [Google Scholar]
  39. Yao J.K. Reddy R.D. van Kammen D.P. Oxidative damage and schizophrenia: An overview of the evidence and its therapeutic implications. CNS Drugs 2001 15 4 287 310 10.2165/00023210‑200115040‑00004 11463134
    [Google Scholar]
  40. Padurariu M. Ciobica A. Dobrin I. Stefanescu C. Evaluation of antioxidant enzymes activities and lipid peroxidation in schizophrenic patients treated with typical and atypical antipsychotics. Neurosci. Lett. 2010 479 3 317 320 10.1016/j.neulet.2010.05.088 20561936
    [Google Scholar]
  41. Hansen K.B. Wollmuth L.P. Bowie D. Furukawa H. Menniti F.S. Sobolevsky A.I. Swanson G.T. Swanger S.A. Greger I.H. Nakagawa T. McBain C.J. Jayaraman V. Low C.M. Dell’Acqua M.L. Diamond J.S. Camp C.R. Perszyk R.E. Yuan H. Traynelis S.F. Structure, function, and pharmacology of glutamate receptor ion channels. Pharmacol. Rev. 2021 73 4 1469 1658 10.1124/pharmrev.120.000131 34753794
    [Google Scholar]
  42. Greger I.H. Mayer M.L. Structural biology of glutamate receptor ion channels: Towards an understanding of mechanism. Curr. Opin. Struct. Biol. 2019 57 185 195 10.1016/j.sbi.2019.05.004 31185364
    [Google Scholar]
  43. Traynelis S.F. Wollmuth L.P. McBain C.J. Menniti F.S. Vance K.M. Ogden K.K. Hansen K.B. Yuan H. Myers S.J. Dingledine R. Glutamate receptor ion channels: Structure, regulation, and function. Pharmacol. Rev. 2010 62 3 405 496 10.1124/pr.109.002451 20716669
    [Google Scholar]
  44. Bugarski-Kirola D. Iwata N. Sameljak S. Reid C. Blaettler T. Millar L. Marques T.R. Garibaldi G. Kapur S. Efficacy and safety of adjunctive bitopertin versus placebo in patients with suboptimally controlled symptoms of schizophrenia treated with antipsychotics: results from three phase 3, randomised, double-blind, parallel-group, placebo-controlled, multicentre studies in the SearchLyte clinical trial programme. Lancet Psychiatry 2016 3 12 1115 1128 10.1016/S2215‑0366(16)30344‑3 27816567
    [Google Scholar]
  45. Lane H.Y. Lin C.H. Green M.F. Hellemann G. Huang C.C. Chen P.W. Tun R. Chang Y.C. Tsai G.E. Add-on treatment of benzoate for schizophrenia: a randomized, double-blind, placebo-controlled trial of D-amino acid oxidase inhibitor. JAMA Psychiatry 2013 70 12 1267 1275 10.1001/jamapsychiatry.2013.2159 24089054
    [Google Scholar]
  46. Hardingham G.E. Fukunaga Y. Bading H. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat. Neurosci. 2002 5 5 405 414 10.1038/nn835 11953750
    [Google Scholar]
  47. Reiner A. Levitz J. Glutamatergic Signaling in the Central Nervous System: Ionotropic and Metabotropic Receptors in Concert. Neuron 2018 98 6 1080 1098 10.1016/j.neuron.2018.05.018 29953871
    [Google Scholar]
  48. Hansen K.B. Yi F. Perszyk R.E. Furukawa H. Wollmuth L.P. Gibb A.J. Traynelis S.F. Structure, function, and allosteric modulation of NMDA receptors. J. Gen. Physiol. 2018 150 8 1081 1105 10.1085/jgp.201812032 30037851
    [Google Scholar]
  49. Javitt D.C. Zukin S.R. Heresco-Levy U. Umbricht D. Has an angel shown the way? Etiological and therapeutic implications of the PCP/NMDA model of schizophrenia. Schizophr. Bull. 2012 38 5 958 966 10.1093/schbul/sbs069 22987851
    [Google Scholar]
  50. Coyle J.T. NMDA receptor and schizophrenia: A brief history. Schizophr. Bull. 2012 38 5 920 926 10.1093/schbul/sbs076 22987850
    [Google Scholar]
  51. Ripke S. Neale B.M. Corvin A. Walters J.T.R. Farh K.H. Holmans P.A. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014 511 7510 421 427 10.1038/nature13595 25056061
    [Google Scholar]
  52. Weickert C.S. Fung S.J. Catts V.S. Schofield P.R. Allen K.M. Moore L.T. Newell K.A. Pellen D. Huang X-F. Catts S.V. Weickert T.W. Molecular evidence of N-methyl-D-aspartate receptor hypofunction in schizophrenia. Mol. Psychiatry 2013 18 11 1185 1192 10.1038/mp.2012.137 23070074
    [Google Scholar]
  53. Mohn A.R. Gainetdinov R.R. Caron M.G. Koller B.H. Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 1999 98 4 427 436 10.1016/S0092‑8674(00)81972‑8 10481908
    [Google Scholar]
  54. Lin E. Lin C.H. Lai Y.L. Huang C.H. Huang Y.J. Lane H.Y. Combination of G72 genetic variation and G72 protein level to detect schizophrenia: Machine learning approaches. Front. Psychiatry 2018 9 566 10.3389/fpsyt.2018.00566 30459659
    [Google Scholar]
  55. Seeman P. Ko F. Tallerico T. Dopamine receptor contribution to the action of PCP, LSD and ketamine psychotomimetics. Mol. Psychiatry 2005 10 9 877 883 10.1038/sj.mp.4001682 15852061
    [Google Scholar]
  56. Deutsch S.I. Mastropaolo J. Rosse R.B. Neurodevelopmental consequences of early exposure to phencyclidine and related drugs. Clin. Neuropharmacol. 1998 21 6 320 332 9844787
    [Google Scholar]
  57. Nakao K. Jeevakumar V. Jiang S.Z. Fujita Y. Diaz N.B. Pretell Annan C.A. Eskow Jaunarajs K.L. Hashimoto K. Belforte J.E. Nakazawa K. Schizophrenia-like dopamine release abnormalities in a mouse model of NMDA receptor hypofunction. Schizophr. Bull. 2019 45 1 138 147 10.1093/schbul/sby003 29394409
    [Google Scholar]
  58. Stone J.M. Dietrich C. Edden R. Mehta M.A. De Simoni S. Reed L.J. Krystal J.H. Nutt D. Barker G.J. Ketamine effects on brain GABA and glutamate levels with 1H-MRS: Relationship to ketamine-induced psychopathology. Mol. Psychiatry 2012 17 7 664 665 10.1038/mp.2011.171 22212598
    [Google Scholar]
  59. Merritt K. Egerton A. Kempton M.J. Taylor M.J. McGuire P.K. Nature of glutamate alterations in schizophrenia a meta-analysis of proton magnetic resonance spectroscopy studies. JAMA Psychiatry 2016 73 7 665 674 10.1001/jamapsychiatry.2016.0442 27304221
    [Google Scholar]
  60. Homayoun H. Moghaddam B. NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. J. Neurosci. 2007 27 43 11496 11500 10.1523/JNEUROSCI.2213‑07.2007 17959792
    [Google Scholar]
  61. Schobel S.A. Chaudhury N.H. Khan U.A. Paniagua B. Styner M.A. Asllani I. Inbar B.P. Corcoran C.M. Lieberman J.A. Moore H. Small S.A. Imaging patients with psychosis and a mouse model establishes a spreading pattern of hippocampal dysfunction and implicates glutamate as a driver. Neuron 2013 78 1 81 93 10.1016/j.neuron.2013.02.011 23583108
    [Google Scholar]
  62. Adell A. Brain NMDA receptors in schizophrenia and depression. Biomolecules 2020 10 6 947 10.3390/biom10060947 32585886
    [Google Scholar]
  63. Lisman J.E. Coyle J.T. Green R.W. Javitt D.C. Benes F.M. Heckers S. Grace A.A. Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. Trends Neurosci. 2008 31 5 234 242 10.1016/j.tins.2008.02.005 18395805
    [Google Scholar]
  64. Bygrave A.M. Masiulis S. Nicholson E. Berkemann M. Barkus C. Sprengel R. Harrison P.J. Kullmann D.M. Bannerman D.M. Kätzel D. Knockout of NMDA-receptors from parvalbumin interneurons sensitizes to schizophrenia-related deficits induced by MK-801. Transl. Psychiatry 2016 6 4 e778 10.1038/tp.2016.44 27070406
    [Google Scholar]
  65. Schwarcz R. Rassoulpour A. Wu H.Q. Medoff D. Tamminga C.A. Roberts R.C. Increased cortical kynurenate content in schizophrenia. Biol. Psychiatry 2001 50 7 521 530 10.1016/S0006‑3223(01)01078‑2 11600105
    [Google Scholar]
  66. Chess A.C. Simoni M.K. Alling T.E. Bucci D.J. Elevations of endogenous kynurenic acid produce spatial working memory deficits. Schizophr. Bull. 2007 33 3 797 804 10.1093/schbul/sbl033 16920787
    [Google Scholar]
  67. Potter M.C. Elmer G.I. Bergeron R. Albuquerque E.X. Guidetti P. Wu H.Q. Schwarcz R. Reduction of endogenous kynurenic acid formation enhances extracellular glutamate, hippocampal plasticity, and cognitive behavior. Neuropsychopharmacology 2010 35 8 1734 1742 10.1038/npp.2010.39 20336058
    [Google Scholar]
