Skip to content
2000
image of Plant-Powered Nanotechnology: A Review of Green Synthesis Approaches for ZnO and Silver Nanoparticles with Medicinal Flora

Abstract

Plant-powered nanotechnologies integrate the concepts of biological engineering and green synthesis to produce safe and environmentally friendly nanoparticles that address environmental and public health issues. Biological production, meanwhile, is a safe, biodegradable, as well as a sustainable method to create nanoparticles. Tabernaemontana divaricate, (L.), , (rhizome), (petals), (leaves), , , , and , ., plants were among the medicinal flora used in the biological synthesis of Silver and Zinc oxide. Initially, phytochemical testing, scanning electron microscopy, energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction, and electron microscopy were employed to characterize the green-synthesized Zinc oxide and silver nanoparticles. These medicinal floras have proven tremendous potential in the development of nanoparticles for several purposes in medicine, cosmeceuticals, food science and technology, water treatment and purification, environmental cleanup, and agriculture. This review paper highlights the characteristics of biologically produced Zinc oxide and Silver Nanoparticles and investigates the broad spectrum of plants that can be utilized in a single-phase, rapid protocol preparation approach that prioritizes green principles over conventional ones. These biologically friendly silver and zinc oxide nanoparticles have the potential to be very useful in the field of biomedicine, agriculture, cosmetics, water treatment, food science and technology, and the energy sector. The biomedicinal applications of green synthesised nanoparticles are particularly intriguing, with potential in drug delivery, bioimaging, antibacterial treatments, anti-Leishmanial properties, and cancer therapy. Compared to previous approaches, these nanoparticles provide benefits in terms of controlled administration, less toxicity, and increased therapeutic effectiveness. Future studies must concentrate on the development of affordable, non-hazardous, ecologically safe, and self-degradable nanoparticles to aid in the commercialisation of nanotechnology in agriculture, food, healthcare, and energy.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266413831251120132852
2026-01-16
2026-01-31
Loading full text...

Full text loading...

References

  1. Kanwar R. Rathee J. Salunke D.B. Mehta S.K. Green nanotechnology-driven drug delivery assemblies. ACS Omega 2019 4 5 8804 8815 10.1021/acsomega.9b00304 31459969
    [Google Scholar]
  2. Osman A.I. Zhang Y. Farghali M. Rashwan A.K. Eltaweil A.S. Abd El-Monaem E.M. Synthesis of green nanoparticles for energy, biomedical, environmental, agricultural, and food applications. RE:view 2024 22 2 841 887
    [Google Scholar]
  3. Huq M.A. Ashrafudoulla M. Rahman M.M. Balusamy S.R. Akter S. Green synthesis and potential antibacterial applications of bioactive silver nanoparticles: A review. Polymers 2022 14 4 742 10.3390/polym14040742 35215655
    [Google Scholar]
  4. Dikshit P. Kumar J. Das A. Sadhu S. Sharma S. Singh S. Gupta P. Kim B. Green synthesis of metallic nanoparticles: Applications and limitations. Catalysts 2021 11 8 902 10.3390/catal11080902
    [Google Scholar]
  5. Khan S.T. Musarrat J. Al-Khedhairy A.A. Countering drug resistance, infectious diseases, and sepsis using metal and metal oxides nanoparticles: Current status. Colloids Surf. B Biointerfaces 2016 146 70 83 10.1016/j.colsurfb.2016.05.046 27259161
    [Google Scholar]
  6. Kalpana V.N. Devi Rajeswari V. A review on green synthesis, biomedical applications, and toxicity studies of ZnO nanoparticles. Bioinorg. Chem. Appl. 2018 2018 1 12 10.1155/2018/3569758 30154832
    [Google Scholar]
  7. Ahmad A. Mukherjee P. Senapati S. Mandal D. Khan M.I. Kumar R. Sastry M. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf. B Biointerfaces 2003 28 4 313 318 10.1016/S0927‑7765(02)00174‑1
    [Google Scholar]
  8. Tumutegyereize P. Ketlogetswe C. Gandure J. Banadda N. Effect of temperature fluctuation, substrate concentration, and composition of starchy substrates in mixture and use of plant oils as antifoams on biogas production. Energy Sources A Recovery Util. Environ. Effects 2016 38 4 1311 1315 10.1080/15567036.2012.728764
    [Google Scholar]
  9. Wei Z. Xu S. Jia H. Zhang H. Green synthesis of silver nanoparticles from Mahonia fortunei extracts and characterization of its inhibitory effect on Chinese cabbage soft rot pathogen. Front. Microbiol. 2022 13 1030261 10.3389/fmicb.2022.1030261 36338072
    [Google Scholar]
  10. Xu J. Huang Y. Zhu S. Abbes N. Jing X. Zhang L. A review of the green synthesis of ZnO nanoparticles using plant extracts and their prospects for application in antibacterial textiles. Text. Res. J. 2021 91 17–18 2042 2059 10.1177/00405175211046242
    [Google Scholar]
  11. Shin W.K. Cho J. Kannan A.G. Lee Y.S. Kim D.W. Cross-linked composite gel polymer electrolyte using mesoporous methacrylate-functionalized SiO2 nanoparticles for lithium-ion polymer batteries. Sci. Rep. 2016 6 1 26332 10.1038/srep26332 27189842
    [Google Scholar]
  12. Sinha S. Pan I. Chanda P. Sen S.K. Nanoparticles fabrication using ambient biological resources. J. Appl. Biosci. 2009 19 1113 1130 10.1016/B978‑0‑12‑823575‑1.00011‑1
    [Google Scholar]
  13. Malhotra SP Alghuthaymi MA Biomolecule-assisted biogenic synthesis of metallic nanoparticles Agri-Waste and Microbes for Production of Sustainable Nanomaterials 2022 139 163
  14. Wei S. Wang Y. Tang Z. Xu H. Wang Z. Yang T. Zou T. A novel green synthesis of silver nanoparticles by the residues of Chinese herbal medicine and their biological activities. RSC Advances 2021 11 3 1411 1419 10.1039/D0RA08287B 35424137
    [Google Scholar]
  15. Abdul Salam H. Sivaraj R. Venckatesh R. Green synthesis and characterization of zinc oxide nanoparticles from Ocimum basilicum L. var. purpurascens Benth.-Lamiaceae leaf extract. Mater. Lett. 2014 131 16 18 10.1016/j.matlet.2014.05.033
    [Google Scholar]
  16. Yuvakkumar R. Suresh J. Nathanael A.J. Sundrarajan M. Hong S.I. Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications. Mater. Sci. Eng. C 2014 41 17 27 10.1016/j.msec.2014.04.025 24907732
    [Google Scholar]
  17. Alhalili Z. Metal oxides nanoparticles: General structural description, chemical, physical, and biological synthesis methods, role in pesticides and heavy metal removal through wastewater treatment. Molecules 2023 28 7 3086 10.3390/molecules28073086 37049850
    [Google Scholar]
  18. Chandrasekaran R. Gnanasekar S. Seetharaman P. Keppanan R. Arockiaswamy W. Sivaperumal S. Formulation of Carica papaya latex-functionalized silver nanoparticles for its improved antibacterial and anticancer applications. J. Mol. Liq. 2016 219 232 238 10.1016/j.molliq.2016.03.038
    [Google Scholar]
  19. Khan S.A. Noreen F. Kanwal S. Iqbal A. Hussain G. Green synthesis of ZnO and Cu-doped ZnO nanoparticles from leaf extracts of Abutilon indicum, Clerodendrum infortunatum, Clerodendrum inerme and investigation of their biological and photocatalytic activities. Mater. Sci. Eng. C 2018 82 46 59 10.1016/j.msec.2017.08.071 29025674
    [Google Scholar]
  20. Mitra S. Patra P. Pradhan S. Debnath N. Dey K.K. Sarkar S. Chattopadhyay D. Goswami A. Microwave synthesis of ZnO@mSiO2 for detailed antifungal mode of action study: Understanding the insights into oxidative stress. J. Colloid Interface Sci. 2015 444 97 108 10.1016/j.jcis.2014.12.041 25585293
    [Google Scholar]
