Skip to content
2000
image of Heterocyclic Scaffolds: A Powerful Arsenal against Cancer Cell Proliferation

Abstract

Heterocyclic compounds constitute a diverse and indispensable class of molecules, particularly in the pharmaceutical area, which represent a rich source of potential anticancer agents. Their distinctive structural features enable a wide range of biological activities, making them crucial for drug development. Heterocyclic compounds containing pyrrole, furan, thiophene, oxadiazole, coumarin, or benzimidazole rings have demonstrated activity against various cancer cell lines. In this study, we have reviewed and summarised various types of heterocyclic moieties for their anticancer activity. Heterocyclic compounds can interact with DNA, inhibiting its replication and transcription, ultimately leading to cell death. Currently, several drugs, including doxorubicin, 5-fluorouracil, and methotrexate, are active against various types of cancer. In this regard, research is being conducted to enhance their therapeutic effects and minimize their side effects. For a future perspective, there remains a need to explore newer anticancer agents, with heterocyclic compounds continuing to be a center of attention. Heterocyclic compounds can interfere with signaling pathways involved in cell proliferation, differentiation, and apoptosis, thereby disrupting the cancer phenotype and serving as a key structural feature of many anticancer drugs currently available on the market.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266415564251103045646
2026-01-22
2026-01-31
Loading full text...

Full text loading...

References

  1. Siegel R.L. Miller K.D. Jemal A. Cancer statistics, 2019. CA Cancer J. Clin. 2019 69 1 7 34 10.3322/caac.21551 30620402
    [Google Scholar]
  2. Islami F. Siegel R.L. Jemal A. The changing landscape of cancer in the USA — Opportunities for advancing prevention and treatment. Nat. Rev. Clin. Oncol. 2020 17 10 631 649 10.1038/s41571‑020‑0378‑y 32467620
    [Google Scholar]
  3. Torre L.A. Bray F. Siegel R.L. Ferlay J. Lortet-Tieulent J. Jemal A. Global cancer statistics, 2012. CA Cancer J. Clin. 2015 65 2 87 108 10.3322/caac.21262 25651787
    [Google Scholar]
  4. Ma J. Jemal A. Fedewa S.A. Islami F. Lichtenfeld J.L. Wender R.C. Cullen K.J. Brawley O.W. The American Cancer Society 2035 challenge goal on cancer mortality reduction. CA Cancer J. Clin. 2019 69 5 351 362 10.3322/caac.21564 31066919
    [Google Scholar]
  5. Abdelsalam M.A. AboulWafa, O.M.; Badawey, E.S.A.M.; El-Shoukrofy, M.S.; El-Miligy, M.M.; Gouda, N. Design and synthesis of some β-carboline derivatives as multi-target anticancer agents. Future Med. Chem. 2018 10 24 2791 2814 10.4155/fmc‑2018‑0226 30539666
    [Google Scholar]
  6. Bergers G. Fendt S.M. The metabolism of cancer cells during metastasis. Nat. Rev. Cancer 2021 21 3 162 180 10.1038/s41568‑020‑00320‑2 33462499
    [Google Scholar]
  7. Duan H. Zhang Y. Qiu H. Fu X. Liu C. Zang X. Xu A. Wu Z. Li X. Zhang Q. Zhang Z. Cui F. Machine learning-based prediction model for distant metastasis of breast cancer. Comput. Biol. Med. 2024 169 107943 10.1016/j.compbiomed.2024.107943 38211382
    [Google Scholar]
  8. Wilkinson L. Gathani T. Understanding breast cancer as a global health concern. Br. J. Radiol. 2022 95 1130 20211033 10.1259/bjr.20211033 34905391
    [Google Scholar]
  9. Xia C. Dong X. Li H. Cao M. Sun D. He S. Yang F. Yan X. Zhang S. Li N. Chen W. Cancer statistics in China and United States, 2022: Profiles, trends, and determinants. Chin. Med. J. 2022 135 5 584 590 10.1097/CM9.0000000000002108 35143424