  68. Coultrap S.J. Nixon K.M. Alvestad R.M. Fernando Valenzuela C. Browning M.D. Differential expression of NMDA receptor subunits and splice variants among the CA1, CA3 and dentate gyrus of the adult rat. Brain Res. Mol. Brain Res. 2005 135 1-2 104 111 10.1016/j.molbrainres.2004.12.005 15857673
    [Google Scholar]
  69. Malaspina D. Harkavy-Friedman J. Corcoran C. Mujica-Parodi L. Printz D. Gorman J.M. Van Heertum R. Resting neural activity distinguishes subgroups of schizophrenia patients. Biol. Psychiatry 2004 56 12 931 937 10.1016/j.biopsych.2004.09.013 15601602
    [Google Scholar]
  70. Nakazawa K. Zsiros V. Jiang Z. Nakao K. Kolata S. Zhang S. Belforte J.E. GABAergic interneuron origin of schizophrenia pathophysiology. Neuropharmacology 2012 62 3 1574 1583 10.1016/j.neuropharm.2011.01.022 21277876
    [Google Scholar]
  71. Pafundo D.E. Miyamae T. Lewis D.A. Gonzalez-Burgos G. Presynaptic effects of N-Methyl-D-aspartate receptors enhance parvalbumin cell-mediated inhibition of pyramidal cells in mouse prefrontal cortex. Biol. Psychiatry 2018 84 6 460 470 10.1016/j.biopsych.2018.01.018 29523414
    [Google Scholar]
  72. Do K.Q. Cabungcal J.H. Frank A. Steullet P. Cuenod M. Redox dysregulation, neurodevelopment, and schizophrenia. Curr. Opin. Neurobiol. 2009 19 2 220 230 10.1016/j.conb.2009.05.001 19481443
    [Google Scholar]
  73. Hardingham G.E. Do K.Q. Linking early-life NMDAR hypofunction and oxidative stress in schizophrenia pathogenesis. Nat. Rev. Neurosci. 2016 17 2 125 134 10.1038/nrn.2015.19 26763624
    [Google Scholar]
  74. Do K.Q. Trabesinger A.H. Kirsten-Krüger M. Lauer C.J. Dydak U. Hell D. Holsboer F. Boesiger P. Cuénod M. Schizophrenia: Glutathione deficit in cerebrospinal fluid and prefrontal cortex in vivo. Eur. J. Neurosci. 2000 12 10 3721 3728 10.1046/j.1460‑9568.2000.00229.x 11029642
    [Google Scholar]
  75. Carletti B. Banaj N. Piras F. Bossù P. Schizophrenia and glutathione: A challenging story. J. Pers. Med. 2023 13 11 1526 10.3390/jpm13111526 38003841
    [Google Scholar]
  76. Palaniyappan L. Sabesan P. Li X. Luo Q. Schizophrenia increases variability of the central antioxidant system: A meta-analysis of variance from MRS studies of glutathione. Front. Psychiatry 2021 12 796466 10.3389/fpsyt.2021.796466 34916980
    [Google Scholar]
  77. Matsuzawa D. Hashimoto K. Magnetic resonance spectroscopy study of the antioxidant defense system in schizophrenia. Antioxid. Redox Signal. 2011 15 7 2057 2065 10.1089/ars.2010.3453 20712400
    [Google Scholar]
  78. Papadia S. Soriano F.X. Léveillé F. Martel M.A. Dakin K.A. Hansen H.H. Kaindl A. Sifringer M. Fowler J. Stefovska V. Mckenzie G. Craigon M. Corriveau R. Ghazal P. Horsburgh K. Yankner B.A. Wyllie D.J.A. Ikonomidou C. Hardingham G.E. Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses. Nat. Neurosci. 2008 11 4 476 487 10.1038/nn2071 18344994
    [Google Scholar]
  79. Wang X. Pinto-Duarte A. Sejnowski T.J. Behrens M.M. How Nox2-containing NADPH oxidase affects cortical circuits in the NMDA receptor antagonist model of schizophrenia. Antioxid. Redox Signal. 2013 18 12 1444 1462 10.1089/ars.2012.4907 22938164
    [Google Scholar]
  80. Steullet P. Cabungcal J.H. Monin A. Dwir D. O’Donnell P. Cuenod M. Do K.Q. Redox dysregulation, neuroinflammation, and NMDA receptor hypofunction: A “central hub” in schizophrenia pathophysiology? Schizophr. Res. 2016 176 1 41 51 10.1016/j.schres.2014.06.021 25000913
    [Google Scholar]
  81. Jiang Z. Rompala G.R. Zhang S. Cowell R.M. Nakazawa K. Social isolation exacerbates schizophrenia-like phenotypes via oxidative stress in cortical interneurons. Biol. Psychiatry 2013 73 10 1024 1034 10.1016/j.biopsych.2012.12.004 23348010
    [Google Scholar]
  82. Alherz F. Alherz M. Almusawi H. NMDAR hypofunction and somatostatin-expressing GABAergic interneurons and receptors: A newly identified correlation and its effects in schizophrenia. Schizophr. Res. Cogn. 2017 8 1 6 10.1016/j.scog.2017.02.001 28740825
    [Google Scholar]
  83. Nakazawa K. Jeevakumar V. Nakao K. Spatial and temporal boundaries of NMDA receptor hypofunction leading to schizophrenia. NPJ Schizophr. 2017 3 1 7 10.1038/s41537‑016‑0003‑3 28560253
    [Google Scholar]
  84. Vukadinovic Z. NMDA receptor hypofunction and the thalamus in schizophrenia. Physiol. Behav. 2014 131 156 159 10.1016/j.physbeh.2014.04.038 24792662
    [Google Scholar]
  85. Schobel S.A. Lewandowski N.M. Corcoran C.M. Moore H. Brown T. Malaspina D. Small S.A. Differential targeting of the CA1 subfield of the hippocampal formation by schizophrenia and related psychotic disorders. Arch. Gen. Psychiatry 2009 66 9 938 946 10.1001/archgenpsychiatry.2009.115 19736350
    [Google Scholar]
  86. Lui S. Parkes L.M. Huang X. Zou K. Chan R.C.K. Yang H. Zou L. Li D. Tang H. Zhang T. Li X. Wei Y. Chen L. Sun X. Kemp G.J. Gong Q.Y. Depressive disorders: Focally altered cerebral perfusion measured with arterial spin-labeling MR imaging. Radiology 2009 251 2 476 484 10.1148/radiol.2512081548 19401575
    [Google Scholar]
  87. Elliott B. Joyce E. Shorvon S. Delusions, illusions and hallucinations in epilepsy: 2. Complex phenomena and psychosis. Epilepsy Res. 2009 85 2-3 172 186 10.1016/j.eplepsyres.2009.03.017 19442490
    [Google Scholar]
  88. Lodge D.J. Grace A.A. Aberrant hippocampal activity underlies the dopamine dysregulation in an animal model of schizophrenia. J. Neurosci. 2007 27 42 11424 11430 10.1523/JNEUROSCI.2847‑07.2007 17942737
    [Google Scholar]
  89. Abi-Dargham A. Gil R. Krystal J. Baldwin R.M. Seibyl J.P. Bowers M. van Dyck C.H. Charney D.S. Innis R.B. Laruelle M. Increased striatal dopamine transmission in schizophrenia: confirmation in a second cohort. Am. J. Psychiatry 1998 155 6 761 767 10.1176/ajp.155.6.761 9619147
    [Google Scholar]
  90. Ressler K.J. Mayberg H.S. Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nat. Neurosci. 2007 10 9 1116 1124 10.1038/nn1944 17726478
    [Google Scholar]
  91. Bauer D. Gupta D. Harotunian V. Meador-Woodruff J.H. McCullumsmith R.E. Abnormal expression of glutamate transporter and transporter interacting molecules in prefrontal cortex in elderly patients with schizophrenia. Schizophr. Res. 2008 104 1-3 108 120 10.1016/j.schres.2008.06.012 18678470
    [Google Scholar]
  92. Kalandadze A. Wu Y. Fournier K. Robinson M.B. Identification of motifs involved in endoplasmic reticulum retention-forward trafficking of the GLT-1 subtype of glutamate transporter. J. Neurosci. 2004 24 22 5183 5192 10.1523/JNEUROSCI.0839‑04.2004 15175388
    [Google Scholar]
  93. Li B. Woo R.S. Mei L. Malinow R. The neuregulin-1 receptor erbB4 controls glutamatergic synapse maturation and plasticity. Neuron 2007 54 4 583 597 10.1016/j.neuron.2007.03.028 17521571
    [Google Scholar]
  94. Pilowsky L.S. Bressan R.A. Stone J.M. Erlandsson K. Mulligan R.S. Krystal J.H. Ell P.J. First in vivo evidence of an NMDA receptor deficit in medication-free schizophrenic patients. Mol. Psychiatry 2006 11 2 118 119 10.1038/sj.mp.4001751 16189506
    [Google Scholar]
  95. Shelley A. Silipo G. Javitt D.C. Diminished responsiveness of ERPs in schizophrenic subjects to changes in auditory stimulation parameters: Implications for theories of cortical dysfunction. Schizophr. Res. 1999 37 1 65 79 10.1016/S0920‑9964(98)00138‑8 10227109
    [Google Scholar]
  96. López-Gil X. Jiménez-Sánchez L. Campa L. Castro E. Frago C. Adell A. Role of serotonin and noradrenaline in the rapid antidepressant action of ketamine. ACS Chem. Neurosci. 2019 10 7 3318 3326 10.1021/acschemneuro.9b00288 31244055
    [Google Scholar]