  21. Yuvakkumar R. Suresh J. Saravanakumar B. Joseph Nathanael A. Hong S.I. Rajendran V. Rambutan peels promoted biomimetic synthesis of bioinspired zinc oxide nanochains for biomedical applications. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015 137 250 258 10.1016/j.saa.2014.08.022 25228035
    [Google Scholar]
  22. Szczyglewska P. Feliczak-Guzik A. Nowak I. Nanotechnology–general aspects: A chemical reduction approach to the synthesis of nanoparticles. Molecules 2023 28 13 4932 10.3390/molecules28134932 37446593
    [Google Scholar]
  23. Al-Harbi N. Abd-Elrahman N.K. Physical methods for preparation of nanomaterials, their characterization and applications: A review. Journal of Umm Al-Qura University for Applied Sciences 2024 11 356 377 10.1007/s43994‑024‑00165‑7
    [Google Scholar]
  24. Vishwanath R. Negi B. Conventional and green methods of synthesis of silver nanoparticles and their antimicrobial properties. Current Research in Green and Sustainable Chemistry 2021 4 100205 10.1016/j.crgsc.2021.100205
    [Google Scholar]
  25. Fahim M. Shahzaib A. Nishat N. Jahan A. Bhat T.A. Inam A. Green synthesis of silver nanoparticles: A comprehensive review of methods, influencing factors, and applications. JCIS Open 2024 16 100125 10.1016/j.jciso.2024.100125
    [Google Scholar]
  26. Xu J. Huang Y. Zhu S. Abbes N. Jing X. A review of the green synthesis of ZnO nanoparticles using plant extracts and their prospects for application in antibacterial textiles. Text Res. J. 2021 16 1 10.1177/15589250211046242
    [Google Scholar]
  27. Kruis F.E. Fissan H. Rellinghaus B. Sintering and evaporation characteristics of gas-phase synthesis of size-selected PbS nanoparticles. Mater. Sci. Eng. B 2000 69-70 329 334 10.1016/S0921‑5107(99)00298‑6
    [Google Scholar]
  28. Magnusson M.H. Deppert K. Malm J.O. Bovin J.O. Samuelson L. Gold nanoparticles: Production, reshaping, and thermal charging. J. Nanopart. Res. 1999 1 2 243 251 10.1023/A:1010012802415
    [Google Scholar]
  29. Zhang W. Qiao X. Chen J. Synthesis of silver nanoparticles—Effects of concerned parameters in water/oil microemulsion. Mater. Sci. Eng. B 2007 142 1 1 15 10.1016/j.mseb.2007.06.014
    [Google Scholar]
  30. Jadoun S. Arif R. Jangid N.K. Meena R.K. Green synthesis of nanoparticles using plant extracts: a review. Environ. Chem. Lett. 2021 19 1 355 374 10.1007/s10311‑020‑01074‑x
    [Google Scholar]
  31. Nath D. Banerjee P. Green nanotechnology – A new hope for medical biology. Environ. Toxicol. Pharmacol. 2013 36 3 997 1014 10.1016/j.etap.2013.09.002 24095717
    [Google Scholar]
  32. Zhang H. Li T. Luo W. Peng G.X. Xiong J. Green synthesis of Ag nanoparticles from Leucus aspera and its application in anticancer activity against alveolar cancer. J. Exp. Nanosci. 2022 17 1 47 60 10.1080/17458080.2021.2007886
    [Google Scholar]
  33. Aboyewa J.A. Sibuyi N.R.S. Meyer M. Oguntibeju O.O. Green synthesis of metallic nanoparticles using some selected medicinal plants from southern africa and their biological applications. Plants 2021 10 9 1929 10.3390/plants10091929 34579460
    [Google Scholar]
  34. Parveen K. Banse V. Ledwani L. Green synthesis of nanoparticles: Their advantages and disadvantages. 5th national conference on thermophysical properties: (NCTP-09), 2016 10.1063/1.4945168
    [Google Scholar]
  35. Zhao D. Yu S. Sun B. Gao S. Guo S. Zhao K. Biomedical applications of chitosan and its derivative nanoparticles. Polymers 2018 10 4 462 10.3390/polym10040462 30966497
    [Google Scholar]
  36. Valsalam S. Rapid biosynthesis and characterization of silver nanoparticles from the leaf extract of Tropaeolum majus L. and its enhanced in-vitro antibacterial, antifungal, antioxidant and anticancer properties. J. Photochem. Photobiol. B, 2019 191 65 74 10.1016/j.jphotobiol.2018.12.010.
    [Google Scholar]
  37. Xiong Y. Adhikari C.R. Kawakita H. Ohto K. Inoue K. Harada H. Selective recovery of precious metals by persimmon waste chemically modified with dimethylamine. Bioresour. Technol. 2009 100 18 4083 4089 10.1016/j.biortech.2009.03.014 19386489
    [Google Scholar]
  38. Iravani S. Green synthesis of metal nanoparticles using plants. Green Chemistry 2011 13 10 2638 2650 10.1039/c1gc15386b
    [Google Scholar]
  39. Chen J. Lin Z. Ma X.J.L.m. Green synthesis of metal nanoparticles using plants. Green Chem. 2003 110 2638 2650 10.1039/C1GC15386B
    [Google Scholar]
  40. Munir H. Plant-mediated green synthesis of nanoparticles. Advances in green synthesis: Avenues and sustainability. Springer 2021 75 89 10.1007/978‑3‑030‑67884‑5_4
    [Google Scholar]
  41. Nathani S. Synthesis of metallic nanoparticles using plant derivatives. Andhra Pardesh, India Department of Chemistry 2021
    [Google Scholar]
  42. Nalimu F Oloro J Kahwa I Review on the phytochemistry and toxicological profiles of Aloe vera and Aloe ferox. 2021 10.1186/s43094‑021‑00296‑2
  43. Brahmi F. Khodir M. Mohamed C. Pierre D. Chemical composition and biological activities of Mentha species. Aromatic and medicinal plants-Back to nature; IntechOpen. Egypt Cairo University 2017
    [Google Scholar]
  44. Sabir S.M. Zeb A. Mahmood M. Abbas S.R. Ahmad Z. Iqbal N. Phytochemical analysis and biological activities of ethanolic extract of Curcuma longa rhizome. Braz. J. Biol. 2021 81 3 737 740 10.1590/1519‑6984.230628 32965334
    [Google Scholar]
  45. Baliga MS Shivashankara AR Azmidah A Sunitha V Palatty, PL Gastrointestinal and Hepatoprotective Effects of Ocimum sanctum L Syn (Holy Basil or Tulsi) Bioactive Food. as Dietary Interventions for Liver and Gastrointestinal Disease. Elsevier 2013 325 335 10.1016/b978‑0‑12‑397154‑8.00039‑7
    [Google Scholar]
  46. Chemical Constituents of Calotropis gigantea. Chemistry of Natural, Compound, 2017 53 5 1 3 10.1007/s10600‑017‑2170‑5
    [Google Scholar]
  47. Zhang C. Zhang J. Xin X. Zhu S. Niu E. Wu Q. Li T. Liu D. Changes in phytochemical profiles and biological activity of olive leaves treated by two drying methods. Front. Nutr. 2022 9 854680 10.3389/fnut.2022.854680 35571891
    [Google Scholar]
  48. Zhao Y. Sun P. Ma Y. Wang K. Chang X. Bai Y. Yang L. Zhang D. Yang L. Chemical constituents of Matricaria chamomilla. Chem. Nat. Compd. 2020 56 2 364 365 10.1007/s10600‑020‑03034‑x
    [Google Scholar]
  49. Garima Singh GS Passari AK Pratibha Singh PS Leo VV Sarathbabu Subbarayan SS Brijesh Kumar BK Singh BP Hauzel Lalhlenmawia HL Kumar, NS Pharmacological potential of Bidens pilosa L. and determination of bioactive compounds using UHPLC-QqQLIT-MS/MS and GC/MS. BMC Complement. Altern. Med. 2017 17 1 492 10.1186/s12906‑017‑2000‑0
    [Google Scholar]
  50. Prasad K. Jha A.K. ZnO nanoparticles: synthesis and adsorption study. Nat. Sci. 2009 1 02 129
    [Google Scholar]
  51. Wodka D. Bielańska E. Socha R.P. Elżbieciak - Wodka, M.; Gurgul, J.; Nowak, P.; Warszyński, P.; Kumakiri, I. Photocatalytic activity of titanium dioxide modified by silver nanoparticles. ACS Appl. Mater. Interfaces 2010 2 7 1945 1953 10.1021/am1002684 20568701
    [Google Scholar]
  52. Jain N. Bhargava A. Panwar J. Enhanced photocatalytic degradation of methylene blue using biologically synthesized “protein-capped” ZnO nanoparticles. Chem. Eng. J. 2014 243 549 555 10.1016/j.cej.2013.11.085
    [Google Scholar]
  53. Agarwal H. Venkat Kumar S. Rajeshkumar S. A review on green synthesis of zinc oxide nanoparticles – An eco-friendly approach. Resource-Efficient Technologies 2017 3 4 406 413 10.1016/j.reffit.2017.03.002
    [Google Scholar]
  54. Quek J.A. Sin J.C. Lam S.M. Mohamed A.R. Zeng H. Bioinspired green synthesis of ZnO structures with enhanced visible light photocatalytic activity. J. Mater. Sci. Mater. Electron. 2020 31 2 1144 1158 10.1007/s10854‑019‑02626‑w
    [Google Scholar]
