Full text loading...
Plant-powered nanotechnologies integrate the concepts of biological engineering and green synthesis to produce safe and environmentally friendly nanoparticles that address environmental and public health issues. Biological production, meanwhile, is a safe, biodegradable, as well as a sustainable method to create nanoparticles. Tabernaemontana divaricate, Calotropis gigantea (L.), Passiflora caerulea, Acorus calamus (rhizome), Cucurbita maxima (petals), Moringa oleifera (leaves), Piper nigrum, Ziziphus Spina Christi, Eucalyptus globulus, and Ziziphus oenoplia, etc., plants were among the medicinal flora used in the biological synthesis of Silver and Zinc oxide. Initially, phytochemical testing, scanning electron microscopy, energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction, and electron microscopy were employed to characterize the green-synthesized Zinc oxide and silver nanoparticles. These medicinal floras have proven tremendous potential in the development of nanoparticles for several purposes in medicine, cosmeceuticals, food science and technology, water treatment and purification, environmental cleanup, and agriculture. This review paper highlights the characteristics of biologically produced Zinc oxide and Silver Nanoparticles and investigates the broad spectrum of plants that can be utilized in a single-phase, rapid protocol preparation approach that prioritizes green principles over conventional ones. These biologically friendly silver and zinc oxide nanoparticles have the potential to be very useful in the field of biomedicine, agriculture, cosmetics, water treatment, food science and technology, and the energy sector. The biomedicinal applications of green synthesised nanoparticles are particularly intriguing, with potential in drug delivery, bioimaging, antibacterial treatments, anti-Leishmanial properties, and cancer therapy. Compared to previous approaches, these nanoparticles provide benefits in terms of controlled administration, less toxicity, and increased therapeutic effectiveness. Future studies must concentrate on the development of affordable, non-hazardous, ecologically safe, and self-degradable nanoparticles to aid in the commercialisation of nanotechnology in agriculture, food, healthcare, and energy.
Article metrics loading...
Full text loading...
References
Data & Media loading...