  97. Jiménez-Sánchez L. Castañé A. Pérez-Caballero L. Grifoll M. López-Gil X. Campa L. Galofré M. Berrocoso E. Adell A. Activation of AMPA Receptors mediates the antidepressant action of deep brain stimulation of the infralimbic prefrontal cortex. Cereb. Cortex 2016 26 6 2778 2789 10.1093/cercor/bhv133 26088969
    [Google Scholar]
  98. Buchanan R.W. Javitt D.C. Marder S.R. Schooler N.R. Gold J.M. McMahon R.P. Heresco-Levy U. Carpenter W.T. The cognitive and negative symptoms in schizophrenia trial (CONSIST): The efficacy of glutamatergic agents for negative symptoms and cognitive impairments. Am. J. Psychiatry 2007 164 10 1593 1602 10.1176/appi.ajp.2007.06081358 17898352
    [Google Scholar]
  99. Deutsch S.I. Mastropaolo J. Schwartz B.L. Rosse R.B. Morihisa J.M.A. “glutamatergic hypothesis” of schizophrenia. Rationale for pharmacotherapy with glycine. Clin. Neuropharmacol. 1989 12 1 1 13 10.1097/00002826‑198902000‑00001 2540909
    [Google Scholar]
  100. López-Gil X. Artigas F. Adell A. Role of different monoamine receptors controlling MK-801-induced release of serotonin and glutamate in the medial prefrontal cortex: relevance for antipsychotic action. Int. J. Neuropsychopharmacol. 2009 12 4 487 499 10.1017/S1461145708009267 18752722
    [Google Scholar]
  101. Newcomer J.W. Second-generation (atypical) antipsychotics and metabolic effects: A comprehensive literature review. CNS Drugs 2005 19 1 93.(Suppl. 1) 10.2165/00023210‑200519001‑00001 15998156
    [Google Scholar]
  102. Lin C.H. Lane H.Y. Tsai G.E. Glutamate signaling in the pathophysiology and therapy of schizophrenia. Pharmacol. Biochem. Behav. 2012 100 4 665 677 10.1016/j.pbb.2011.03.023 21463651
    [Google Scholar]
  103. Javitt D.C. Glycine transport inhibitors in the treatment of schizophrenia. Handb. Exp. Pharmacol. 2012 213 213 367 399 10.1007/978‑3‑642‑25758‑2_12 23027421
    [Google Scholar]
  104. Harrison P.J. Weinberger D.R. Schizophrenia genes, gene expression, and neuropathology: On the matter of their convergence. Mol. Psychiatry 2005 10 1 40 68, 5 10.1038/sj.mp.4001558 15263907
    [Google Scholar]
  105. Inestrosa N.C. Montecinos-Oliva C. Fuenzalida M. Wnt signaling: Role in alzheimer disease and schizophrenia. J. Neuroimmune Pharmacol. 2012 7 4 788 807 10.1007/s11481‑012‑9417‑5
    [Google Scholar]
  106. De Ferrari G.V. Moon R.T. The ups and downs of Wnt signaling in prevalent neurological disorders. Oncogene 2006 25 57 7545 7553 10.1038/sj.onc.1210064 17143299
    [Google Scholar]
  107. Beaulieu J.M. Gainetdinov R.R. Caron M.G. Akt/GSK3 signaling in the action of psychotropic drug. Annurev Pharmtox 2009 49 327 347 10.1146/annurev.pharmtox.011008.145634
    [Google Scholar]
  108. Beaulieu J.M. Sotnikova T.D. Yao W.D. Kockeritz L. Woodgett J.R. Gainetdinov R.R. Caron M.G. Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proc. Natl. Acad. Sci. USA 2004 101 14 5099 5104 10.1073/pnas.0307921101 15044694
    [Google Scholar]
  109. Beaulieu J.M. Sotnikova T.D. Marion S. Lefkowitz R.J. Gainetdinov R.R. Caron M.G. An Akt/β-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell 2005 122 2 261 273 10.1016/j.cell.2005.05.012 16051150
    [Google Scholar]
  110. Yi H. Hu J. Qian J. Hackam A.S. Expression of brain-derived neurotrophic factor (BDNF) is regulated by the Wnt signaling pathway. Neuroreport 2012 23 189
    [Google Scholar]
  111. Barron H. Hafizi S. Andreazza A. Mizrahi R. Neuroinflammation and oxidative stress in psychosis and psychosis risk. Int. J. Mol. Sci. 2017 18 3 651 10.3390/ijms18030651 28304340
    [Google Scholar]
  112. Najjar S. Pearlman D.M. Neuroinflammation and white matter pathology in schizophrenia: Systematic review. Schizophr. Res. 2015 161 1 102 112 10.1016/j.schres.2014.04.041 24948485
    [Google Scholar]
  113. Karabicici M. Azbazdar Y. Iscan E. Ozhan G. Misregulation of wnt signaling pathways at the plasma membrane in brain and metabolic diseases. Membranes 2021 11 11 844 10.3390/membranes11110844 34832073
    [Google Scholar]
  114. Jridi I. Canté-Barrett K. Pike-Overzet K. Staal F.J.T. Inflammation and wnt signaling: Target for immunomodulatory therapy? Front. Cell Dev. Biol. 2021 8 615131 10.3389/fcell.2020.615131 33614624
    [Google Scholar]
  115. Costa M. Squassina A. Congiu D. Chillotti C. Niola P. Galderisi S. Pistis M. Del Zompo M. Investigation of endocannabinoid system genes suggests association between peroxisome proliferator activator receptor-α gene (PPARA) and schizophrenia. Eur. Neuropsychopharmacol. 2013 23 7 749 759 10.1016/j.euroneuro.2012.07.007 22920733
    [Google Scholar]
  116. Rolland B. Deguil J. Jardri R. Cottencin O. Thomas P. Bordet R. Therapeutic prospects of PPARs in psychiatric disorders: A comprehensive review. Curr. Drug Targets 2013 14 7 724 732 10.2174/1389450111314070002 23531161
    [Google Scholar]
  117. Müller N. Weidinger E. Leitner B. Schwarz M.J. The role of inflammation in schizophrenia. Front. Neurosci. 2015 9 372 10.3389/fnins.2015.00372 26539073
    [Google Scholar]
  118. Anderson G. Maes M. Berk M. Schizophrenia is primed for an increased expression of depression through activation of immuno-inflammatory, oxidative and nitrosative stress, and tryptophan catabolite pathways. Prog. Neuropsychopharmacol. Biol. Psychiatry 2013 42 101 114 10.1016/j.pnpbp.2012.07.016 22930036
    [Google Scholar]
  119. Goldsmith D.R. Rapaport M.H. Miller B.J. A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol. Psychiatry 2016 21 12 1696 10.1038/mp.2016.3
    [Google Scholar]
  120. Wang A.K. Miller B.J. Meta-analysis of cerebrospinal fluid cytokine and tryptophan catabolite alterations in psychiatric patients: Comparisons Between schizophrenia, bipolar disorder, and depression. Schizophr. Bull. 2018 44 1 75 83 10.1093/schbul/sbx035 28338954
    [Google Scholar]
  121. Boerrigter D. Weickert T.W. Lenroot R. O’Donnell M. Galletly C. Liu D. Burgess M. Cadiz R. Jacomb I. Catts V.S. Fillman S.G. Weickert C.S. Using blood cytokine measures to define high inflammatory biotype of schizophrenia and schizoaffective disorder. J. Neuroinflammation 2017 14 1 188 10.1186/s12974‑017‑0962‑y 28923068
    [Google Scholar]
  122. Liemburg E.J. Nolte I.M. Klein H.C. Knegtering H. Relation of inflammatory markers with symptoms of psychotic disorders: A large cohort study. Prog. Neuropsychopharmacol. Biol. Psychiatry 2018 86 89 94 10.1016/j.pnpbp.2018.04.006 29778547
    [Google Scholar]
  123. Fathian F. Løberg E.M. Gjestad R. Steen V.M. Kroken R.A. Jørgensen H.A. Johnsen E. Associations between C-reactive protein levels and cognition during the first 6 months after acute psychosis. Acta Neuropsychiatr. 2019 31 1 36 45 10.1017/neu.2018.25 30394240
    [Google Scholar]
  124. Murray A.J. Rogers J.C. Katshu M.Z.U.H. Liddle P.F. Upthegrove R. Oxidative stress and the pathophysiology and symptom profile of schizophrenia spectrum disorders. Front. Psychiatry 2021 12 703452 10.3389/fpsyt.2021.703452 34366935
    [Google Scholar]
  125. Müller N. Inflammation in schizophrenia: Pathogenetic aspects and therapeutic considerations. Schizophr. Bull. 2018 44 5 973 982 10.1093/schbul/sby024 29648618
    [Google Scholar]
  126. Bahn S. Noll R. Barnes A. Schwarz E. Guest P.C. Challenges of introducing new biomarker products for neuropsychiatric disorders into the market. Int. Rev. Neurobiol. 2011 101 299 327 10.1016/B978‑0‑12‑387718‑5.00012‑2 22050857
    [Google Scholar]
  127. Weickert C.S. Weickert T.W. Pillai A. Buckley P.F. Biomarkers in schizophrenia: A brief conceptual consideration. Dis. Markers 2013 35 1 3 9 10.1155/2013/510402 24167344
    [Google Scholar]
  128. Martins-de-Souza D. Biomarkers for psychiatric disorders: Where are we standing? Dis. Markers 2013 35 1 1 2 10.1155/2013/321071 24167343
    [Google Scholar]