  55. Jayaseelan C. Rahuman A.A. Kirthi A.V. Marimuthu S. Santhoshkumar T. Bagavan A. Gaurav K. Karthik L. Rao K.V.B. Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012 90 78 84 10.1016/j.saa.2012.01.006 22321514
    [Google Scholar]
  56. Parra M.R. Haque F.Z. Aqueous chemical route synthesis and the effect of calcination temperature on the structural and optical properties of ZnO nanoparticles. J. Mater. Res. Technol. 2014 3 4 363 369 10.1016/j.jmrt.2014.07.001
    [Google Scholar]
  57. Liu J. Guo C. Li C.M. Li Y. Chi Q. Huang X. Liao L. Yu T. Carbon-decorated ZnO nanowire array: A novel platform for direct electrochemistry of enzymes and biosensing applications. Electrochem. Commun. 2009 11 1 202 205 10.1016/j.elecom.2008.11.009
    [Google Scholar]
  58. Nagajyothi P.C. Sreekanth T.V.M. Tettey C.O. Jun Y.I. Mook S.H. Characterization, antibacterial, antioxidant, and cytotoxic activities of ZnO nanoparticles using Coptidis Rhizoma. Bioorg. Med. Chem. Lett. 2014 24 17 4298 4303 10.1016/j.bmcl.2014.07.023 25088397
    [Google Scholar]
  59. Pulit-Prociak J. Chwastowski J. Kucharski A. Banach M. Functionalization of textiles with silver and zinc oxide nanoparticles. Appl. Surf. Sci. 2016 385 543 553 10.1016/j.apsusc.2016.05.167
    [Google Scholar]
  60. Baker S. Rakshith D. Kavitha K.S. Santosh P. Kavitha H.U. Rao Y. Satish S. Plants: emerging as nanofactories towards facile route in synthesis of nanoparticles. Bioimpacts 2013 3 3 111 117 24163802
    [Google Scholar]
  61. Akhtar M.S. Panwar J. Yun Y.S. Biogenic synthesis of metallic nanoparticles by plant extracts. 2013 1 6 591 602 10.1021/sc300118u
  62. Natsuki J. Natsuki T. Hashimoto Y. A review of silver nanoparticles: synthesis methods, properties and applications. Int. J. Mater. Sci. Appl. 2015 4 5 325 332 10.11648/j.ijmsa.20150405.17
    [Google Scholar]
  63. Popescu M. Velea A. Lőrinczi A. Biogenic production of nanoparticles. Digest Journal of Nanomaterials, and Biostructures, 2010 4 1035 1040
    [Google Scholar]
  64. Abou El-Nour K.M.M. Eftaiha A. Al-Warthan A. Ammar R.A.A. Synthesis and applications of silver nanoparticles. Arab. J. Chem. 2010 3 3 135 140 10.1016/j.arabjc.2010.04.008
    [Google Scholar]
  65. Ajitha B. Kumar Reddy Y.A. Reddy P.S. Jeon H.J. Ahn C.W. Role of capping agents in controlling silver nanoparticles size, antibacterial activity and potential application as optical hydrogen peroxide sensor. RSC Advances 2016 6 42 36171 36179 10.1039/C6RA03766F
    [Google Scholar]
  66. Kiani Z. Mirjalili S. Heydaryan K. Mohammadparast P. Aramjoo H. Bahraini F. Harmonizing nature and nanotechnology: Phytoextract-mediated synthesis of Ag-doped ZnO nanoparticles using Lavandula stoechas extract for environmental and biomedical applications. J. Drug Deliv. Sci. Technol. 2024 96 105708 10.1016/j.jddst.2024.105708
    [Google Scholar]
  67. Anbuvannan M. Ramesh M. Viruthagiri G. Shanmugam N. Kannadasan N. Anisochilus carnosus leaf extract mediated synthesis of zinc oxide nanoparticles for antibacterial and photocatalytic activities. Mater. Sci. Semicond. Process. 2015 39 621 628 10.1016/j.mssp.2015.06.005
    [Google Scholar]
  68. Qu J. Yuan X. Wang X. Shao P. Zinc accumulation and synthesis of ZnO nanoparticles using Physalis alkekengi L. Environ. Pollut. 2011 159 7 1783 1788 10.1016/j.envpol.2011.04.016 21549461
    [Google Scholar]
  69. Heinlaan M. Ivask A. Blinova I. Dubourguier H.C. Kahru A. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 2008 71 7 1308 1316 10.1016/j.chemosphere.2007.11.047 18194809
    [Google Scholar]
  70. Waheed R. Hussain T. Ahmad K. Rashid Z. Raza H. Ahmad I. Deeba F. Arooj I. Green synthesis of zinc oxide nanoparticles using Bauhinia variegata leaf extract: antibacterial, antioxidant, and wound healing applications. Biomass Convers. Biorefin. 2025 1 3 10.1007/s13399‑025‑06872‑3
    [Google Scholar]
  71. Raja A. Ashokkumar S. Pavithra Marthandam R. Jayachandiran J. Khatiwada C.P. Kaviyarasu K. Ganapathi Raman R. Swaminathan M. Eco-friendly preparation of zinc oxide nanoparticles using tabernaemontana divaricata and its photocatalytic and antimicrobial activity. J. Photochem. Photobiol. B 2018 181 53 58 10.1016/j.jphotobiol.2018.02.011 29501725
    [Google Scholar]
  72. Santhoshkumar J. Kumar S.V. Rajeshkumar S. Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resource-Efficient Technologies 2017 3 4 459 465 10.1016/j.reffit.2017.05.001
    [Google Scholar]
  73. Pathak J. Bharatbhai Akhani S. Singh Rathore M. Structural and photoluminescence properties of green synthesized ZnO nanoparticles from Calotropis gigantea leaves. Mater. Today Proc. 2024 10.1016/j.matpr.2024.01.004
    [Google Scholar]
  74. Yadav A. Jangid N.K. Khan A.U. Biogenic synthesis of ZnO nanoparticles from Evolvulus alsinoides plant extract 2023 10 24 1 7 10.1007/s43994‑023‑00076‑z
  75. Chandrasekaran S. Anbazhagan V. Anusuya S. Green route synthesis of ZnO nanoparticles using Senna auriculata aqueous flower extract as reducing agent and evaluation of its antimicrobial, antidiabetic and cytotoxic activity. Appl. Biochem. Biotechnol. 2023 195 6 3840 3854 10.1007/s12010‑022‑03900‑0 35357663
    [Google Scholar]
  76. Sharma A. Nagraik R. Venkidasamy B. Khan A. Dulta K. Kumar Chauhan P. Kumar D. Shin D.S. In vitro antidiabetic, antioxidant, antimicrobial, and cytotoxic activity of Murraya koenigii leaf extract intercedes ZnO nanoparticles. Luminescence 2023 38 7 1139 1148 10.1002/bio.4244 35362206
    [Google Scholar]
  77. Rai M. Yadav A. Gade A. Current [corrected] trends in phytosynthesis of metal nanoparticles. Crit. Rev. Biotechnol. 2008 28 4 277 284 10.1080/07388550802368903 19051106
    [Google Scholar]
  78. Salih T.A. Hassan K.T. Majeed S.R. Ibraheem I.J. Hassan O.M. Obaid A.S. In vitro scolicidal activity of synthesised silver nanoparticles from aqueous plant extract against Echinococcus granulosus. Biotechnol. Rep. 2020 28 e00545 10.1016/j.btre.2020.e00545 33163372
    [Google Scholar]
  79. Nayak D. Pradhan S. Ashe S. Rauta P.R. Nayak B. Biologically synthesised silver nanoparticles from three diverse family of plant extracts and their anticancer activity against epidermoid A431 carcinoma. J. Colloid Interface Sci. 2015 457 329 338 10.1016/j.jcis.2015.07.012 26196716
    [Google Scholar]
  80. Yugandhar P. Haribabu R. Savithramma N. Synthesis, characterization and antimicrobial properties of green-synthesised silver nanoparticles from stem bark extract of Syzygium alternifolium (Wt.) Walp. 3 Biotech 2015 5 6 1031 1039 10.1007/s13205‑015‑0307‑4 28324410
  81. Sathishkumar P. Preethi J. Vijayan R. Mohd Yusoff A.R. Ameen F. Suresh S. Balagurunathan R. Palvannan T. Antiacne, anti-dandruff and anti-breast cancer efficacy of green synthesised silver nanoparticles using Coriandrum sativum leaf extract. J. Photochem. Photobiol. B 2016 163 69 76 10.1016/j.jphotobiol.2016.08.005 27541567
    [Google Scholar]
  82. Soman S. Ray J.G. Silver nanoparticles synthesized using aqueous leaf extract of Ziziphus oenoplia (L.) Mill: Characterization and assessment of antibacterial activity. J. Photochem. Photobiol. B 2016 163 391 402 10.1016/j.jphotobiol.2016.08.033 27619740
    [Google Scholar]
  83. Chai S.H. Wang Y. Qiao Y. Wang P. Li Q. Xia C. Ju M. Bio fabrication of silver nanoparticles as an effective wound healing agent in the wound care after anorectal surgery. J. Photochem. Photobiol. B 2018 178 457 462 10.1016/j.jphotobiol.2017.10.024 29223119
    [Google Scholar]
  84. Pasieczna-Patkowska S. Cichy M. Flieger J. Application of Fourier transform infrared (FTIR) spectroscopy in characterization of green synthesized nanoparticles. Molecules 2025 30 3 684 10.3390/molecules30030684 39942788