    [Google Scholar]
  10. Znaor A. Skakkebaek N.E. Rajpert-De Meyts E. Kuliš T. Laversanne M. Gurney J. Sarfati D. McGlynn K.A. Bray F. Global patterns in testicular cancer incidence and mortality in 2020. Int. J. Cancer 2022 151 5 692 698 10.1002/ijc.33999 35277970
    [Google Scholar]
  11. Sadek K.M. AbdEllatief, H.Y.; Mahmoud, S.F.E.; Alexiou, A.; Papadakis, M.; Al-Hajeili, M.; Saad, H.M.; Batiha, G.E-S. New insights on testicular cancer prevalence with novel diagnostic biomarkers and therapeutic approaches. Cancer Rep. 2024 7 3 e2052 10.1002/cnr2.2052
    [Google Scholar]
  12. McHugh D.J. Gleeson J.P. Feldman D.R. Testicular cancer in 2023: Current status and recent progress. CA Cancer J. Clin. 2024 74 2 167 186 10.3322/caac.21819 37947355
    [Google Scholar]
  13. Wang L. Lu B. He M. Wang Y. Wang Z. Du L. Prostate cancer incidence and mortality: Global status and temporal trends in 89 countries from 2000 to 2019. Front. Public Health 2022 10 811044 10.3389/fpubh.2022.811044 35252092
    [Google Scholar]
  14. Gandaglia G. Leni R. Bray F. Fleshner N. Freedland S.J. Kibel A. Stattin P. Van Poppel H. La Vecchia C. Epidemiology and prevention of prostate cancer. Eur. Urol. Oncol. 2021 4 6 877 892 10.1016/j.euo.2021.09.006 34716119
    [Google Scholar]
  15. Fontham E.T.H. Wolf A.M.D. Church T.R. Etzioni R. Flowers C.R. Herzig A. Guerra C.E. Oeffinger K.C. Shih Y.C.T. Walter L.C. Kim J.J. Andrews K.S. DeSantis C.E. Fedewa S.A. Manassaram-Baptiste D. Saslow D. Wender R.C. Smith R.A. Cervical cancer screening for individuals at average risk: 2020 guideline update from the American Cancer Society. CA Cancer J. Clin. 2020 70 5 321 346 10.3322/caac.21628 32729638
    [Google Scholar]
  16. Huang J. Deng Y. Boakye D. Tin M.S. Lok V. Zhang L. Lucero-Prisno D.E. Xu W. Zheng Z.J. Elcarte E. Withers M. Wong M.C.S. Global distribution, risk factors, and recent trends for cervical cancer: A worldwide country-level analysis. Gynecol. Oncol. 2022 164 1 85 92 10.1016/j.ygyno.2021.11.005 34799136
    [Google Scholar]
  17. Sharma R. Mapping of global, regional and national incidence, mortality and mortality-to-incidence ratio of lung cancer in 2020 and 2050. Int. J. Clin. Oncol. 2022 27 4 665 675 10.1007/s10147‑021‑02108‑2 35020103
    [Google Scholar]
  18. Hecht S.S. Cigarette smoking: Cancer risks, carcinogens, and mechanisms. Langenbecks Arch. Surg. 2006 391 6 603 613 10.1007/s00423‑006‑0111‑z 17031696
    [Google Scholar]
  19. Ye Y.N. Liu E.S.L. Shin V.Y. Wu W.K.K. Luo J.C. Cho C.H. Nicotine promoted colon cancer growth via epidermal growth factor receptor, c-Src, and 5-lipoxygenase-mediated signal pathway. J. Pharmacol. Exp. Ther. 2004 308 1 66 72 10.1124/jpet.103.058321 14569062
    [Google Scholar]
  20. Meggs W.J. Epidemics of mold poisoning past and present. Toxicol. Ind. Health 2009 25 9-10 571 576 10.1177/0748233709348277 19808743
    [Google Scholar]
  21. Sankpal U.T. Pius H. Khan M. Shukoor M.I. Maliakal P. Lee C.M. Abdelrahim M. Connelly S.F. Basha R. Environmental factors in causing human cancers: Emphasis on tumorigenesis. Tumour Biol. 2012 33 5 1265 1274 10.1007/s13277‑012‑0413‑4 22614680
    [Google Scholar]