  129. Owen M.J. O’Donovan M.C. Schizophrenia and the neurodevelopmental continuum:evidence from genomics. World Psychiatry 2017 16 3 227 235 10.1002/wps.20440 28941101
    [Google Scholar]
  130. Gunnell D. Rasmussen F. Fouskakis D. Tynelius P. Harrison G. Patterns of fetal and childhood growth and the development of psychosis in young males: a cohort study. Am. J. Epidemiol. 2003 158 4 291 300 10.1093/aje/kwg118 12915493
    [Google Scholar]
  131. Goldsmith D.R. Crooks C.L. Walker E.F. Cotes R.O. An update on promising biomarkers in schizophrenia. Focus Am. Psychiatr. Publ. 2018 16 2 153 163 10.1176/appi.focus.20170046 31975910
    [Google Scholar]
  132. Więdłocha M. Zborowska N. Marcinowicz P. Dębowska W. Dębowska M. Zalewska A. Maciejczyk M. Waszkiewicz N. Szulc A. Oxidative stress biomarkers among schizophrenia inpatients. Brain Sci. 2023 13 3 490 10.3390/brainsci13030490 36979300
    [Google Scholar]
  133. Upthegrove R. Khandaker G.M. Cytokines, oxidative stress and cellular markers of inflammation in schizophrenia. Curr. Top. Behav. Neurosci. 2019 44 49 66 10.1007/7854_2018_88 31115797
    [Google Scholar]
  134. Fraguas D. Gonzalez-Pinto A. Micó J.A. Reig S. Parellada M. Martínez-Cengotitabengoa M. Castro-Fornieles J. Rapado-Castro M. Baeza I. Janssen J. Desco M. Leza J.C. Arango C. Decreased glutathione levels predict loss of brain volume in children and adolescents with first-episode psychosis in a two-year longitudinal study. Schizophr. Res. 2012 137 1-3 58 65 10.1016/j.schres.2012.01.040 22365149
    [Google Scholar]
  135. Walton E. Hibar D.P. van Erp T.G.M. Potkin S.G. Roiz-Santiañez R. Crespo-Facorro B. Suarez-Pinilla P. Van Haren N.E.M. de Zwarte S.M.C. Kahn R.S. Cahn W. Doan N.T. Jørgensen K.N. Gurholt T.P. Agartz I. Andreassen O.A. Westlye L.T. Melle I. Berg A.O. Mørch-Johnsen L. Færden A. Flyckt L. Fatouros-Bergman H. Jönsson E.G. Hashimoto R. Yamamori H. Fukunaga M. Preda A. De Rossi P. Piras F. Banaj N. Ciullo V. Spalletta G. Gur R.E. Gur R.C. Wolf D.H. Satterthwaite T.D. Beard L.M. Sommer I.E. Koops S. Gruber O. Richter A. Krämer B. Kelly S. Donohoe G. McDonald C. Cannon D.M. Corvin A. Gill M. Di Giorgio A. Bertolino A. Lawrie S. Nickson T. Whalley H.C. Neilson E. Calhoun V.D. Thompson P.M. Turner J.A. Ehrlich S. Positive symptoms associate with cortical thinning in the superior temporal gyrus via the ENIGMA Schizophrenia consortium. Acta Psychiatr. Scand. 2017 135 5 439 447 10.1111/acps.12718 28369804
    [Google Scholar]
  136. Fan Y.S. Li L. Peng Y. Li H. Guo J. Li M. Yang S. Yao M. Zhao J. Liu H. Liao W. Guo X. Han S. Cui Q. Duan X. Xu Y. Zhang Y. Chen H. Individual‐specific functional connectome biomarkers predict schizophrenia positive symptoms during adolescent brain maturation. Hum. Brain Mapp. 2021 42 5 1475 1484 10.1002/hbm.25307 33289223
    [Google Scholar]
  137. Juchnowicz D. Dzikowski M. Rog J. Waszkiewicz N. Karakuła K.H. Zalewska A. Pro/Antioxidant state as a potential biomarker of schizophrenia. J. Clin. Med. 2021 10 18 4156 10.3390/jcm10184156
    [Google Scholar]
  138. Marsman A. van den Heuvel M.P. Klomp D.W.J. Kahn R.S. Luijten P.R. Hulshoff Pol H.E. Glutamate in schizophrenia: A focused review and meta-analysis of 1H-MRS studies. Schizophr. Bull. 2013 39 1 120 129 10.1093/schbul/sbr069 21746807
    [Google Scholar]
  139. Guidara W. Messedi M. Naifar M. Maalej M. Grayaa S. Omri S. Ben Thabet J. Maalej M. Charfi N. Ayadi F. Predictive value of oxidative stress biomarkers in drug free patients with schizophrenia and schizo-affective disorder. Psychiatry Res. 2020 293 113467 10.1016/j.psychres.2020.113467 33198042
    [Google Scholar]
  140. Orsolini L. Sarchione F. Vellante F. Fornaro M. Matarazzo I. Martinotti G. Valchera A. Di Nicola M. Carano A. Di Giannantonio M. Perna G. Olivieri L. De Berardis D. Protein-C reactive as biomarker predictor of schizophrenia phases of illness? A systematic review. Curr. Neuropharmacol. 2018 16 5 583 606 10.2174/1570159X16666180119144538 29357805
    [Google Scholar]
  141. Wang Y. Meng W. Liu Z. An Q. Hu X. Cognitive impairment in psychiatric diseases: Biomarkers of diagnosis, treatment, and prevention. Front. Cell. Neurosci. 2022 16 1046692 10.3389/fncel.2022.1046692 36406755
    [Google Scholar]
  142. Mahmoud A.M.A. Eissa M.A.E. Kolkaila E.A. Amer R.A.R. Kotait M.A. Mismatch negativity as an early biomarker of cognitive impairment in schizophrenia. Egypt. J. Neurol. Psychiat. Neurosurg. 2023 59 1 24 10.1186/s41983‑023‑00627‑5
    [Google Scholar]
  143. Penadés R. García-Rizo C. Bioque M. González-Rodríguez A. Cabrera B. Mezquida G. Bernardo M. The search for new biomarkers for cognition in schizophrenia. Schizophr. Res. Cogn. 2015 2 4 172 178 10.1016/j.scog.2015.10.004 29114461
    [Google Scholar]
  144. Fang X. Chen Y. Wang Y. Ren J. Zhang C. Depressive symptoms in schizophrenia patients: A possible relationship between SIRT1 and BDNF. Prog. Neuropsychopharmacol. Biol. Psychiatry 2019 95 109673 10.1016/j.pnpbp.2019.109673 31247244
    [Google Scholar]
  145. Noto C.S. Gadelha A. Belangero S.I. Smith M.A.C. de Aguiar B.W. Panizzuti B. Mari J.J. Gama C.S. Bressan R.A. Brietzke E. Association of biomarkers and depressive symptoms in schizophrenia. Neurosci. Lett. 2011 505 3 282 285 10.1016/j.neulet.2011.10.042 22044873
    [Google Scholar]
  146. Li S. Lu C. Kang L. Li Q. Chen H. Zhang H. Tang Z. Lin Y. Bai M. Xiong P. Study on correlations of BDNF, PI3K, AKT and CREB levels with depressive emotion and impulsive behaviors in drug-naïve patients with first-episode schizophrenia. BMC Psychiatry 2023 23 1 225 10.1186/s12888‑023‑04718‑8 37013544
    [Google Scholar]
  147. Chen X.J. Wang D.M. Zhou H.X. Zhu R.R. Tian Y. Du Y.X. Chen J.J. Chen D.C. Wang L. Zhang X.Y. Association of depressive symptoms with cognitive impairment in patients with never-treated first-episode schizophrenia: Analysis of the Depression in Schizophrenia in China (DISC) study. Gen. Hosp. Psychiatry 2021 71 108 113 10.1016/j.genhosppsych.2021.04.010 34000518
    [Google Scholar]
  148. Fang X. Wu Z. Wen L. Zhang Y. Wang D. Yu L. Wang Y. Chen Y. Chen L. Liu H. Tang W. Zhang X. Zhang C. Rumination mediates the relationship between childhood trauma and depressive symptoms in schizophrenia patients. Eur. Arch. Psychiatry Clin. Neurosci. 2023 273 5 1085 1094 10.1007/s00406‑022‑01525‑2 36484845
    [Google Scholar]
  149. Keshavan M.S. Collin G. Guimond S. Kelly S. Prasad K.M. Lizano P. Neuroimaging in Schizophrenia. Neuroimaging Clin. N. Am. 2020 30 1 73 83 10.1016/j.nic.2019.09.007 31759574
    [Google Scholar]
  150. Bai H. Zeng H-M. Han H-B. Zhang Q-F. Application of modern neuroimaging technology in the diagnosis and study of Alzheimer’s disease. Neural Regen. Res. 2021 16 1 73 79 10.4103/1673‑5374.286957 32788450
    [Google Scholar]
  151. Aydin O. Unal Aydin P. Arslan A. Development of neuroimaging-based biomarkers in psychiatry. Adv. Exp. Med. Biol. 2019 1192 159 195 10.1007/978‑981‑32‑9721‑0_9 31705495
    [Google Scholar]
  152. Ahmed A.O. Buckley P.F. Hanna M. Neuroimaging schizophrenia: A picture is worth a thousand words, but is it saying anything important? Curr. Psychiatry Rep. 2013 15 3 345 10.1007/s11920‑012‑0345‑0 23397252
    [Google Scholar]
  153. McGuire P. Dazzan P. Does neuroimaging have a role in predicting outcomes in psychosis? World Psychiatry 2017 16 2 209 210 10.1002/wps.20426 28498587
    [Google Scholar]
  154. Kraguljac N.V. McDonald W.M. Widge A.S. Rodriguez C.I. Tohen M. Nemeroff C.B. Neuroimaging biomarkers in Schizophrenia. Am. J. Psychiatry 2021 178 6 509 521 10.1176/appi.ajp.2020.20030340 33397140
    [Google Scholar]