    [Google Scholar]
  85. Shahbazi M.A. Faghfouri L. Ferreira M.P.A. Figueiredo P. Maleki H. Sefat F. Hirvonen J. Santos H.A. The versatile biomedical applications of bismuth-based nanoparticles and composites: Therapeutic, diagnostic, biosensing, and regenerative properties. Chem. Soc. Rev. 2020 49 4 1253 1321 10.1039/C9CS00283A 31998912
    [Google Scholar]
  86. Bumataria R.K. Chavda N.K. Panchal H. Current research aspects in mono and hybrid nanofluid based heat pipe technologies. Heliyon 2019 5 5 e01627 10.1016/j.heliyon.2019.e01627 31193568
    [Google Scholar]
  87. Seyedmahmoudi S.H. Harper S.L. Weismiller M.C. Haapala K.R. Evaluating the use of zinc oxide and titanium dioxide nanoparticles in a metalworking fluid from a toxicological perspective. J. Nanopart. Res. 2015 17 2 104 10.1007/s11051‑015‑2915‑7
    [Google Scholar]
  88. Enhancement of thermal properties of fluids with dispersion of various types of hybrid/nanoparticles. J Phys Conf Ser. Rani, C.V.; Kumar, P., Eds.; J. Phys. Conf Ser 2021 1817 1 012023 10.1088/1742‑6596/1817/1/012023
    [Google Scholar]
  89. Khurshid F. Jeyavelan M. Hudson M.S.L. Nagarajan S. Agdoped ZnO nanorods embedded reduced graphene oxide nanocomposite for photo-electrochemical applications. R. Soc. Open Sci. 2019 6 2 181764 10.1098/rsos.181764 30891286
    [Google Scholar]
  90. Medina Cruz D. Mostafavi E. Vernet-Crua A. Barabadi H. Shah V. Cholula-Díaz J.L. Guisbiers G. Webster T.J. Green nanotechnology-based zinc oxide (ZnO) nanomaterials for biomedical applications: a review. Journal of, Physics: Materials, 2020 3 3 034005 10.1088/2515‑7639/ab8186
    [Google Scholar]
  91. Costa S.M. Ferreira D.P. Ferreira A. Vaz F. Fangueiro R. Multifunctional flax fibres based on the combined effect of silver and zinc oxide (Ag/ZnO) nanostructures. Nanomaterials 2018 8 12 1069 10.3390/nano8121069 30572578
    [Google Scholar]
  92. Rosenberg M. Visnapuu M. Vija H. Kisand V. Kasemets K. Kahru A. Ivask A. Selective antibiofilm properties and biocompatibility of nano-ZnO and nano-ZnO/Ag coated surfaces. Sci. Rep. 2020 10 1 13478 10.1038/s41598‑020‑70169‑w 32778787
    [Google Scholar]
  93. Issa B. Obaidat I. Albiss B. Haik Y. Magnetic nanoparticles: Surface effects and properties related to biomedicine applications. Int. J. Mol. Sci. 2013 14 11 21266 21305 10.3390/ijms141121266 24232575
    [Google Scholar]
  94. Kim K.M. Choi M.H. Lee J.K. Jeong J. Kim Y.R. Kim M.K. Paek S.M. Oh J.M. Physicochemical properties of surface charge-modified ZnO nanoparticles with different particle sizes. Int. J. Nanomedicine 2014 9 Suppl 2 41 56.(Suppl.2) 25565825
    [Google Scholar]
  95. Singh J. Dutta T. Kim K.H. Rawat M. Samddar P. Kumar P. ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J. Nanobiotechnology 2018 16 1 84 10.1186/s12951‑018‑0408‑4 30373622
    [Google Scholar]
  96. Faisal S. Jan H. Shah S.A. Shah S. Khan A. Akbar M.T. Rizwan M. Jan F. Wajidullah; Akhtar, N.; Khattak, A.; Syed, S. Green synthesis of zinc oxide (ZnO) nanoparticles using aqueous fruit extracts of Myristica fragrans: their characterizations and biological and environmental applications. ACS Omega 2021 6 14 9709 9722 10.1021/acsomega.1c00310 33869951
    [Google Scholar]
  97. El-Nahhal I.M. Salem J. Anbar R. Kodeh F.S. Elmanama A. Preparation and antimicrobial activity of ZnO-NPs coated cotton/starch and their functionalized ZnO-Ag/cotton and Zn(II) curcumin/cotton materials. Sci. Rep. 2020 10 1 5410 10.1038/s41598‑020‑61306‑6 32214118
    [Google Scholar]
  98. Moroz A. Electron mean-free path in metal-coated nanowires. J. Opt. Soc. Am. B 2011 28 5 1130 1138 10.1364/JOSAB.28.001130
    [Google Scholar]
  99. Sim S. Wong N. Nanotechnology and its use in imaging and drug delivery. (Review) Biomed. Rep. 2021 14 5 42 10.3892/br.2021.1418 33728048
    [Google Scholar]
  100. Jabeen I. Rashid Z. Waheed R. Zafar S. Ahmad K. Arooj I. Aleem A. Batool S. Islam N. Ahmad I. Deeba F. Green synthesis and biological applications of Peganum harmala mediated copper oxide nanoparticles. J. Mol. Struct. 2025 1325 140838 10.1016/j.molstruc.2024.140838
    [Google Scholar]
  101. Liu R. Luo C. Pang Z. Zhang J. Ruan S. Wu M. Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment. Acta Pharm. Sin. B 2023 34 2 107518
    [Google Scholar]
  102. Beach M.A. Nayanathara U. Gao Y. Zhang C. Xiong Y. Wang Y. Such G.K. Polymeric nanoparticles for drug delivery. Chem. Rev. 2024 124 9 5505 5616 10.1021/acs.chemrev.3c00705 38626459
    [Google Scholar]
  103. Patel D.K. Rana D. Aswal V.K. Srivastava S. Roy P. Maiti P. Influence of graphene on self-assembly of polyurethane and evaluation of its biomedical properties. Polymer (Guildf.) 2015 65 183 192 10.1016/j.polymer.2015.03.076
    [Google Scholar]
  104. Ehsan M. Waheed A. Ullah A. Kazmi A. Ali A. Raja NI. Plantbased bimetallic silver-zinc oxide nanoparticles: A comprehensive perspective of synthesis, biomedical applications, and future trends. Biomed Res. Int. 2022 10.1155/2022/1215183
    [Google Scholar]
  105. Küp F.Ö. Çoşkunçay S. Duman F. Biosynthesis of silver nanoparticles using leaf extract of Aesculus hippocastanum (horse chestnut): Evaluation of their antibacterial, antioxidant and drug release system activities. Mater. Sci. Eng. C 2020 107 110207 10.1016/j.msec.2019.110207 31761206
    [Google Scholar]
  106. Fahimmunisha B.A. Ishwarya R. AlSalhi M.S. Devanesan S. Govindarajan M. Vaseeharan B. Green fabrication, characterization and antibacterial potential of zinc oxide nanoparticles using Aloe socotrina leaf extract: A novel drug delivery approach. J. Drug Deliv. Sci. Technol. 2020 55 101465 10.1016/j.jddst.2019.101465
    [Google Scholar]
  107. Simon S. Sibuyi N.R.S. Fadaka A.O. Meyer S. Josephs J. Onani M.O. Meyer M. Madiehe A.M. Biomedical applications of plant extract-synthesized silver nanoparticles. Biomedicines 2022 10 11 2792 10.3390/biomedicines10112792 36359308
    [Google Scholar]
  108. Tyavambiza C. Dube P. Goboza M. Meyer S. Madiehe A.M. Meyer M. Wound healing activities and potential of selected African medicinal plants and their synthesized biogenic nanoparticles. Plants 2021 10 12 2635 10.3390/plants10122635 34961106
    [Google Scholar]
  109. Lopez-Miranda J.L. Molina G.A. González-Reyna M.A. España-Sánchez B.L. Esparza R. Silva R. Estévez M. Antibacterial and anti-inflammatory properties of ZnO nanoparticles synthesized by a green method using Sargassum extracts. Int. J. Mol. Sci. 2023 24 2 1474 10.3390/ijms24021474 36674991
    [Google Scholar]
  110. Tyavambiza C. Elbagory A.M. Madiehe A.M. Meyer M. Meyer S. The antimicrobial and anti-inflammatory effects of silver nanoparticles synthesised from Cotyledon orbiculata aqueous extract. Nanomaterials 2021 11 5 1343 10.3390/nano11051343 34065254
    [Google Scholar]
  111. Hussien N. Khalil M. Schagerl M. Ali S. Green Synthesis of Zinc Oxide Nanoparticles as a Promising Nanomedicine Approach for Anticancer, Antibacterial, and Anti-Inflammatory Therapies. Int. J. Nanomedicine 2025 20 4299 4317 10.2147/IJN.S507214 40225223
    [Google Scholar]
  112. Jalil P.J. Mhamedsharif R.M. Shnawa B.H. Hamad S.M. Aspoukeh P. Ahmed M.H. Comparative assessment of Anti-inflammatory and catalytic properties of chemically synthesised and green-synthesised silver nanoparticles from Ziziphus spina-christi leaf extract. Toxicol. Environ. Health Sci. 2025 17 1 95 113 10.1007/s13530‑025‑00252‑0
    [Google Scholar]
  113. Nguyen H.P.U. Dai H.V.H. Luong A.H. Lin W.C. Biosynthesis of Silver and Zinc Oxide Nanoparticles Using Platostoma palustre Aqueous Extract for Biomedical Applications. IEEE Trans Nanobiosci 2025 1 10.1109/TNB.2025.3563382 40272960
    [Google Scholar]