  22. Díaz L.A. Fuentes-López E. Idalsoaga F. Ayares G. Corsi O. Arnold J. Cannistra M. Vio D. Márquez-Lomas A. Ramirez-Cadiz C. Medel M.P. Hernandez-Tejero M. Ferreccio C. Lazo M. Roblero J.P. Cotter T.G. Kulkarni A.V. Kim W. Brahmania M. Louvet A. Tapper E.B. Dunn W. Simonetto D. Shah V.H. Kamath P.S. Lazarus J.V. Singal A.K. Bataller R. Arrese M. Arab J.P. Association between public health policies on alcohol and worldwide cancer, liver disease and cardiovascular disease outcomes. J. Hepatol. 2024 80 3 409 418 10.1016/j.jhep.2023.11.006 37992972
    [Google Scholar]
  23. Murthy N. Mathew A. Cancer epidemiology, prevention and control. Curr. Sci. 2004 86 4 518 527
    [Google Scholar]
  24. Korhonen L. Madanat-Harjuoja L. Hirvonen E. Pitkäniemi J. Malila N. Taskinen M. Sexually transmitted diseases in cancer patients diagnosed under the age of 20 years - A national registry-based cohort study from Finland. Acta Oncol. 2022 61 11 1309 1316 10.1080/0284186X.2022.2150092 36437562
    [Google Scholar]
  25. Welch D. Kleiman N.J. Arden P.C. Kuryla C.L. Buonanno M. Ponnaiya B. Wu X. Brenner D.J. No evidence of induced skin cancer or other skin abnormalities after long‐term (66 week) chronic exposure to 222‐nm far‐UVC radiation. Photochem. Photobiol. 2023 99 1 168 175 10.1111/php.13656 35614842
    [Google Scholar]
  26. Benavides E. Krecioch J.R. Connolly R.T. Allareddy T. Buchanan A. Spelic D. O’Brien K.K. Keels M.A. Mascarenhas A.K. Duong M.L. Aerne-Bowe M.J. Ziegler K.M. Lipman R.D. Optimizing radiation safety in dentistry. J. Am. Dent. Assoc. 2024 155 4 280 293.e4 10.1016/j.adaj.2023.12.002 38300176
    [Google Scholar]
  27. Fernando N.D. Salibi G. Tzenios N. Management of breast cancer in Sri Lanka. Special J. Med. Acad. Life Sci. 2024 2 1 10.58676/sjmas.v2i1.50
    [Google Scholar]
  28. Ballal Y. Aghaei N. Shaik M.S. Arora S. Khan M. Vachon T. The impact of radiation therapy on sexual health in breast, cervix, and prostate cancer patients: A systematic review. J. Psychosex Health. 2024 6 1 16 31 10.1177/26318318241233076
    [Google Scholar]
  29. Chen W. Shi K. Yu Y. Yang P. Bei Z. Mo D. Yuan L. Pan M. Chen Y. Qian Z. Drug delivery systems for colorectal cancer chemotherapy. Chin. Chem. Lett. 2024 35 2 109159 10.1016/j.cclet.2023.109159
    [Google Scholar]
  30. Emens L.A. Romero P.J. Anderson A.C. Bruno T.C. Capitini C.M. Collyar D. Gulley J.L. Hwu P. Posey A.D. Silk A.W. Wargo J.A. Challenges and opportunities in cancer immunotherapy: A Society for Immunotherapy of Cancer (SITC) strategic vision. J. Immunother. Cancer 2024 12 6 e009063 10.1136/jitc‑2024‑009063 38901879
    [Google Scholar]
  31. Elez E. Kopetz S. Tabernero J. Bekaii-Saab T. Taieb J. Yoshino T. Manji G. Fernandez K. Abbattista A. Zhang X. Morris V.K. SEAMARK: Phase II study of first-line encorafenib and cetuximab plus pembrolizumab for MSI-H/dMMR BRAF V600E-mutant mCRC. Future Oncol. 2024 20 11 653 663 10.2217/fon‑2022‑1249 37815847
    [Google Scholar]
  32. Hong Y. Abudukeremu X. She F. Chen Y. SOAT1 in gallbladder cancer: Clinicopathological significance and avasimibe therapeutics. J. Biochem. Mol. Toxicol. 2024 38 6 e23733 10.1002/jbt.23733 38770938
    [Google Scholar]
  33. Shabani M. Rostamzadeh D. Mansouri M. Jeddi-Tehrani M. Overview on immunopathology of chronic lymphocytic leukemia and tumor-associated antigens with therapeutic applications. Avicenna J. Med. Biotechnol. 2024 16 4 201 222 10.18502/ajmb.v16i4.16737 39606680
    [Google Scholar]
  34. Dai J. Ashrafizadeh M. Aref A.R. Sethi G. Ertas Y.N. Peptide-functionalized, -assembled and -loaded nanoparticles in cancer therapy. Drug Discov. Today 2024 29 7 103981 10.1016/j.drudis.2024.103981 38614161
    [Google Scholar]