  155. Perkins D.O. Jeffries C.D. Addington J. Bearden C.E. Cadenhead K.S. Cannon T.D. Cornblatt B.A. Mathalon D.H. McGlashan T.H. Seidman L.J. Tsuang M.T. Walker E.F. Woods S.W. Heinssen R. Towards a psychosis risk blood diagnostic for persons experiencing high-risk symptoms: preliminary results from the NAPLS project. Schizophr. Bull. 2015 41 2 419 428 10.1093/schbul/sbu099 25103207
    [Google Scholar]
  156. Rubio J.M. Lencz T. Cao H. Kraguljac N. Dhamala E. Homan P. Replication of a neuroimaging biomarker for striatal dysfunction in psychosis. medRxiv 2023
    [Google Scholar]
  157. Chen X. Li X. Yan T. Dong Q. Mao Z. Wang Y. Yang N. Zhang Q. Zhao W. Zhai J. Chen M. Du B. Deng X. Ji F. Xiang Y.T. Song J. Wu H. Dong Q. Chen C. Wang C. Li J. Network functional connectivity analysis in individuals at ultrahigh risk for psychosis and patients with schizophrenia. Psychiatry Res. Neuroimaging 2019 290 51 57 10.1016/j.pscychresns.2019.06.004 31288150
    [Google Scholar]
  158. Du X. Choa F.S. Chiappelli J. Wisner K.M. Wittenberg G. Adhikari B. Bruce H. Rowland L.M. Kochunov P. Hong L.E. Aberrant middle prefrontal-motor cortex connectivity mediates motor inhibitory biomarker in schizophrenia. Biol. Psychiatry 2019 85 1 49 59 10.1016/j.biopsych.2018.06.007 30126607
    [Google Scholar]
  159. Egerton A. Broberg B.V. Van Haren N. Merritt K. Barker G.J. Lythgoe D.J. Perez-Iglesias R. Baandrup L. Düring S.W. Sendt K.V. Stone J.M. Rostrup E. Sommer I.E. Glenthøj B. Kahn R.S. Dazzan P. McGuire P. Response to initial antipsychotic treatment in first episode psychosis is related to anterior cingulate glutamate levels: A multicentre 1H-MRS study (OPTiMiSE). Mol. Psychiatry 2018 23 11 2145 2155 10.1038/s41380‑018‑0082‑9 29880882
    [Google Scholar]
  160. Frank E. Maier D. Pajula J. Suvitaival T. Borgan F. Butz-Ostendorf M. Fischer A. Hietala J. Howes O. Hyötyläinen T. Janssen J. Laurikainen H. Moreno C. Suvisaari J. Van Gils M. Orešič M. Platform for systems medicine research and diagnostic applications in psychotic disorders—The METSY project. Eur. Psychiatry 2018 50 40 46 10.1016/j.eurpsy.2017.12.001 29361398
    [Google Scholar]
  161. Fusar-Poli P. Hijazi Z. Stahl D. Steyerberg E.W. The science of prognosis in psychiatry. JAMA Psychiatry 2018 75 12 1289 1297 10.1001/jamapsychiatry.2018.2530 30347013
    [Google Scholar]
  162. Trubetskoy V. Pardiñas A.F. Qi T. Panagiotaropoulou G. Awasthi S. Bigdeli T.B. Bryois J. Chen C.Y. Dennison C.A. Hall L.S. Lam M. Watanabe K. Frei O. Ge T. Harwood J.C. Koopmans F. Magnusson S. Richards A.L. Sidorenko J. Wu Y. Zeng J. Grove J. Kim M. Li Z. Voloudakis G. Zhang W. Adams M. Agartz I. Atkinson E.G. Agerbo E. Al Eissa M. Albus M. Alexander M. Alizadeh B.Z. Alptekin K. Als T.D. Amin F. Arolt V. Arrojo M. Athanasiu L. Azevedo M.H. Bacanu S.A. Bass N.J. Begemann M. Belliveau R.A. Bene J. Benyamin B. Bergen S.E. Blasi G. Bobes J. Bonassi S. Braun A. Bressan R.A. Bromet E.J. Bruggeman R. Buckley P.F. Buckner R.L. Bybjerg-Grauholm J. Cahn W. Cairns M.J. Calkins M.E. Carr V.J. Castle D. Catts S.V. Chambert K.D. Chan R.C.K. Chaumette B. Cheng W. Cheung E.F.C. Chong S.A. Cohen D. Consoli A. Cordeiro Q. Costas J. Curtis C. Davidson M. Davis K.L. de Haan L. Degenhardt F. DeLisi L.E. Demontis D. Dickerson F. Dikeos D. Dinan T. Djurovic S. Duan J. Ducci G. Dudbridge F. Eriksson J.G. Fañanás L. Faraone S.V. Fiorentino A. Forstner A. Frank J. Freimer N.B. Fromer M. Frustaci A. Gadelha A. Genovese G. Gershon E.S. Giannitelli M. Giegling I. Giusti-Rodríguez P. Godard S. Goldstein J.I. González Peñas J. González-Pinto A. Gopal S. Gratten J. Green M.F. Greenwood T.A. Guillin O. Gülöksüz S. Gur R.E. Gur R.C. Gutiérrez B. Hahn E. Hakonarson H. Haroutunian V. Hartmann A.M. Harvey C. Hayward C. Henskens F.A. Herms S. Hoffmann P. Howrigan D.P. Ikeda M. Iyegbe C. Joa I. Julià A. Kähler A.K. Kam-Thong T. Kamatani Y. Karachanak-Yankova S. Kebir O. Keller M.C. Kelly B.J. Khrunin A. Kim S.W. Klovins J. Kondratiev N. Konte B. Kraft J. Kubo M. Kučinskas V. Kučinskiene Z.A. Kusumawardhani A. Kuzelova-Ptackova H. Landi S. Lazzeroni L.C. Lee P.H. Legge S.E. Lehrer D.S. Lencer R. Lerer B. Li M. Lieberman J. Light G.A. Limborska S. Liu C.M. Lönnqvist J. Loughland C.M. Lubinski J. Luykx J.J. Lynham A. Macek M. Mackinnon A. Magnusson P.K.E. Maher B.S. Maier W. Malaspina D. Mallet J. Marder S.R. Marsal S. Martin A.R. Martorell L. Mattheisen M. McCarley R.W. McDonald C. McGrath J.J. Medeiros H. Meier S. Melegh B. Melle I. Mesholam-Gately R.I. Metspalu A. Michie P.T. Milani L. Milanova V. Mitjans M. Molden E. Molina E. Molto M.D. Mondelli V. Moreno C. Morley C.P. Muntané G. Murphy K.C. Myin-Germeys I. Nenadić I. Nestadt G. Nikitina-Zake L. Noto C. Nuechterlein K.H. O’Brien N.L. O’Neill F.A. Oh S.Y. Olincy A. Ota V.K. Pantelis C. Papadimitriou G.N. Parellada M. Paunio T. Pellegrino R. Periyasamy S. Perkins D.O. Pfuhlmann B. Pietiläinen O. Pimm J. Porteous D. Powell J. Quattrone D. Quested D. Radant A.D. Rampino A. Rapaport M.H. Rautanen A. Reichenberg A. Roe C. Roffman J.L. Roth J. Rothermundt M. Rutten B.P.F. Saker-Delye S. Salomaa V. Sanjuan J. Santoro M.L. Savitz A. Schall U. Scott R.J. Seidman L.J. Sharp S.I. Shi J. Siever L.J. Sigurdsson E. Sim K. Skarabis N. Slominsky P. So H.C. Sobell J.L. Söderman E. Stain H.J. Steen N.E. Steixner-Kumar A.A. Stögmann E. Stone W.S. Straub R.E. Streit F. Strengman E. Stroup T.S. Subramaniam M. Sugar C.A. Suvisaari J. Svrakic D.M. Swerdlow N.R. Szatkiewicz J.P. Ta T.M.T. Takahashi A. Terao C. Thibaut F. Toncheva D. Tooney P.A. Torretta S. Tosato S. Tura G.B. Turetsky B.I. Üçok A. Vaaler A. van Amelsvoort T. van Winkel R. Veijola J. Waddington J. Walter H. Waterreus A. Webb B.T. Weiser M. Williams N.M. Witt S.H. Wormley B.K. Wu J.Q. Xu Z. Yolken R. Zai C.C. Zhou W. Zhu F. Zimprich F. Atbaşoğlu E.C. Ayub M. Benner C. Bertolino A. Black D.W. Bray N.J. Breen G. Buccola N.G. Byerley W.F. Chen W.J. Cloninger C.R. Crespo-Facorro B. Donohoe G. Freedman R. Galletly C. Gandal M.J. Gennarelli M. Hougaard D.M. Hwu H.G. Jablensky A.V. McCarroll S.A. Moran J.L. Mors O. Mortensen P.B. Müller-Myhsok B. Neil A.L. Nordentoft M. Pato M.T. Petryshen T.L. Pirinen M. Pulver A.E. Schulze T.G. Silverman J.M. Smoller J.W. Stahl E.A. Tsuang D.W. Vilella E. Wang S.H. Xu S. Dai N. Wenwen Q. Wildenauer D.B. Agiananda F. Amir N. Antoni R. Arsianti T. Asmarahadi A. Diatri H. Djatmiko P. Irmansyah I. Khalimah S. Kusumadewi I. Kusumaningrum P. Lukman P.R. Nasrun M.W. Safyuni N.S. Prasetyawan P. Semen G. Siste K. Tobing H. Widiasih N. Wiguna T. Wulandari D. Evalina N. Hananto A.J. Ismoyo J.H. Marini T.M. Henuhili S. Reza M. Yusnadewi S. Abyzov A. Akbarian S. Ashley-Koch A. van Bakel H. Breen M. Brown M. Bryois J. Carlyle B. Charney A. Coetzee G. Crawford G. Dracheva S. Emani P. Farnham P. Fromer M. Galeev T. Gandal M. Gerstein M. Giase G. Girdhar K. Goes F. Grennan K. Gu M. Guerra B. Gursoy G. Hoffman G. Hyde T. Jaffe A. Jiang S. Jiang Y. Kefi A. Kim Y. Kitchen R. Knowles J.A. Lay F. Lee D. Li M. Liu C. Liu S. Mattei E. Navarro F. Pan X. Peters M.A. Pinto D. Pochareddy S. Polioudakis D. Purcaro M. Purcell S. Pratt H. Reddy T. Rhie S. Roussos P. Rozowsky J. Sanders S. Sestan N. Sethi A. Shi X. Shieh A. Swarup V. Szekely A. Wang D. Warrell J. Weissman S. Weng Z. White K. Wiseman J. Witt H. Won H. Wood S. Wu F. Xu X. Yao L. Zandi P. Arranz M.J. Bakker S. Bender S. Bramon E. Collier D.A. Crepo-Facorro B. Hall J. Iyegbe C. Kahn R. Lawrie S. Lewis C. Lin K. Linszen D.H. Mata I. McIntosh A. Murray R.M. Ophoff R.A. van Os J. Powell J. Rujescu D. Walshe M. Weisbrod M. Achsel T. Andres-Alonso M. Bagni C. Bayés À. Biederer T. Brose N. Brown T.C. Chua J.J.E. Coba M.P. Cornelisse L.N. de Jong A.P.H. de Juan-Sanz J. Dieterich