  114. Hano C. Abbasi B.H. Plant-based green synthesis of nanoparticles: Production, characterization and applications. Biomolecules 2021 12 1 31 10.3390/biom12010031 35053179
    [Google Scholar]
  115. Bi C. Li J. Peng L. Zhang J. Biofabrication of zinc oxide nanoparticles and their in-vitro cytotoxicity towards gastric cancer (MGC803) cell. Biomed. Res. (Aligarh) 2017 28 2065 2069
    [Google Scholar]
  116. Prasad K.S. Prasad S.K. Ansari M.A. Alzohairy M.A. Alomary M.N. AlYahya S. Srinivasa C. Murali M. Ankegowda V.M. Shivamallu C. Tumoricidal and bactericidal properties of ZnONPs synthesized using Cassia auriculata leaf extract. Biomolecules 2020 10 7 982 10.3390/biom10070982 32630019
    [Google Scholar]
  117. Zhang D. Ma X. Gu Y. Huang H. Zhang G. Green synthesis of metallic nanoparticles and their potential applications to treat cancer. Front Chem. 2020 8 799 10.3389/fchem.2020.00799 33195027
    [Google Scholar]
  118. Perveen K. Husain F.M. Qais F.A. Khan A. Razak S. Afsar T. Alam P. Almajwal A.M. Abulmeaty M.M.A. Microwave-assisted rapid green synthesis of gold nanoparticles using seed extract of Trachyspermum ammi: ROS mediated biofilm inhibition and anticancer activity. Biomolecules 2021 11 2 197 10.3390/biom11020197 33573343
    [Google Scholar]
  119. Sharifi-Rad M. Elshafie H.S. Pohl P. Green synthesis of silver nanoparticles (AgNPs) by Lallemantia royleana leaf Extract: Their Bio-Pharmaceutical and catalytic properties. J. Photochem. Photobiol. Chem. 2024 448 115318 10.1016/j.jphotochem.2023.115318
    [Google Scholar]
  120. Al-Sheddi E.S. Alsohaibani N. Bin Rshoud N. Al-Oqail M.M. Al-Massarani S.M. Farshori N.N. Anticancer efficacy of green synthesized silver nanoparticles from Artemisia monosperma against human breast cancer cells. Saudi J. Biol. Sci. 2023 160 123 131
    [Google Scholar]
  121. Sharma D. Ledwani L. Bhatnagar N. Antimicrobial and cytotoxic potential of silver nanoparticles synthesized using Rheum emodi roots extract. Nano Future Chem. 2015 24 2 121
    [Google Scholar]
  122. Jeyaraj M. Sathishkumar G. Sivanandhan G. MubarakAli, D.; Rajesh, M.; Arun, R.; Kapildev, G.; Manickavasagam, M.; Thajuddin, N.; Premkumar, K.; Ganapathi, A. Biogenic silver nanoparticles for cancer treatment: An experimental report. Colloids Surf. B Biointerfaces 2013 106 86 92 10.1016/j.colsurfb.2013.01.027 23434696
    [Google Scholar]
  123. Prasad K.S. Prasad S.K. Veerapur R. Lamraoui G. Prasad A. Prasad M.N.N. Singh S.K. Marraiki N. Syed A. Shivamallu C. Antitumor potential of green synthesized ZnONPs using root extract of Withania somnifera against human breast cancer cell line. Separations 2021 8 1 8 10.3390/separations8010008
    [Google Scholar]
  124. Manikandan R. Manikandan B. Raman T. Arunagirinathan K. Prabhu N.M. Jothi Basu M. Perumal M. Palanisamy S. Munusamy A. Biosynthesis of silver nanoparticles using ethanolic petals extract of Rosa indica and characterization of its antibacterial, anticancer and anti-inflammatory activities. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015 138 120 129 10.1016/j.saa.2014.10.043 25481491
    [Google Scholar]
  125. Mata R. Reddy Nakkala J. Rani Sadras S. Catalytic and biological activities of green silver nanoparticles synthesized from Plumeria alba (frangipani) flower extract. Mater. Sci. Eng. C 2015 51 216 225 10.1016/j.msec.2015.02.053 25842128
    [Google Scholar]
  126. He Y. Du Z. Ma S. Liu Y. Li D. Huang H. Jiang S. Cheng S. Wu W. Zhang K. Zheng X. Effects of green-synthesized silver nanoparticles on lung cancer cells in vitro and grown as xenograft tumors in vivo. Int. J. Nanomedicine 2016 11 1879 1887 10.2147/IJN.S103695 27217750
    [Google Scholar]
  127. Priyadharshini R.I. Prasannaraj G. Geetha N. Venkatachalam P. Microwave-mediated extracellular synthesis of metallic silver and zinc oxide nanoparticles using macro-algae (Gracilaria edulis) extracts and its anticancer activity against human PC3 cell lines. Appl. Biochem. Biotechnol. 2014 174 8 2777 2790 10.1007/s12010‑014‑1225‑3 25380639
    [Google Scholar]
  128. Venkatesan B. Subramanian V. Tumala A. Vellaichamy E. Rapid synthesis of biocompatible silver nanoparticles using aqueous extract of Rosa damascena petals and evaluation of their anticancer activity. Asian Pac. J. Trop. Med. 2014 7 S294 S300.(Suppl.) 10.1016/S1995‑7645(14)60249‑2 25312140
    [Google Scholar]
  129. Rajeshkumar S. Kumar S.V. Ramaiah A. Agarwal H. Lakshmi T. Roopan S.M. Biosynthesis of zinc oxide nanoparticles usingMangifera indica leaves and evaluation of their antioxidant and cytotoxic properties in lung cancer (A549) cells. Enzyme Microb. Technol. 2018 117 91 95 10.1016/j.enzmictec.2018.06.009 30037558
    [Google Scholar]
  130. Umamaheswari A. Prabu S.L. John S.A. Puratchikody A. Green synthesis of zinc oxide nanoparticles using leaf extracts of Raphanus sativus var. Longipinnatus and evaluation of their anticancer property in A549 cell lines. Biotechnol. Rep. (Amst.) 2021 29 e00595 10.1016/j.btre.2021.e00595 33659193
    [Google Scholar]
  131. Kanipandian N. Thirumurugan R. A feasible approach to phyto-mediated synthesis of silver nanoparticles using industrial crop Gossypium hirsutum (cotton) extract and assessment of its in vitro biomedical potential. Ind. Crops Prod. 2014 55 1 10 10.1016/j.indcrop.2014.01.042
    [Google Scholar]
  132. Abbasi B.A. Iqbal J. Ahmad R. Zia L. Kanwal S. Mahmood T. Bioactivities of Geranium wallichianum leaf extracts conjugated with zinc oxide nanoparticles. Nanomaterials 2019 10 1 38 31877925
    [Google Scholar]
  133. Saleem K. Khursheed Z. Hano C. Anjum I. Anjum S. Applications of nanomaterials in leishmaniasis: A focus on recent advances and challenges. Nanomaterials 2019 9 12 1749 10.3390/nano9121749 31818029
    [Google Scholar]
  134. Silva Viana R.L. Pereira Fidelis G. Jane Campos Medeiros M. Antonio Morgano M. Gabriela Chagas Faustino Alves M. Domingues Passero L.F. Lima Pontes D. Cordeiro Theodoro R. Domingos Arantes T. Araujo Sabry D. Lanzi Sassaki G. Fagundes Melo-Silveira R. Rocha H.A.O. Green synthesis of antileishmanial and antifungal silver nanoparticles using corn cob xylan. Biomolecules 2020 10 9 1235 10.3390/biom10091235 32854282
    [Google Scholar]
  135. Awad M.A. Al Olayan E.M. Siddiqui M.I. Merghani N.M. Alsaif S.S.A. Aloufi A.S. Antileishmanial effect of silver nanoparticles: Green synthesis, characterization, in vivo and in vitro assessment. Biomed. Pharmacother. 2021 137 111294 10.1016/j.biopha.2021.111294 33571836
    [Google Scholar]
  136. Ahmad A. Wei Y. Syed F. Khan S. Khan G.M. Tahir K. Khan A.U. Raza M. Khan F.U. Yuan Q. Isatis tinctoria mediated synthesis of amphotericin B-bound silver nanoparticles with enhanced photoinduced antileishmanial activity: A novel green approach. J. Photochem. Photobiol. B 2016 161 17 24 10.1016/j.jphotobiol.2016.05.003 27203567
    [Google Scholar]
  137. Hashemi Z. Mohammadyan M. Naderi S. Fakhar M. Biparva P. Akhtari J. Green synthesis of silver nanoparticles using Ferula persica extract (Fp-NPs): Characterization, antibacterial, antileishmanial, and in vitro anticancer activities. J. Photochem. Photobiol. B 2021 27 102264
    [Google Scholar]
  138. Sharifi F. Sharififar F. Soltanian S. Doostmohammadi M. Mohamadi N. Synthesis of silver nanoparticles using Salvia officinalis extract: Structural characterization, cytotoxicity, antileishmanial and antimicrobial activity. Nanomed Res. J. 2020 5 4 339 346
    [Google Scholar]
  139. Khatami M. Alijani H.Q. Heli H. Sharifi I. Rectangular shaped zinc oxide nanoparticles: Green synthesis by Stevia and its biomedical efficiency. Ceram. Int. 2018 44 13 15596 15602 10.1016/j.ceramint.2018.05.224