  35. Arruebo M. Vilaboa N. Sáez-Gutierrez B. Lambea J. Tres A. Valladares M. González-Fernández Á. Assessment of the evolution of cancer treatment therapies. Cancers 2011 3 3 3279 3330 10.3390/cancers3033279 24212956
    [Google Scholar]
  36. Martins P. Jesus J. Santos S. Raposo L. Roma-Rodrigues C. Baptista P. Fernandes A. Heterocyclic anticancer compounds: Recent advances and the paradigm shift towards the use of nanomedicine’s tool box. Molecules 2015 20 9 16852 16891 10.3390/molecules200916852 26389876
    [Google Scholar]
  37. Jeelan Basha N. Basavarajaiah S.M. Shyamsunder K. Therapeutic potential of pyrrole and pyrrolidine analogs: An update. Mol. Divers. 2022 26 5 2915 2937 10.1007/s11030‑022‑10387‑8 35079946
    [Google Scholar]
  38. Banerjee R. Kumar H. Banerjee M. Medicinal significance of furan derivatives: A review. Int. J. Res. Phytochem Pharmacol. 2015 5 3 48 57
    [Google Scholar]
  39. Archna S. Pathania S. Chawla P.A. Thiophene-based derivatives as anticancer agents: An overview on decade’s work. Bioorg. Chem. 2020 101 104026 10.1016/j.bioorg.2020.104026 32599369
    [Google Scholar]
  40. Benassi A. Doria F. Pirota V. Groundbreaking anticancer activity of highly diversified oxadiazole scaffolds. Int. J. Mol. Sci. 2020 21 22 8692 10.3390/ijms21228692 33217987
    [Google Scholar]
  41. Prachayasittikul S. Pingaew R. Worachartcheewan A. Sinthupoom N. Prachayasittikul V. Ruchirawat S. Prachayasittikul V. Roles of pyridine and pyrimidine derivatives as privileged scaffolds in anticancer agents. Mini Rev. Med. Chem. 2017 17 10 869 901 10.2174/1389557516666160923125801 27670581
    [Google Scholar]
  42. Shaquiquzzaman M. Verma G. Marella A. Akhter M. Akhtar W. Khan M.F. Tasneem S. Alam M.M. Piperazine scaffold: A remarkable tool in generation of diverse pharmacological agents. Eur. J. Med. Chem. 2015 102 487 529 10.1016/j.ejmech.2015.07.026 26310894
    [Google Scholar]
  43. Wan Y. Li Y. Yan C. Yan M. Tang Z. Indole: A privileged scaffold for the design of anti-cancer agents. Eur. J. Med. Chem. 2019 183 111691 10.1016/j.ejmech.2019.111691 31536895
    [Google Scholar]
  44. Alper S. Temiz Arpaci Ö. Şener Aki E. Yalçin I. Some new bi- and ter-benzimidazole derivatives as topoisomerase I inhibitors. Farmaco 2003 58 7 497 507 10.1016/S0014‑827X(03)00042‑9 12818688
    [Google Scholar]
  45. Tian Q. Wang L. Sun X. Zeng F. Pan Q. Xue M. Scopoletin exerts anticancer effects on human cervical cancer cell lines by triggering apoptosis, cell cycle arrest, inhibition of cell invasion and PI3K/AKT signalling pathway. J. BUON 2019 24 3 997 1002 [PMID: 31424653
    [Google Scholar]
  46. Khan M.F. Alam M.M. Verma G. Akhtar W. Akhter M. Shaquiquzzaman M. The therapeutic voyage of pyrazole and its analogs: A review. Eur. J. Med. Chem. 2016 120 170 201 10.1016/j.ejmech.2016.04.077 27191614
    [Google Scholar]
  47. Kilic-Kurt Z. Bakar-Ates F. Aka Y. Kutuk O. Design, synthesis and in vitro apoptotic mechanism of novel pyrrolopyrimidine derivatives. Bioorg. Chem. 2019 83 511 519 10.1016/j.bioorg.2018.10.060 30458413
    [Google Scholar]
  48. Bavadi M. Niknam K. Shahraki O. Novel pyrrole derivatives bearing sulfonamide groups: Synthesis in vitro cytotoxicity evaluation, molecular docking and DFT study. J. Mol. Struct. 2017 1146 242 253 10.1016/j.molstruc.2017.06.003
    [Google Scholar]
  49. Zhang J. Shen W. Li X. Chai Y. Li S. Lv K. Guo H. Liu M. Synthesis and antitumor activity of 5-bromo-7-azaindolin-2-one derivatives containing a 2,4-dimethyl-1h-pyrrole-3-carboxamide moiety. Molecules 2016 21 12 1674 10.3390/molecules21121674 27929442