D.C. Feng G. Goldschmidt H.L. Gundelfinger E.D. Hoogenraad C. Huganir R.L. Hyman S.E. Imig C. Jahn R. Jung H. Kaeser P.S. Kim E. Koopmans F. Kreutz M.R. Lipstein N. MacGillavry H.D. Malenka R. McPherson P.S. O’Connor V. Pielot R. Ryan T.A. Sahasrabudhe D. Sala C. Sheng M. Smalla K-H. Smit A.B. Südhof T.C. Thomas P.D. Toonen R.F. van Weering J.R.T. Verhage M. Verpelli C. Adolfsson R. Arango C. Baune B.T. Belangero S.I. Børglum A.D. Braff D. Bramon E. Buxbaum J.D. Campion D. Cervilla J.A. Cichon S. Collier D.A. Corvin A. Curtis D. Forti M.D. Domenici E. Ehrenreich H. Escott-Price V. Esko T. Fanous A.H. Gareeva A. Gawlik M. Gejman P.V. Gill M. Glatt S.J. Golimbet V. Hong K.S. Hultman C.M. Hyman S.E. Iwata N. Jönsson E.G. Kahn R.S. Kennedy J.L. Khusnutdinova E. Kirov G. Knowles J.A. Krebs M-O. Laurent-Levinson C. Lee J. Lencz T. Levinson D.F. Li Q.S. Liu J. Malhotra A.K. Malhotra D. McIntosh A. McQuillin A. Menezes P.R. Morgan V.A. Morris D.W. Mowry B.J. Murray R.M. Nimgaonkar V. Nöthen M.M. Ophoff R.A. Paciga S.A. Palotie A. Pato C.N. Qin S. Rietschel M. Riley B.P. Rivera M. Rujescu D. Saka M.C. Sanders A.R. Schwab S.G. Serretti A. Sham P.C. Shi Y. St Clair D. Stefánsson H. Stefansson K. Tsuang M.T. van Os J. Vawter M.P. Weinberger D.R. Werge T. Wildenauer D.B. Yu X. Yue W. Holmans P.A. Pocklington A.J. Roussos P. Vassos E. Verhage M. Visscher P.M. Yang J. Posthuma D. Andreassen O.A. Kendler K.S. Owen M.J. Wray N.R. Daly M.J. Huang H. Neale B.M. Sullivan P.F. Ripke S. Walters J.T.R. O’Donovan M.C. de Haan L. van Amelsvoort T. van Winkel R. Gareeva A. Sham P.C. Shi Y. St Clair D. van Os J. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature 2022 604 7906 502 508 10.1038/s41586‑022‑04434‑5 35396580
    [Google Scholar]
  163. Benes F.M. McSparren J. Bird E.D. SanGiovanni J.P. Vincent S.L. Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. Arch. Gen. Psychiatry 1991 48 11 996 1001 10.1001/archpsyc.1991.01810350036005 1747023
    [Google Scholar]
  164. Dienel S.J. Fish K.N. Lewis D.A. The nature of prefrontal cortical GABA neuron alterations in schizophrenia: Markedly lower somatostatin and parvalbumin gene expression without missing neurons. Am. J. Psychiatry 2023 180 7 495 507 10.1176/appi.ajp.20220676 37073488
    [Google Scholar]
  165. Akbarian S. Kim J.J. Potkin S.G. Hagman J.O. Tafazzoli A. Bunney W.E. Jones E.G. Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch. Gen. Psychiatry 1995 52 4 258 266 10.1001/archpsyc.1995.03950160008002 7702443
    [Google Scholar]
  166. Cullen T.J. Walker M.A. Parkinson N. Craven R. Crow T.J. Esiri M.M. Harrison P.J. A postmortem study of the mediodorsal nucleus of the thalamus in schizophrenia. Schizophr. Res. 2003 60 2-3 157 166 10.1016/S0920‑9964(02)00297‑9 12591579
    [Google Scholar]
  167. Dorph-Petersen K.A. Lewis D.A. Postmortem structural studies of the thalamus in schizophrenia. Schizophr. Res. 2017 180 28 35 10.1016/j.schres.2016.08.007 27567291
    [Google Scholar]
  168. Green M.J. Matheson S.L. Shepherd A. Weickert C.S. Carr V.J. Brain-derived neurotrophic factor levels in schizophrenia: A systematic review with meta-analysis. Mol. Psychiatry 2011 16 9 960 972 10.1038/mp.2010.88
    [Google Scholar]
  169. Singh J. Verma R. Raghav R. Sarkar S. Sood M. Jain R. Brain-derived neurotrophic factor (BDNF) levels in first-episode schizophrenia and healthy controls: A comparative study. Asian J. Psychiatr. 2020 54 102370 10.1016/j.ajp.2020.102370 33271690
    [Google Scholar]
  170. Bora E. Peripheral inflammatory and neurotrophic biomarkers of cognitive impairment in schizophrenia: A meta-analysis. Psychol. Med. 2019 49 12 1971 1979 10.1017/S0033291719001685 31284882
    [Google Scholar]
  171. Nagahara A.H. Tuszynski M.H. Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nat. Rev. Drug Discov. 2011 209 10.1038/nrd3366
    [Google Scholar]
  172. Shi X.J. Du Y. Lei-Chen; Li, X.S.; Yao, C.Q.; Cheng, Y. Effects of brain-derived neurotrophic factor (BDNF) on the Schizophrenia model of animals. J. Psychiatr. Res. 2022 156 538 546 10.1016/j.jpsychires.2022.10.022 36368243
    [Google Scholar]
  173. Schmidt M. Rossetti A.C. Brandwein C. Riva M.A. Gass P. Elsner P. Hesse-Macabata J. Hipler U.C. Smesny S. Milleit B. Brain derived neurotrophic factor deficiency is associated with cognitive impairment and elevated phospholipase A2 activity in plasma of mice. Neuroscience 2022 480 167 177 10.1016/j.neuroscience.2021.11.024 34801657
    [Google Scholar]
  174. Shoshina I.I. Hovis J.K. Felisberti F.M. Santos N.A. Adreeva A. Butler P.D. Fernandes T.P. Visual processing and BDNF levels in first-episode schizophrenia. Psychiatry Res. 2021 305 114200 10.1016/j.psychres.2021.114200 34653830
    [Google Scholar]
  175. Schwarz E. Izmailov R. Spain M. Barnes A. Mapes J.P. Guest P.C. Validation of a blood-based laboratory test to aid in the confirmation of a diagnosis of schizophrenia. Biomark. Insights 2010 2010 39 10.4137/BMI.S4877
    [Google Scholar]
  176. Venigalla H. Mekala H.M. Ahmed R. Zain H. Dar S. Veliz S.S. Update on Biomarkers in psychiatric disorders - Are we aware, Do we use in our clinical practice? Ment. Health Fam. Med. 2017 13
    [Google Scholar]
  177. Davison J. O’Gorman A. Brennan L. Cotter D.R. A systematic review of metabolite biomarkers of schizophrenia. Schizophr. Res. 2018 195 32 50 10.1016/j.schres.2017.09.021 28947341
    [Google Scholar]
  178. Parksepp M. Leppik L. Koch K. Uppin K. Kangro R. Haring L. Metabolomics approach revealed robust changes in amino acid and biogenic amine signatures in patients with schizophrenia in the early course of the disease. Sci. Rep. 2020 10 1 11 10.1038/s41598‑020‑71014‑w
    [Google Scholar]
  179. Obyedkov I. Skuhareuskaya M. Skugarevsky O. Obyedkov V. Buslauski P. Skuhareuskaya T. Waszkiewicz N. Saccadic eye movements in different dimensions of schizophrenia and in clinical high-risk state for psychosis. BMC Psychiatry 2019 19 1 110 10.1186/s12888‑019‑2093‑8 30961571
    [Google Scholar]
  180. Waszkiewicz N. Mentally Sick or Not—(Bio)markers of psychiatric disorders needed. J. Clin. Med. 2020 9 2375
    [Google Scholar]
  181. Cabungcal J.H. Nicolas D. Kraftsik R. Cuénod M. Do K.Q. Hornung J.P. Glutathione deficit during development induces anomalies in the rat anterior cingulate GABAergic neurons: Relevance to schizophrenia. Neurobiol. Dis. 2006 22 3 624 637 10.1016/j.nbd.2006.01.003 16481179
    [Google Scholar]
  182. Gottesman I.I. Gould T.D. The endophenotype concept in psychiatry: etymology and strategic intentions. Am. J. Psychiatry 2003 160 4 636 645 10.1176/appi.ajp.160.4.636 12668349
    [Google Scholar]
  183. Calkins M.E. Iacono W.G. Ones D.S. Eye movement dysfunction in first-degree relatives of patients with schizophrenia: A meta-analytic evaluation of candidate endophenotypes. Brain Cogn. 2008 68 3 436 461 10.1016/j.bandc.2008.09.001 18930572
    [Google Scholar]
  184. Levy D.L. Sereno A.B. Gooding D.C. O’Driscoll G.A. Eye tracking dysfunction in schizophrenia: characterization and pathophysiology. Curr. Top. Behav. Neurosci. 2010 4 311 347 https://link.springer.com/chapter/10.1007/7854_2010_60 10.1007/7854_2010_60 21312405
    [Google Scholar]
  185. Andreou C. Borgwardt S. Structural and functional imaging markers for susceptibility to psychosis. Mol. Psychiatry 2020 25 2773 10.1038/s41380‑020‑0679‑7
    [Google Scholar]
  186. Merritt K. Luque Laguna P. Irfan A. David A.S. Longitudinal structural MRI findings in individuals at genetic and clinical high risk for psychosis: A systematic review. Front. Psychiatry 2021 12 620401 10.3389/fpsyt.2021.620401 33603688
    [Google Scholar]