    [Google Scholar]
  140. Comparative antileishmanial efficacy of biosynthesised ZnO NPs from genus Verbena. Int. Nano Lett. 2018 12 8 1067 1073
    [Google Scholar]
  141. Sánchez-López E. Gomes D. Esteruelas G. Bonilla L. Lopez-Machado A.L. Galindo R. Cano A. Espina M. Ettcheto M. Camins A. Silva A.M. Durazzo A. Santini A. Garcia M.L. Souto E.B. Metal-based nanoparticles as antimicrobial agents: an overview. Nanomaterials 2020 10 2 292 10.3390/nano10020292 32050443
    [Google Scholar]
  142. Noohpisheh Z. Amiri H. Farhadi S. Mohammadi-gholami A. Green synthesis of Ag-ZnO nanocomposites using Trigonella foenum-graecum leaf extract and their antibacterial, antifungal, antioxidant and photocatalytic properties. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020 240 118595 10.1016/j.saa.2020.118595 32599480
    [Google Scholar]
  143. Abdelbaky A.S. Mohamed A.M.H.A. Sharaky M. Mohamed N.A. Diab Y.M. Green approach for the synthesis of ZnO nanoparticles using Cymbopogon citratus aqueous leaf extract: characterization and evaluation of their biological activities. Chem. Biol. Technol. Agric. 2023 10 1 63 10.1186/s40538‑023‑00432‑5
    [Google Scholar]
  144. Sivasankarapillai V.S. Krishnamoorthy N. Eldesoky G.E. Wabaidur S.M. Islam M.A. Dhanusuraman R. One-pot green synthesis of ZnO nanoparticles using Scoparia dulcis plant extract for antimicrobial and antioxidant activities. Nanomaterials 2023 13 9 6093 6103
    [Google Scholar]
  145. Ansar S. Tabassum H. Aladwan N.S.M. Naiman Ali M. Almaarik B. AlMahrouqi S. Abudawood M. Banu N. Alsubki R. Eco friendly silver nanoparticles synthesis by Brassica oleracea and its antibacterial, anticancer and antioxidant properties. Sci. Rep. 2020 10 1 18564 10.1038/s41598‑020‑74371‑8 33122798
    [Google Scholar]
  146. Alam K. Din I.U. Tariq S. Hayat K. Khan F.U. Khan M. Mohamed H.I. Green Synthesis and Characterization of Zinc Oxide Nanoparticles Biosynthesized from Butea monosperma Flowers and Glycyrrhiza glabra Roots and their Antioxidant and Antibacterial Properties. Appl. Biochem. Biotechnol. 2025 197 3 1630 1649 10.1007/s12010‑024‑05102‑2 39601975
    [Google Scholar]
  147. Singh R. Hano C. Nath G. Sharma B. Green biosynthesis of silver nanoparticles using leaf extract of Carissa carandas L. and their antioxidant and antimicrobial activity against human pathogenic bacteria. Biomolecules 2021 11 2 299 10.3390/biom11020299 33671333
    [Google Scholar]
  148. Andleeb A. Andleeb A. Asghar S. Zaman G. Tariq M. Mehmood A. Nadeem M. Hano C. Lorenzo J.M. Abbasi B.H. A systematic review of biosynthesized metallic nanoparticles as a promising anti-cancer-strategy. Cancers 2021 13 11 2818 10.3390/cancers13112818 34198769
    [Google Scholar]
  149. Doğan S.Ş. Kocabaş A. Green synthesis of ZnO nanoparticles with Veronica multifida and their antibiofilm activity. Hum. Exp. Toxicol. 2020 39 3 319 327 10.1177/0960327119888270 31726879
    [Google Scholar]
  150. Verma D.K. Hasan S.H. Banik R.M. Photo-catalyzed and phyto-mediated rapid green synthesis of silver nanoparticles using herbal extract of Salvinia molesta and its antimicrobial efficacy. J. Photochem. Photobiol. B 2016 155 51 59 10.1016/j.jphotobiol.2015.12.008 26735000
    [Google Scholar]
  151. Vijayakumar S. Malaikozhundan B. Saravanakumar K. Durán-Lara E.F. Wang M.H. Vaseeharan B. Garlic clove extract assisted silver nanoparticle – Antibacterial, antibiofilm, antihelminthic, anti-inflammatory, anticancer and ecotoxicity assessment. J. Photochem. Photobiol. B 2019 198 111558 10.1016/j.jphotobiol.2019.111558 31357173
    [Google Scholar]
  152. Bharadwaj K.K. Rabha B. Pati S. Choudhury B.K. Sarkar T. Gogoi S.K. Green synthesis of silver nanoparticles using Diospyros malabarica fruit extract and assessments of their antimicrobial, anticancer and catalytic reduction of 4-nitrophenol (4-NP). Nanomaterials 2021 11 8 1999 10.3390/nano11081999 34443829 PMC8401075
    [Google Scholar]
  153. Christian L.M. Graham J.E. Padgett D.A. Glaser R. Kiecolt-Glaser J.K. Stress and wound healing. Neuroimmunomodulation 2006 13 5-6 337 346 10.1159/000104862 17709956
    [Google Scholar]
  154. Karodi R. Jadhav M. Rub R. Bafna A. Evaluation of the wound healing activity of a crude extract of Rubia cordifolia L.(Indian madder) in mice. Int. J. Appl. Res. Nat. Prod. 2009 2 2 12 18
    [Google Scholar]
  155. Peña O.A. Martin P. Cellular and molecular mechanisms of skin wound healing. Nat. Rev. Mol. Cell Biol. 2024 25 8 599 616 10.1038/s41580‑024‑00715‑1 38528155
    [Google Scholar]
  156. Schreml S. Szeimies R.M. Prantl L. Landthaler M. Babilas P. Wound healing in the 21st century. J. Am. Acad. Dermatol. 2010 63 5 866 881 10.1016/j.jaad.2009.10.048 20576319
    [Google Scholar]
  157. Wang Z. Zhao F. Xu C. Zhang Q. Ren H. Huang X. He C. Ma J. Wang Z. Metabolic reprogramming in skin wound healing. Burns Trauma 2024 12 tkad047 10.1093/burnst/tkad047 38179472
    [Google Scholar]
  158. Rayyif S.M.I. Mohammed H.B. Curuțiu C. Bîrcă A.C. Grumezescu A.M. Vasile B.Ș. Dițu L.M. Lazăr V. Chifiriuc M.C. Mihăescu G. Holban A.M. ZnO nanoparticles-modified dressings to inhibit wound pathogens. Materials (Basel) 2021 14 11 3084 10.3390/ma14113084 34200053
    [Google Scholar]
  159. Iqbal Y. Raouf Malik A. Iqbal T. Hammad Aziz M. Ahmed F. Abolaban F.A. Mansoor Ali S. Ullah H. Green synthesis of ZnO and Ag-doped ZnO nanoparticles using Azadirachta indica leaves: Characterization and their potential antibacterial, antidiabetic, and wound-healing activities. Mater. Lett. 2021 305 130671 10.1016/j.matlet.2021.130671
    [Google Scholar]
  160. Metwally A.A. Abdel-Hady A.N.A.A. Haridy M.A.M. Ebnalwaled K. Saied A.A. Soliman A.S. Wound healing properties of green (using Lawsonia inermis leaf extract) and chemically synthesized ZnO nanoparticles in albino rats. Environ. Sci. Pollut. Res. Int. 2022 29 16 23975 23987 10.1007/s11356‑021‑17670‑5 34820756
    [Google Scholar]
  161. Jamil M. Latif N. Ramzan H. Elahi M.E. Khan A. Khan M.A. Hassan S.I. Jelani G. Khalid M. The authenticity of honey (Apis mellifera) playing vital role in wound healing. 2021 9 2 59 65 10.18782/2582‑2845.8621
  162. Abbas M. Mumtaz A. Mohammed O.A. Zafar K. Ahmed I. Iqbal M.T. Iqbal M. Nazir A. Eleragi A.M.S. Saleh L.A. Attia M.A. Bahashwan E. AlQahtani A.E.A.J. Khan S.M. El-Dakroury W.A. Doghish A.S. Green-synthesized ZnO nanoparticles using methanolic extract of moringa oleifera leaves: Characterization and evaluation of wound healing efficacy. J. Pharm. Innov. 2025 20 4 112 10.1007/s12247‑025‑10012‑9
    [Google Scholar]
  163. Aydin Acar C. Gencer M.A. Pehlivanoglu S. Yesilot S. Donmez S. Green and eco‐friendly biosynthesis of zinc oxide nanoparticles using Calendula officinalis flower extract: Wound healing potential and antioxidant activity. Int. Wound J. 2024 21 1 e14413 10.1111/iwj.14413 37722846
    [Google Scholar]
  164. Dhapte V. Kadam S. Moghe A. Pokharkar V. Probing the wound healing potential of biogenic silver nanoparticles. J. Wound. Care 2014 23 9 431 441, 434, 436 passim 10.12968/jowc.2014.23.9.431 25284295
    [Google Scholar]
  165. Chen H. Yada R. Nanotechnologies in agriculture: New tools for sustainable development. Trends Food Sci. Technol. 2011 22 11 585 594 10.1016/j.tifs.2011.09.004
    [Google Scholar]
  166. Prasad T.N.V.K.V. Sudhakar P. Sreenivasulu Y. Latha P. Munaswamy V. Reddy K.R. Sreeprasad T.S. Sajanlal P.R. Pradeep T. Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J. Plant Nutr. 2012 35 6 905 927 10.1080/01904167.2012.663443
    [Google Scholar]
  167. Lin D. Xing B. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environ. Pollut. 2007 150 2 243 250 10.1016/j.envpol.2007.01.016 17374428