    [Google Scholar]
  50. Rostom S.A.F. Bekhit A.A. Microwave-assisted synthesis of certain pyrrolylpyridines, some derived ring systems and their evaluation as anticancer and antioxidant agents. Eur. J. Med. Chem. 2015 92 712 722 10.1016/j.ejmech.2015.01.023 25618018
    [Google Scholar]
  51. El-Gamal M.I. Oh C.H. Diarylureas and diarylamides with pyrrolo[2,3-d]pyrimidine scaffold as broad-spectrum anticancer agents. Chem. Pharm. Bull. 2014 62 1 25 34 10.1248/cpb.c13‑00249 24390490
    [Google Scholar]
  52. La Regina G. Bai R. Coluccia A. Famiglini V. Pelliccia S. Passacantilli S. Mazzoccoli C. Ruggieri V. Sisinni L. Bolognesi A. Rensen W.M. Miele A. Nalli M. Alfonsi R. Di Marcotullio L. Gulino A. Brancale A. Novellino E. Dondio G. Vultaggio S. Varasi M. Mercurio C. Hamel E. Lavia P. Silvestri R. New pyrrole derivatives with potent tubulin polymerization inhibiting activity as anticancer agents including hedgehog-dependent cancer. J. Med. Chem. 2014 57 15 6531 6552 10.1021/jm500561a 25025991
    [Google Scholar]
  53. Liu Y. Zhang C. Zhang H. Li M. Yuan J. Zhang Y. Zhou J. Guo H. Zhao L. Du Y. Wang L. Ren L. Synthesis and antitumor activity of a novel series of 6-substituted pyrrolo[2,3-d]pyrimidines as potential nonclassical antifolates targeting both thymidylate and purine nucleotide biosynthesis. Eur. J. Med. Chem. 2015 93 142 155 10.1016/j.ejmech.2015.01.055 25668494
    [Google Scholar]
  54. Ali H. Jabeen A. Maharjan R. Nadeem-ul-Haque M. Aamra H. Nazir S. Khan S. Olleik H. Maresca M. Shaheen F. Furan-conjugated tripeptides as potent antitumor drugs. Biomolecules 2020 10 12 1684 10.3390/biom10121684 33339257
    [Google Scholar]
  55. Nguyen H.T. Pokhrel A.R. Nguyen C.T. Pham V.T.T. Dhakal D. Lim H.N. Jung H.J. Kim T.S. Yamaguchi T. Sohng J.K. Streptomyces sp. VN1, a producer of diverse metabolites including non-natural furan-type anticancer compound. Sci. Rep. 2020 10 1 1756 10.1038/s41598‑020‑58623‑1 32019976
    [Google Scholar]
  56. Kassem A.F. Nassar I.F. Abdel-Aal M.T. Awad H.M. El-Sayed W.A. Synthesis and anticancer activity of new ((Furan-2-yl)-1, 3, 4-thiadiazolyl)-1, 3, 4-oxadiazole acyclic sugar derivatives. Chem. Pharm. Bull. 2019 67 8 888 895 10.1248/cpb.c19‑00280 31366838
    [Google Scholar]
  57. Zhang X. Bian J. Li X. Wu X. Dong Y. You Q. 2-Substituted 3,7,8-trimethylnaphtho[1,2- b]furan-4,5-diones as specific L-shaped NQO1-mediated redox modulators for the treatment of non-small cell lung cancer. Eur. J. Med. Chem. 2017 138 616 629 10.1016/j.ejmech.2017.06.028 28710963
    [Google Scholar]
  58. Mokhtar Z. Jamalis J. Bohari S.P.M. Rosli M.M. Fun H.K. Synthesis, characterization, and cytotoxic activities of heterocyclic chalcones containing furan, and crystal structure of 1-(4-iodophenyl)-3-(5-methylfuran-2-yl)prop-2-en-1-one. Mol. Cryst. Liq. Cryst. 2016 631 1 119 131 10.1080/15421406.2016.1149025
    [Google Scholar]
  59. Gach K. Modranka J. Szymański J. Pomorska D. Krajewska U. Mirowski M. Janecki T. Janecka A. Anticancer properties of new synthetic hybrid molecules combining naphtho[2,3-b]furan-4,9-dione or benzo[f]indole-4,9-dione motif with phosphonate subunit. Eur. J. Med. Chem. 2016 120 51 63 10.1016/j.ejmech.2016.05.002 27187858
    [Google Scholar]
  60. Hassan A.Y. Husseiny E.M. Synthesis and anticancer evaluation of some novel thiophene, thieno[3,2‐ d]pyrimidine, thieno[3,2‐ b]pyridine, and thieno[3,2‐ e][1,4]oxazepine derivatives containing benzothiazole moiety. J. Heterocycl. Chem. 2019 56 9 2419 2429 10.1002/jhet.3629