  187. Kim J.S. Kornhuber H.H. Schmid-Burgk W. Holzmüller B. Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neurosci. Lett. 1980 20 3 379 382 10.1016/0304‑3940(80)90178‑0 6108541
    [Google Scholar]
  188. Brugger S. Davis J.M. Leucht S. Stone J.M. Proton magnetic resonance spectroscopy and illness stage in schizophrenia: A systematic review and meta-analysis. Biol. Psychiatry 2011 69 5 495 503 10.1016/j.biopsych.2010.10.004 21145039
    [Google Scholar]
  189. Fusar-Poli P. Meyer-Lindenberg A. Striatal presynaptic dopamine in schizophrenia, part II: Meta-analysis of [(18)F/(11)C]-DOPA PET studies. Schizophr. Bull. 2013 39 1 33 42 10.1093/schbul/sbr180 22282454
    [Google Scholar]
  190. Ota M. Sato N. Ishikawa M. Hori H. Sasayama D. Hattori K. Teraishi T. Obu S. Nakata Y. Nemoto K. Moriguchi Y. Hashimoto R. Kunugi H. Discrimination of female schizophrenia patients from healthy women using multiple structural brain measures obtained with voxel‐based morphometry. Psychiatry Clin. Neurosci. 2012 66 7 611 617 10.1111/j.1440‑1819.2012.02397.x 23252928
    [Google Scholar]
  191. Li A. Zalesky A. Yue W. Howes O. Yan H. Liu Y. A neuroimaging biomarker for striatal dysfunction in schizophrenia. Nat. Med. 2020 26 558 10.1038/s41591‑020‑0793‑8
    [Google Scholar]
  192. Ivleva E.I. Clementz B.A. Dutcher A.M. Arnold S.J.M. Jeon-Slaughter H. Aslan S. Witte B. Poudyal G. Lu H. Meda S.A. Pearlson G.D. Sweeney J.A. Keshavan M.S. Tamminga C.A. Brain structure biomarkers in the psychosis biotypes: Findings from the bipolar-schizophrenia network for intermediate phenotypes. Biol. Psychiatry 2017 82 1 26 39 10.1016/j.biopsych.2016.08.030 27817844
    [Google Scholar]
  193. Bai Y.M. Chen M.H. Hsu J.W. Huang K.L. Tu P.C. Chang W.C. Su T.P. Li C.T. Lin W.C. Tsai S.J. A comparison study of metabolic profiles, immunity, and brain gray matter volumes between patients with bipolar disorder and depressive disorder. J. Neuroinflammation 2020 17 1 42 10.1186/s12974‑020‑1724‑9 32000805
    [Google Scholar]
  194. Birnbaum R. Jaffe A.E. Chen Q. Shin J.H. Schubert C.R. O’Donnell P. Quan J. Wendland J.R. Xi H.S. Winslow A.R. Domenici E. Essioux L. Kam-Thong T. Airey D.C. Calley J.N. Collier D.A. Wang H. Eastwood B. Ebert P. Liu Y. Nisenbaum L. Ruble C. Scherschel J. Smith R.M. Qian H-R. Merchant K. Didriksen M. Matsumoto M. Saito T. Brandon N.J. Cross A.J. Wang Q. Manji H. Kolb H. Furey M. Drevets W.C. Heon Shin J. Jaffe A.E. Jia Y. Straub R.E. Deep-Soboslay A. Hyde T.M. Kleinman J.E. Weinberger D.R. Kleinman J.E. Hyde T.M. Weinberger D.R. Investigating the neuroimmunogenic architecture of schizophrenia. Mol. Psychiatry 2018 23 5 1251 1260 10.1038/mp.2017.89 28485405
    [Google Scholar]
  195. Dickerson B.C. Salat D.H. Greve D.N. Chua E.F. Rand-Giovannetti E. Rentz D.M. Bertram L. Mullin K. Tanzi R.E. Blacker D. Albert M.S. Sperling R.A. Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology 2005 65 3 404 411 10.1212/01.wnl.0000171450.97464.49 16087905
    [Google Scholar]
  196. Brown A.S. Begg M.D. Gravenstein S. Schaefer C.A. Wyatt R.J. Bresnahan M. Babulas V.P. Susser E.S. Serologic evidence of prenatal influenza in the etiology of schizophrenia. Arch. Gen. Psychiatry 2004 61 8 774 780 https://jamanetwork.com/journals/jamapsychiatry/fullarticle/482040 10.1001/archpsyc.61.8.774 15289276
    [Google Scholar]
  197. Ellman L.M. Deicken R.F. Vinogradov S. Kremen W.S. Poole J.H. Kern D.M. Tsai W.Y. Schaefer C.A. Brown A.S. Structural brain alterations in schizophrenia following fetal exposure to the inflammatory cytokine interleukin-8. Schizophr. Res. 2010 121 1-3 46 54 10.1016/j.schres.2010.05.014 20553865
    [Google Scholar]
  198. Williams J.A. Burgess S. Suckling J. Lalousis P.A. Batool F. Griffiths S.L. Palmer E. Karwath A. Barsky A. Gkoutos G.V. Wood S. Barnes N.M. David A.S. Donohoe G. Neill J.C. Deakin B. Khandaker G.M. Upthegrove R. Rogers J.C. Mondelli V. Dazzan P. Pariante C. MacCabe J. Egerton A. Jones P. Bullmore E. Koutsouleris N. Meisenzahl E. Cotter D. Harrison N. Inflammation and brain structure in schizophrenia and other neuropsychiatric disorders. JAMA Psychiatry 2022 79 5 498 507 10.1001/jamapsychiatry.2022.0407 35353173
    [Google Scholar]
  199. Jacomb I. Stanton C. Vasudevan R. Powell H. O’Donnell M. Lenroot R. Bruggemann J. Balzan R. Galletly C. Liu D. Weickert C.S. Weickert T.W. C-Reactive protein: Higher during acute psychotic episodes and related to cortical thickness in schizophrenia and healthy controls. Front. Immunol. 2018 9 2230 10.3389/fimmu.2018.02230 30364161
    [Google Scholar]
  200. Chen S.J. Chao Y.L. Chen C.Y. Chang C.M. Wu E.C.H. Wu C.S. Yeh H.H. Chen C.H. Tsai H.J. Prevalence of autoimmune diseases in in-patients with schizophrenia: Nationwide population-based study. Br. J. Psychiatry 2012 200 5 374 380 10.1192/bjp.bp.111.092098 22442099
    [Google Scholar]
  201. Miller B.J. Culpepper N. Rapaport M.H. C-reactive protein levels in schizophrenia: A review and meta-analysis. Clin. Schizophr. Relat. Psychoses 2014 7 4 223 230 10.3371/CSRP.MICU.020813 23428789
    [Google Scholar]
  202. Fan X. Pristach C. Liu E.Y. Freudenreich O. Henderson D.C. Goff D.C. Elevated serum levels of C-reactive protein are associated with more severe psychopathology in a subgroup of patients with schizophrenia. Psychiatry Res. 2007 149 1-3 267 271 10.1016/j.psychres.2006.07.011 17112596
    [Google Scholar]
  203. Wysokiński A. Margulska A. Strzelecki D. Kłoszewska I. Levels of C-reactive protein (CRP) in patients with schizophrenia, unipolar depression and bipolar disorder. Nord. J. Psychiatry 2015 69 5 346 353 10.3109/08039488.2014.984755
    [Google Scholar]
  204. Pan L.H. Qian M. Qu W. Tang Q. Yan Y. Serum c-reactive protein in patients with deficit schizophrenia and the relationship with cognitive function. Neuropsychiatr. Dis. Treat. 2020 16 2891 2897 10.2147/NDT.S284149 33293814
    [Google Scholar]
  205. Kluft C. de Maat M.P.M. Genetics of C-reactive protein: New possibilities and complications. Arterioscler. Thromb. Vasc. Biol. 2003 23 11 1956 1959 10.1161/01.ATV.0000100113.47260.EB 14617617
    [Google Scholar]
  206. Kotlar A.V. Mercer K.B. Zwick M.E. Mulle J.G. New discoveries in schizophrenia genetics reveal neurobiological pathways: A review of recent findings. Eur. J. Med. Genet. 2015 58 12 704 714 10.1016/j.ejmg.2015.10.008 26493318
    [Google Scholar]
  207. Freedman R. Ross R. Leonard S. Myles-Worsley M. Adams C.E. Waldo M. Early biomarkers of psychosis. Frreedman 2022 7 17 29
    [Google Scholar]
  208. Porter R.H.P. Eastwood S.L. Harrison P.J. Distribution of kainate receptor subunit mRNAs in human hippocampus, neocortex and cerebellum, and bilateral reduction of hippocampal GluR6 and KA2 transcripts in schizophrenia. Brain Res. 1997 751 2 217 231 10.1016/S0006‑8993(96)01404‑7 9099808
    [Google Scholar]
  209. Zilles K. Wu J. Crusio W.E. Schwegler H. Water maze and radial maze learning and the density of binding sites of glutamate, GABA, and serotonin receptors in the hippocampus of inbred mouse strains. Hippocampus 2000 10 3 213 225 10.1002/1098‑1063(2000)10:3<213:AID‑HIPO2>3.0.CO;2‑Q 10902891
    [Google Scholar]
  210. Zhai J. Cheng L. Dong J. Shen Q. Zhang Q. Chen M. Gao L. Chen X. Wang K. Deng X. Xu Z. Ji F. Liu C. Li J. Dong Q. Chen C. S100B gene polymorphisms predict prefrontal spatial function in both schizophrenia patients and healthy individuals. Schizophr. Res. 2012 134 1 89 94 10.1016/j.schres.2011.09.029 22019077
    [Google Scholar]
  211. Schroeter M.L. Abdul-Khaliq H. Krebs M. Diefenbacher A. Blasig I.E. Neuron-specific enolase is unaltered whereas S100B is elevated in serum of patients with schizophrenia — Original research and meta-analysis. Psychiatry Res. 2009 167 1-2 66 72 10.1016/j.psychres.2008.01.002 19375171