    [Google Scholar]
  168. Nekrasova G.F. Ushakova O.S. Ermakov A.E. Uimin M.A. Byzov I.V. Effects of copper(II) ions and copper oxide nanoparticles on Elodea densa Planch. Russ. J. Ecol. 2011 42 6 458 463 10.1134/S1067413611060117
    [Google Scholar]
  169. Liu X. Feng Z. Zhang F. Zhang S. He X. ZHANG SQ. Preparation and testing of cementing and coating nano-subnanocomposites of slow/controlled-release fertilizer. Agric. Sci. China 2006 5 9 700 706 10.1016/S1671‑2927(06)60113‑2
    [Google Scholar]
  170. Adhikari T. Kundu S. Biswas A.K. Tarafdar J.C. Subba Rao A. Characterization of zinc oxide nanoparticles and their effect on growth of maize (Zea mays L.) plant. J. Plant Nutr. 2015 38 10 1505 1515 10.1080/01904167.2014.992536
    [Google Scholar]
  171. Delfani M. Baradarn Firouzabadi M. Farrokhi N. Makarian H. Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Commun. Soil Sci. Plant Anal. 2014 45 4 530 540 10.1080/00103624.2013.863911
    [Google Scholar]
  172. Selivanov V. Zorin E. Sustained action of ultrafine metal powders on seeds of grain crops. Phys. Metall 2001 4 66 69
    [Google Scholar]
  173. Raikova O. Panichkin L. Raikova N. Studies on the effect of ultrafine metal powders produced by different methods on plant growth and development. Proc Int. Sci. Pract Conf Nanotechnol. Inf Technol 21st Century 2006
    [Google Scholar]
  174. Dimkpa C.O. Bindraban P.S. Nanofertilizers: New products for the industry? J. Agric. Food Chem. 2018 66 26 6462 6473 10.1021/acs.jafc.7b02150 28535672
    [Google Scholar]
  175. Sabir S. Arshad M. Chaudhari S.K. Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. ScientificWorldJournal 2014 2014 1 8 10.1155/2014/925494 25436235
    [Google Scholar]
  176. Hossain A. Abdallah Y. Ali M.A. Masum M.M.I. Li B. Sun G. Meng Y. Wang Y. An Q. Lemon-fruit-based green synthesis of zinc oxide nanoparticles and titanium dioxide nanoparticles against soft rot bacterial pathogen Dickeya dadantii. Biomolecules 2019 9 12 863 10.3390/biom9120863 31835898
    [Google Scholar]
  177. Ahmad H. Venugopal K. Rajagopal K. De Britto S. Nandini B. Pushpalatha H.G. Konappa N. Udayashankar A.C. Geetha N. Jogaiah S. Green synthesis and characterization of zinc oxide nanoparticles using Eucalyptus globules and their fungicidal ability against pathogenic fungi of apple orchards. Biomolecules 2020 10 3 425 10.3390/biom10030425 32182874
    [Google Scholar]
  178. Holden P.A. Schimel J.P. Godwin H.A. Five reasons to use bacteria when assessing manufactured nanomaterial environmental hazards and fates. Curr. Opin. Biotechnol. 2014 27 73 78 10.1016/j.copbio.2013.11.008 24863899
    [Google Scholar]
  179. Nowack B. Bucheli T.D. Occurrence, behavior and effects of nanoparticles in the environment. Environ. Pollut. 2007 150 1 5 22 10.1016/j.envpol.2007.06.006 17658673
    [Google Scholar]
  180. Chen S. Yan X. Peralta-Videa J.R. Su Z. Hong J. Zhao L. Biological effects of AgNPs on crop plants: Environmental implications and agriculture applications. Environ. Sci. Nano 2022
    [Google Scholar]
  181. Ding Y. Wang Q. Zhu G. Zhang P. Rui Y. Application and perspectives of nanopesticides in agriculture. J. Nanopart. Res. 2023 25 8 159 10.1007/s11051‑023‑05811‑5
    [Google Scholar]
  182. Chhipa H. Nanofertilizers and nanopesticides for agriculture. Environ. Chem. Lett. 2017 15 1 15 22 10.1007/s10311‑016‑0600‑4
    [Google Scholar]
  183. Kannan M. Bojan N. Swaminathan J. Zicarelli G. Hemalatha D. Zhang Y. Ramesh M. Faggio C. Nanopesticides in agricultural pest management and their environmental risks: A review. Int. J. Environ. Sci. Technol. 2023 20 9 10507 10532 10.1007/s13762‑023‑04795‑y
    [Google Scholar]
  184. Babu S. Singh R. Yadav D. Rathore S.S. Raj R. Avasthe R. Yadav S.K. Das A. Yadav V. Yadav B. Shekhawat K. Upadhyay P.K. Yadav D.K. Singh V.K. Nanofertilizers for agricultural and environmental sustainability. Chemosphere 2022 292 133451 10.1016/j.chemosphere.2021.133451 34973251
    [Google Scholar]
  185. Mathur S. Pareek, S Nanofertilizers for Development of Sustainable Agriculture. Communications in Soil Science and Plant. Analysis, 2022 53 16
    [Google Scholar]
  186. Keerthana P. Vijayakumar S. Vidhya E. Punitha V. Nilavukkarasi M. Praseetha, PJIC Biogenesis of ZnO nanoparticles for revolutionizing agriculture: A step towards anti-infection and growth promotion in plants. Chemosphere 2021 170 113762
    [Google Scholar]
  187. Kalaivani, M Green synthesis of ZnO NPs and CdO-ZnO nanocomposites using aqueous extract of water hyacinth (Eichhornia crassipes): Characterization, structural and nano-fertilizer application. Indian J. Sci. Technol. 2023 16 25 1918 1926 10.17485/ijst/v16i25.180
    [Google Scholar]
  188. Khan BA Nadeem MA Najeeb Alawadi HF Ayub MA Mahmood A Abbas T An overview of the role of nanoherbicides in tackling challenges of weed management in wheat: a novel approach. De Gruyter De 2024 13 1 10.1515/gps‑2024‑0021
    [Google Scholar]
  189. Johnson MS. Sajeev S. Nair, RS Role of Nanosensors in agriculture. 2021 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE) 2021 10.1109/ICCIKE51210.2021.9410709
    [Google Scholar]
  190. Séby F. Metal and metal oxide nanoparticles in cosmetics and skin care products. Comprehensive Analytical Chemistry. Elsevier 2021 Vol. 93 381 427
    [Google Scholar]
  191. Raj S. Jose S. Sumod U.S. Sabitha M. Nanotechnology in cosmetics: Opportunities and challenges. J. Pharm. Bioallied Sci. 2012 4 3 186 193 10.4103/0975‑7406.99016 22923959
    [Google Scholar]
  192. Wu X. Guy R.H. Applications of nanoparticles in topical drug delivery and in cosmetics. J. Drug Deliv. Sci. Technol. 2009 19 6 371 384 10.1016/S1773‑2247(09)50080‑9
    [Google Scholar]
  193. Jain J. Arora S. Rajwade J.M. Omray P. Khandelwal S. Paknikar K.M. Silver nanoparticles in therapeutics: Development of an antimicrobial gel formulation for topical use. Mol. Pharm. 2009 6 5 1388 1401 10.1021/mp900056g 19473014
    [Google Scholar]
  194. Gleiche M. Hoffschulz H. Lenhert S. Nanoforum report: nanotechnology in consumer products. Nanotechnol Online 2006 3
    [Google Scholar]
  195. Prabhu S. Poulose E.K. Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett. 2012 2 1 32 10.1186/2228‑5326‑2‑32
    [Google Scholar]
  196. Lohani A. Verma A. Joshi H. Yadav N. Karki N. Nanotechnology-Based Cosmeceuticals. ISRN Dermatol. 2014 2014 1 14 10.1155/2014/843687 24963412
    [Google Scholar]
  197. Qidwai A. Kumar R. Dikshit A. Green synthesis of silver nanoparticles by seed of Phoenix sylvestris L. and their role in the management of cosmetics embarrassment. Green Chem. Lett. Rev. 2018 11 2 176 188 10.1080/17518253.2018.1445301
    [Google Scholar]
  198. Shamaila S. Jalil A. Ishfaq M. Sharif R. Nano-technological aspects of zinc oxide and silver in cosmetics. J. Appl. Phys. 2022 131 16 164306 10.1063/5.0088069
    [Google Scholar]
  199. Xi J. Kan W. Zhu Y. Huang S. Wu L. Wang J. Synthesis of silver nanoparticles using Eucommia ulmoides extract and their potential biological function in cosmetics. Heliyon 2022 8 8 e10021 10.1016/j.heliyon.2022.e10021 35942280
    [Google Scholar]
  200. Simbine E.O. Rodrigues L.C. Lapa-Guimarães J. Kamimura E.S. Corassin C.H. Oliveira C.A.F. Application of silver nanoparticles in food packages: A review. Food. Sci. Technol 2019 39 4 793 802 10.1590/fst.36318
    [Google Scholar]
  201. Weir A. Westerhoff P. Fabricius L. Hristovski K. von Goetz N. Titanium dioxide nanoparticles in food and personal care products. Environ. Sci. Technol. 2012 46 4 2242 2250 10.1021/es204168d 22260395
    [Google Scholar]