    [Google Scholar]
  61. Othman D.I.A. Selim K.B. El-Sayed M.A.A. Tantawy A.S. Amen Y. Shimizu K. Okauchi T. Kitamura M. Design, synthesis and anticancer evaluation of new substituted thiophene-quinoline derivatives. Bioorg. Med. Chem. 2019 27 19 115026 10.1016/j.bmc.2019.07.042 31416740
    [Google Scholar]
  62. Gomha S. Edrees M. Muhammad Z. El-Reedy A. 5-(Thiophen-2-yl)-1,3,4-thiadiazole derivatives: Synthesis, molecular docking and in vitro cytotoxicity evaluation as potential anticancer agents. Drug Des. Devel. Ther. 2018 12 1511 1523 10.2147/DDDT.S165276 29881258
    [Google Scholar]
  63. Ismail M.A. Youssef M.M. Arafa R.K. Al-Shihry S.S. El-Sayed W.M. Synthesis and antiproliferative activity of monocationic arylthiophene derivatives. Eur. J. Med. Chem. 2017 126 789 798 10.1016/j.ejmech.2016.12.007 27951487
    [Google Scholar]
  64. Dos Santos F.A. Pereira M.C. de Oliveira T.B. Junior Mendonça F.J.B. de Lima M.C.A. Pitta M.G.R. Pitta I.R. de Melo Rêgo M.J.B. da Rocha Pitta M.G. Anticancer properties of thiophene derivatives in breast cancer MCF-7 cells. Anticancer Drugs 2018 29 2 157 166 10.1097/CAD.0000000000000581 29256900
    [Google Scholar]
  65. Cardoso L.N.F. Nogueira T.C.M. Rodrigues F.A.R. Oliveira A.C.A. Luciano M.C.S. Pessoa C. de Souza M.V.N. N-acylhydrazones containing thiophene nucleus: A new anticancer class. Med. Chem. Res. 2017 26 8 1605 1608 10.1007/s00044‑017‑1832‑y
    [Google Scholar]
  66. Wilson K.J. Illig C.R. Subasinghe N. Hoffman J.B. Jonathan Rudolph M. Soll R. Molloy C.J. Bone R. Green D. Randall T. Zhang M. Lewandowski F.A. Zhou Z. Sharp C. Maguire D. Grasberger B. DesJarlais R.L. Spurlino J. Synthesis of thiophene-2-carboxamidines containing 2-amino-thiazoles and their biological evaluation as urokinase inhibitors. Bioorg. Med. Chem. Lett. 2001 11 7 915 918 10.1016/S0960‑894X(01)00102‑0 11294390
    [Google Scholar]
  67. Stecoza C.E. Nitulescu G.M. Draghici C. Caproiu M.T. Olaru O.T. Bostan M. Mihaila M. Synthesis and anticancer evaluation of new 1, 3, 4-oxadiazole derivatives. Pharmaceuticals 2021 14 5 438 10.3390/ph14050438 34066442
    [Google Scholar]
  68. Alam M.M. Almalki A.S.A. Neamatallah T. Ali N.M. Malebari A.M. Nazreen S. Synthesis of new 1, 3, 4-oxadiazole-incorporated 1, 2, 3-triazole moieties as potential anticancer agents targeting thymidylate synthase and their docking studies. Pharmaceuticals 2020 13 11 390 10.3390/ph13110390 33202652
    [Google Scholar]
  69. Madhavilatha B. Bhattacharjee D. Sabitha G. Reddy B.V.S. Yadav J.S. Jain N. Reddy B.J.M. Synthesis and in vitro anticancer activity of novel 1, 3, 4‐oxadiazole‐linked 1, 2, 3‐triazole/isoxazole hybrids. J. Heterocycl. Chem. 2018 55 4 863 870 10.1002/jhet.3110
    [Google Scholar]
  70. Akhtar M.J. Siddiqui A.A. Khan A.A. Ali Z. Dewangan R.P. Pasha S. Yar M.S. Design, synthesis, docking and QSAR study of substituted benzimidazole linked oxadiazole as cytotoxic agents, EGFR and erbB2 receptor inhibitors. Eur. J. Med. Chem. 2017 126 853 869 10.1016/j.ejmech.2016.12.014 27987485
    [Google Scholar]
  71. Chekler E.L.P. Kiselyov A.S. Ouyang X. Chen X. Pattaropong V. Wang Y. Tuma M.C. Doody J.F. Discovery of dual VEGFR-2 and tubulin inhibitors with in vivo efficacy. ACS Med. Chem. Lett. 2010 1 9 488 492 10.1021/ml1001568 24900236
    [Google Scholar]