    [Google Scholar]
  212. Steiner J. Bernstein H.G. Bielau H. Farkas N. Winter J. Dobrowolny H. Brisch R. Gos T. Mawrin C. Myint A.M. Bogerts B. S100B-immunopositive glia is elevated in paranoid as compared to residual schizophrenia: A morphometric study. J. Psychiatr. Res. 2008 42 10 868 876 10.1016/j.jpsychires.2007.10.001 18001771
    [Google Scholar]
  213. van Berckel B.N. Bossong M.G. Boellaard R. Kloet R. Schuitemaker A. Caspers E. Luurtsema G. Windhorst A.D. Cahn W. Lammertsma A.A. Kahn R.S. Microglia activation in recent-onset schizophrenia: a quantitative (R)-[11C]PK11195 positron emission tomography study. Biol. Psychiatry 2008 64 9 820 822 10.1016/j.biopsych.2008.04.025 18534557
    [Google Scholar]
  214. Doorduin J. de Vries E.F.J. Willemsen A.T.M. de Groot J.C. Dierckx R.A. Klein H.C. Neuroinflammation in schizophrenia-related psychosis: A PET study. J. Nucl. Med. 2009 50 11 1801 1807 10.2967/jnumed.109.066647 19837763
    [Google Scholar]
  215. Hoseth E.Z. Krull F. Dieset I. Mørch R.H. Hope S. Gardsjord E.S. Steen N.E. Melle I. Brattbakk H.R. Steen V.M. Aukrust P. Djurovic S. Andreassen O.A. Ueland T. Exploring the Wnt signaling pathway in schizophrenia and bipolar disorder. Transl. Psychiatry 2018 8 1 55 10.1038/s41398‑018‑0102‑1 29507296
    [Google Scholar]
  216. Lovestone S. Killick R. Di Forti M. Murray R. Schizophrenia as a GSK-3 dysregulation disorder. Trends Neurosci. 2007 30 4 142 149 10.1016/j.tins.2007.02.002 17324475
    [Google Scholar]
  217. Sun J. Hobert M.E. Duan Y. Rao A.S. He T.C. Chang E.B. Madara J.L. Crosstalk between NF-κB and β-catenin pathways in bacterial-colonized intestinal epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol. 2005 289 1 G129 G137 10.1152/ajpgi.00515.2004 15790758
    [Google Scholar]
  218. Melis M. Carta G. Pistis M. Banni S. Physiological role of peroxisome proliferator-activated receptors type α on dopamine systems. CNS Neurol. Disord. Drug Targets 2013 12 1 70 77 10.2174/1871527311312010012 23394525
    [Google Scholar]
  219. McCullumsmith R.E. O’Donovan S.M. Drummond J.B. Benesh F.S. Simmons M. Roberts R. Lauriat T. Haroutunian V. Meador-Woodruff J.H. Cell-specific abnormalities of glutamate transporters in schizophrenia: sick astrocytes and compensating relay neurons? Mol. Psychiatry 2016 21 6 823 830 10.1038/mp.2015.148 26416546
    [Google Scholar]
  220. Karlsson R.M. Tanaka K. Heilig M. Holmes A. Loss of glial glutamate and aspartate transporter (excitatory amino acid transporter 1) causes locomotor hyperactivity and exaggerated responses to psychotomimetics: rescue by haloperidol and metabotropic glutamate 2/3 agonist. Biol. Psychiatry 2008 64 9 810 814 10.1016/j.biopsych.2008.05.001 18550032
    [Google Scholar]
  221. Hashimoto K. Engberg G. Shimizu E. Nordin C. Lindström L.H. Iyo M. Elevated glutamine/glutamate ratio in cerebrospinal fluid of first episode and drug naive schizophrenic patients. BMC Psychiatry 2005 5 1 6 10.1186/1471‑244X‑5‑6 15683541
    [Google Scholar]
  222. Kraguljac N.V. Frölich M.A. Tran S. White D.M. Nichols N. Barton-McArdle A. Reid M.A. Bolding M.S. Lahti A.C. Ketamine modulates hippocampal neurochemistry and functional connectivity: a combined magnetic resonance spectroscopy and resting-state fMRI study in healthy volunteers. Mol. Psychiatry 2017 22 4 562 569 10.1038/mp.2016.122 27480494
    [Google Scholar]
  223. Steullet P. Cabungcal J-H. Coyle J. Didriksen M. Gill K. Grace A.A. Hensch T.K. LaMantia A-S. Lindemann L. Maynard T.M. Meyer U. Morishita H. O’Donnell P. Puhl M. Cuenod M. Do K.Q. Oxidative stress-driven parvalbumin interneuron impairment as a common mechanism in models of schizophrenia. Mol. Psychiatry 2017 22 7 936 943 10.1038/mp.2017.47 28322275
    [Google Scholar]
  224. Ma T.M. Abazyan S. Abazyan B. Nomura J. Yang C. Seshadri S. Sawa A. Snyder S.H. Pletnikov M.V. Pathogenic disruption of DISC1-serine racemase binding elicits schizophrenia-like behavior via D-serine depletion. Mol. Psychiatry 2013 18 5 557 567 10.1038/mp.2012.97 22801410
    [Google Scholar]
  225. Xia M. Zhu S. Shevelkin A. Ross C.A. Pletnikov M. DISC 1, astrocytes and neuronal maturation: A possible mechanistic link with implications for mental disorders. J. Neurochem. 2016 138 4 518 524 10.1111/jnc.13663 27187935
    [Google Scholar]
  226. Fallgatter A.J. Müller T.J. Electrophysiological signs of reduced prefrontal response control in schizophrenic patients. Psychiatry Res. Neuroimaging 2001 107 1 19 28 10.1016/S0925‑4927(01)00092‑0 11472861
    [Google Scholar]
  227. Donaldson K.R. Larsen E.M. Jonas K. Tramazzo S. Perlman G. Foti D. Mohanty A. Kotov R. Mismatch negativity amplitude in first-degree relatives of individuals with psychotic disorders: Links with cognition and schizotypy. Schizophr. Res. 2021 238 161 169 10.1016/j.schres.2021.10.006 34695710
    [Google Scholar]
  228. Talati P. Rane S. Kose S. Blackford J.U. Gore J. Donahue M.J. Heckers S. Increased hippocampal CA1 cerebral blood volume in schizophrenia. Neuroimage Clin. 2014 5 359 364 10.1016/j.nicl.2014.07.004 25161901
    [Google Scholar]
  229. Lieberman J.A. Girgis R.R. Brucato G. Moore H. Provenzano F. Kegeles L. Javitt D. Kantrowitz J. Wall M.M. Corcoran C.M. Schobel S.A. Small S.A. Hippocampal dysfunction in the pathophysiology of schizophrenia: A selective review and hypothesis for early detection and intervention. Mol. Psychiatry 2018 23 8 1764 1772 10.1038/mp.2017.249 29311665
    [Google Scholar]
  230. Onwordi E.C. Halff E.F. Whitehurst T. Mansur A. Cotel M.C. Wells L. Creeney H. Bonsall D. Rogdaki M. Shatalina E. Reis Marques T. Rabiner E.A. Gunn R.N. Natesan S. Vernon A.C. Howes O.D. Synaptic density marker SV2A is reduced in schizophrenia patients and unaffected by antipsychotics in rats. Nat. Commun. 2020 11 1 246 10.1038/s41467‑019‑14122‑0 31937764
    [Google Scholar]
  231. Jauhar S. Nour M.M. Veronese M. Rogdaki M. Bonoldi I. Azis M. Turkheimer F. McGuire P. Young A.H. Howes O.D. A test of the transdiagnostic dopamine hypothesis of psychosis using positron emission tomographic imaging in bipolar affective disorder and schizophrenia. JAMA Psychiatry 2017 74 12 1206 1213 10.1001/jamapsychiatry.2017.2943 29049482
    [Google Scholar]
  232. Thuné H. Recasens M. Uhlhaas P.J. The 40-Hz auditory steady-state response in patients with schizophrenia. JAMA Psychiatry 2016 73 11 1145 1153 10.1001/jamapsychiatry.2016.2619 27732692
    [Google Scholar]
  233. Koshiyama D. Miyakoshi M. Joshi Y.B. Molina J.L. Tanaka-Koshiyama K. Sprock J. Braff D.L. Swerdlow N.R. Light G.A. A distributed frontotemporal network underlies gamma-band synchronization impairments in schizophrenia patients. Neuropsychopharmacology 2020 45 13 2198 2206 10.1038/s41386‑020‑00806‑5 32829382
    [Google Scholar]
  234. Jackson M.E. Homayoun H. Moghaddam B. NMDA receptor hypofunction produces concomitant firing rate potentiation and burst activity reduction in the prefrontal cortex. Proc. Natl. Acad. Sci. USA 2004 101 22 8467 8472 10.1073/pnas.0308455101 15159546
    [Google Scholar]
  235. Lodge D.J. Grace A.A. Hippocampal dysregulation of dopamine system function and the pathophysiology of schizophrenia. Trends Pharmacol. Sci. 2011 32 9 507 513 10.1016/j.tips.2011.05.001 21700346
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266389476250818112814
Loading
/content/journals/ctmc/10.2174/0115680266389476250818112814
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: biomarkers ; Schizophrenia ; integrative mechanism ; CNS ; signaling dysregulations
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test