  202. Predicala B. Nanotechnology: Potential for agriculture. Saskatoon, SK Prairie Swine Centre Inc, University of Saskatchewan 2009 123 134
    [Google Scholar]
  203. Zare M. Namratha K. Ilyas S. Sultana A. Hezam A. Surmeneva M.A. Emerging trends for ZnO nanoparticles and their applications in food packaging. J. Mater. Chem. B Mater. Biol. Med. 2022 2 5 763 781
    [Google Scholar]
  204. Espitia P.J.P. Soares N.F.F. Coimbra J.S.R. de Andrade N.J. Cruz R.S. Medeiros E.A.A. Soares NdFF, Coimbra JSdR, de Andrade NJ, Cruz RS, Medeiros EAA. Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol. 2012 5 5 1447 1464 10.1007/s11947‑012‑0797‑6
    [Google Scholar]
  205. Elmer W.H. White J.C. The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium. Environ. Sci. Nano 2016 3 5 1072 1079 10.1039/C6EN00146G
    [Google Scholar]
  206. Chaudhary P. Fatima F. Kumar A. Relevance of nanomaterials in food packaging and its advanced future prospects. J. Inorg. Organomet. Polym. Mater. 2020 30 12 5180 5192 10.1007/s10904‑020‑01674‑8 32837459
    [Google Scholar]
  207. Shahid M. Khalid S. Natasha N. Tariq T.Z. Alothman Z.A. Al-Kahtani A.A. Spatial distribution and accumulation of arsenic in biological samples and associated health risks by drinking groundwater in Bahawalnagar. Pakistan 2023 103397 10.1016/j.pce.2023.103397
    [Google Scholar]
  208. Kumari P. Alam M. Siddiqi W.A. Usage of nanoparticles as adsorbents for waste water treatment: An emerging trend. Sustainable Materials and Technologies 2019 22 e00128 10.1016/j.susmat.2019.e00128
    [Google Scholar]
  209. Prathna T. Sharma S.K. Kennedy M.J. Nanoparticles in household level water treatment: An overview. Process Saf. Environ. Prot. 2018 199 260 270
    [Google Scholar]
  210. Mwakabona H.T. Ndé-Tchoupé A.I. Njau K.N. Noubactep C. Wydra K.D. Metallic iron for safe drinking water provision: Considering a lost knowledge. Water Res. 2017 117 127 142 10.1016/j.watres.2017.03.001 28390234
    [Google Scholar]
  211. Chubar N. New inorganic (an)ion exchangers based on Mg–Al hydrous oxides: (Alkoxide-free) sol–gel synthesis and characterisation. J. Colloid Interface Sci. 2011 357 1 198 209 10.1016/j.jcis.2011.01.098 21345442
    [Google Scholar]
  212. Behbahani M. Moghaddam M.R.A. Arami M. Techno-economical evaluation of fluoride removal by electrocoagulation process: Optimization through response surface methodology. Desalination 2011 271 1-3 209 218 10.1016/j.desal.2010.12.033
    [Google Scholar]
  213. Li Q. Mahendra S. Lyon D.Y. Brunet L. Liga M.V. Li D. Alvarez P.J.J. Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications. Water Res. 2008 42 18 4591 4602 10.1016/j.watres.2008.08.015 18804836
    [Google Scholar]
  214. Morsi R.E. Alsabagh A.M. Nasr S.A. Zaki M.M. Multifunctional nanocomposites of chitosan, silver nanoparticles, copper nanoparticles and carbon nanotubes for water treatment: Antimicrobial characteristics. Int. J. Biol. Macromol. 2017 97 264 269 10.1016/j.ijbiomac.2017.01.032 28082228
    [Google Scholar]
  215. Skłodowski K. Chmielewska-Deptuła S.J. Piktel E. Wolak P. Wollny T. Bucki R. Metallic nanosystems in the development of antimicrobial strategies with high antimicrobial activity and high biocompatibility. Int. J. Mol. Sci. 2023 24 3 2104 10.3390/ijms24032104 36768426
    [Google Scholar]
  216. Ottoni C.A. Simões M.F. Fernandes S. dos Santos J.G. da Silva E.S. de Souza R.F.B. Maiorano A.E. Screening of filamentous fungi for antimicrobial silver nanoparticles synthesis. AMB Express 2017 7 1 31 10.1186/s13568‑017‑0332‑2 28144889
    [Google Scholar]
  217. Balavigneswaran C.K. Sujin Jeba Kumar T. Moses Packiaraj R. Prakash S. Rapid detection of Cr(VI) by AgNPs probe produced by Anacardium occidentale fresh leaf extracts. Appl. Nanosci. 2014 4 3 367 378 10.1007/s13204‑013‑0203‑3
    [Google Scholar]
  218. Raja K. Saravanakumar A. Vijayakumar R. Efficient synthesis of silver nanoparticles from Prosopis juliflora leaf extract and its antimicrobial activity using sewage. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012 97 490 494 10.1016/j.saa.2012.06.038 22835939
    [Google Scholar]
  219. Verma P. Maheshwari S.K. Applications of silver nanoparticles in diverse sectors. Int. J. Nanodimens. 2019 10 1 18 36
    [Google Scholar]
  220. Mirgane N.A. Shivankar V.S. Kotwal S.B. Wadhawa G.C. Sonawale M.C. Waste pericarp of ananas comosus in green synthesis zinc oxide nanoparticles and their application in waste water treatment. Mater. Today Proc. 2021 37 886 889 10.1016/j.matpr.2020.06.045
    [Google Scholar]
  221. Raghavendra V.B. Shankar S. Govindappa M. Pugazhendhi A. Sharma M. Nayaka S.C. Green synthesis of zinc oxide nanoparticles (ZnO NPs) for effective degradation of dye, polyethylene and antibacterial performance in waste water treatment. J. Ind. Eng. Chem. 2022 1 17
    [Google Scholar]
  222. Green biosynthesis of stable silver nanoparticles bound with macaranga indica plant extracts for the purification of drinking water. Hegde, G.; Kadre, T., Eds.; Journal of Physics: Conference Series, 2023 012034
    [Google Scholar]
  223. Rai P.K. Kumar V. Lee S. Raza N. Kim K-H. Ok Y.S. Tsang D.C.W. Nanoparticle-plant interaction: Implications in energy, environment, and agriculture. Chemosphere 2018 119 1 19 29909166
    [Google Scholar]
  224. Serrano E. Rus G. García-Martínez J. Nanotechnology for sustainable energy. Renew. Sustain. Energy Rev. 2009 13 9 2373 2384 10.1016/j.rser.2009.06.003
    [Google Scholar]
  225. Hu S. Guan Y. Wang Y. Han H. Nano-magnetic catalyst KF/CaO–Fe3O4 for biodiesel production. Appl. Energy 2011 88 8 2685 2690 10.1016/j.apenergy.2011.02.012
    [Google Scholar]
  226. Lewis NS. Toward cost-effective solar energy use. Science 2007 315 5813 798 801 10.1126/science.1137014 17289986
    [Google Scholar]
  227. Taylor R.A. Phelan P.E. Otanicar T.P. Walker C.A. Nguyen M. Trimble S. Applicability of nanofluids in high flux solar collectors. Renew. Energy 2011 3 2
    [Google Scholar]
  228. Basnet P. Inakhunbi Chanu T. Samanta D. Chatterjee S. A review on bio-synthesized zinc oxide nanoparticles using plant extracts as reductants and stabilizing agents. J. Photochem. Photobiol. B 2018 183 201 221 10.1016/j.jphotobiol.2018.04.036 29727834
    [Google Scholar]
  229. Yu J.X. Li T.H. Distinct biological effects of different nanoparticles commonly used in cosmetics and medicine coatings. Cell Biosci. 2011 1 1 19 10.1186/2045‑3701‑1‑19 21711940
    [Google Scholar]
  230. Ahn J.M. Eom H.J. Yang X. Meyer J.N. Choi J. Comparative toxicity of silver nanoparticles on oxidative stress and DNA damage in the nematode, Caenorhabditis elegans. Chemosphere 2014 108 343 352 10.1016/j.chemosphere.2014.01.078 24726479
    [Google Scholar]
  231. Park M.V.D.Z. Neigh A.M. Vermeulen J.P. de la Fonteyne L.J.J. Verharen H.W. Briedé J.J. van Loveren H. de Jong W.H. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 2011 32 36 9810 9817 10.1016/j.biomaterials.2011.08.085 21944826
    [Google Scholar]
  232. Du J. Tang J. Xu S. Ge J. Dong Y. Li H. Jin M. A review on silver nanoparticles-induced ecotoxicity and the underlying toxicity mechanisms. Regul. Toxicol. Pharmacol. 2018 98 231 239 10.1016/j.yrtph.2018.08.003 30096342
    [Google Scholar]
  233. Souza T.A.J. Franchi L.P. Rosa L.R. da Veiga M.A.M.S. Takahashi C.S. Cytotoxicity and genotoxicity of silver nanoparticles of different sizes in CHO-K1 and CHO-XRS5 cell lines. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2016 795 70 83 10.1016/j.mrgentox.2015.11.002 26774669
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266413831251120132852
Loading
/content/journals/ctmc/10.2174/0115680266413831251120132852
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test