  72. Bhanushali U. Kalekar-Joshi S. Kulkarni-Munshi R. Yellanki S. Medishetty R. Kulkarni P. Subramanian Chelakara R. Design, synthesis and evaluation of 5-pyridin-4-yl-2-thioxo-[1,3,4]oxadiazol-3-yl derivatives as anti-angiogenic agents targeting VEGFR-2. Anticancer. Agents Med. Chem. 2017 17 1 67 74 [PMID: 27141880
    [Google Scholar]
  73. Valente S. Trisciuoglio D. De Luca T. Nebbioso A. Labella D. Lenoci A. Bigogno C. Dondio G. Miceli M. Brosch G. Del Bufalo D. Altucci L. Mai A. 1,3,4-Oxadiazole-containing histone deacetylase inhibitors: Anticancer activities in cancer cells. J. Med. Chem. 2014 57 14 6259 6265 10.1021/jm500303u 24972008
    [Google Scholar]
  74. Amin L.H.T. Shawer T.Z. El-Naggar A.M. El-Sehrawi H.M.A. Design, synthesis, anticancer evaluation and docking studies of new pyrimidine derivatives as potent thymidylate synthase inhibitors. Bioorg. Chem. 2019 91 103159 10.1016/j.bioorg.2019.103159 31382056
    [Google Scholar]
  75. Chikhale R. Thorat S. Choudhary R.K. Gadewal N. Khedekar P. Design, synthesis and anticancer studies of novel aminobenzazolyl pyrimidines as tyrosine kinase inhibitors. Bioorg. Chem. 2018 77 84 100 10.1016/j.bioorg.2018.01.008 29342447
    [Google Scholar]
  76. Kumar B. Sharma P. Gupta V.P. Khullar M. Singh S. Dogra N. Kumar V. Synthesis and biological evaluation of pyrimidine bridged combretastatin derivatives as potential anticancer agents and mechanistic studies. Bioorg. Chem. 2018 78 130 140 10.1016/j.bioorg.2018.02.027 29554587
    [Google Scholar]
  77. Kamal A. Tamboli J.R. Nayak V.L. Adil S.F. Vishnuvardhan M.V.P.S. Ramakrishna S. Synthesis of pyrazolo[1,5-a] pyrimidine linked aminobenzothiazole conjugates as potential anticancer agents. Bioorg. Med. Chem. Lett. 2013 23 11 3208 3215 10.1016/j.bmcl.2013.03.129 23623491
    [Google Scholar]
  78. Gangireddy R. Mantipally M. Gundla R. Nayak Badavath V. Paidikondala K. Yamala A. Design and synthesis of piperazine‐linked imidazo [1, 2‐a] pyridine derivatives as potent anticancer agents. ChemistrySelect 2019 4 46 13622 13629 10.1002/slct.201902955
    [Google Scholar]
  79. Aouad M.R. Soliman M.A. Alharbi M.O. Bardaweel S.K. Sahu P.K. Ali A.A. Messali M. Rezki N. Al-Soud Y.A. Design, synthesis and anticancer screening of novel benzothiazole-piperazine-1, 2, 3-triazole hybrids. Molecules 2018 23 11 2788 10.3390/molecules23112788 30373247
    [Google Scholar]
  80. Ma Y. Zheng X. Gao H. Wan C. Rao G. Mao Z. Design, synthesis, and biological evaluation of novel benzofuran derivatives bearing N-aryl piperazine moiety. Molecules 2016 21 12 1684 10.3390/molecules21121684 27941680
    [Google Scholar]
  81. Murty M.S.R. Ram K.R. Rao B.R. Rao R.V. Katiki M.R. Rao J.V. Pamanji R. Velatooru L.R. Synthesis, characterization, and anticancer studies of S and N alkyl piperazine-substituted positional isomers of 1,2,4-triazole derivatives. Med. Chem. Res. 2014 23 4 1661 1671 10.1007/s00044‑013‑0757‑3
    [Google Scholar]
  82. Kumar S. Kumar N. Roy P. Sondhi S.M. Efficient synthesis of piperazine-2,6-dione and 4-(1H-indole-2-carbonyl)piperazine-2,6-dione derivatives and their evaluation for anticancer activity. Med. Chem. Res. 2013 22 10 4600 4609 10.1007/s00044‑012‑0438‑7
    [Google Scholar]
  83. Li W. Shuai W. Sun H. Xu F. Bi Y. Xu J. Ma C. Yao H. Zhu Z. Xu S. Design, synthesis and biological evaluation of quinoline-indole derivatives as anti-tubulin agents targeting the colchicine binding site. Eur. J. Med. Chem. 2019 163 428 442 10.1016/j.ejmech.2018.11.070 30530194
    [Google Scholar]
  84. El-Sharief A.M.S. Ammar Y.A. Belal A. El-Sharief M.A.M.S. Mohamed Y.A. Mehany A.B.M. Elhag Ali G.A.M. Ragab A. Design, synthesis, molecular docking and biological activity evaluation of some novel indole derivatives as potent anticancer active agents and apoptosis inducers. Bioorg. Chem. 2019 85 399 412 10.1016/j.bioorg.2019.01.016 30665034
    [Google Scholar]
  85. Chao S.W. Chen L.C. Yu C.C. Liu C.Y. Lin T.E. Guh J.H. Wang C.Y. Chen C.Y. Hsu K.C. Huang W.J. Discovery of aliphatic-chain hydroxamates containing indole derivatives with potent class I histone deacetylase inhibitory activities. Eur. J. Med. Chem. 2018 143 792 805 10.1016/j.ejmech.2017.11.092 29223096
    [Google Scholar]
  86. Prakash B. Amuthavalli A. Edison D. Sivaramkumar M.S. Velmurugan R. Novel indole derivatives as potential anticancer agents: Design, synthesis and biological screening. Med. Chem. Res. 2018 27 1 321 331 10.1007/s00044‑017‑2065‑9
    [Google Scholar]
  87. Yan J. Hu J. An B. Huang L. Li X. Design, synthesis, and biological evaluation of cyclic-indole derivatives as anti-tumor agents via the inhibition of tubulin polymerization. Eur. J. Med. Chem. 2017 125 663 675 10.1016/j.ejmech.2016.09.056 27721152
    [Google Scholar]
  88. Man R.J. Tang D.J. Lu X.Y. Duan Y.T. Tao X.X. Yang M.R. Wang L.L. Wang B.Z. Xu C. Zhu H.L. Synthesis and biological evaluation of novel indole derivatives containing sulfonamide scaffold as potential tubulin inhibitor. MedChemComm 2016 7 9 1759 1767 10.1039/C6MD00255B
    [Google Scholar]
  89. Haoran W. Akhtar W. Nainwal L.M. Kaushik S.K. Akhter M. Shaquiquzzaman M. Alam M.M. Synthesis and biological evaluation of benzimidazole pendant cyanopyrimidine derivatives as anticancer agents. J. Heterocycl. Chem. 2020 57 9 3350 3360 10.1002/jhet.4052
    [Google Scholar]
  90. Milite C. Amendola G. Nocentini A. Bua S. Cipriano A. Barresi E. Feoli A. Novellino E. Da Settimo F. Supuran C.T. Castellano S. Cosconati S. Taliani S. Novel 2-substituted-benzimidazole-6-sulfonamides as carbonic anhydrase inhibitors: Synthesis, biological evaluation against isoforms I, II, IX and XII and molecular docking studies. J. Enzyme Inhib. Med. Chem. 2019 34 1 1697 1710 10.1080/14756366.2019.1666836 31537132
    [Google Scholar]
  91. Yuan X. Yang Q. Liu T. Li K. Liu Y. Zhu C. Zhang Z. Li L. Zhang C. Xie M. Lin J. Zhang J. Jin Y. Design, synthesis and in vitro evaluation of 6-amide-2-aryl benzoxazole/benzimidazole derivatives against tumor cells by inhibiting VEGFR-2 kinase. Eur. J. Med. Chem. 2019 179 147 165 10.1016/j.ejmech.2019.06.054 31252306
    [Google Scholar]
  92. Hsieh C.Y. Ko P.W. Chang Y.J. Kapoor M. Liang Y.C. Chu H-L. Lin H-H. Horng J-C. Hsu M.H. Design and synthesis of benzimidazole-chalcone derivatives as potential anticancer agents. Molecules 2019 24 18 3259 10.3390/molecules24183259 31500191
    [Google Scholar]
  93. Wang Z. Deng X. Xiong S. Xiong R. Liu J. Zou L. Lei X. Cao X. Xie Z. Chen Y. Liu Y. Zheng X. Tang G. Design, synthesis and biological evaluation of chrysin benzimidazole derivatives as potential anticancer agents. Nat. Prod. Res. 2018 32 24 2900 2909 10.1080/14786419.2017.1389940 29063798
    [Google Scholar]
  94. Chu B. Liu F. Li L. Ding C. Chen K. Sun Q. Shen Z. Tan Y. Tan C. Jiang Y. A benzimidazole derivative exhibiting antitumor activity blocks EGFR and HER2 activity and upregulates DR5 in breast cancer cells. Cell Death Dis. 2015 6 3 e1686 e1686 10.1038/cddis.2015.25 25766325
    [Google Scholar]
  95. Zubrienė A. Čapkauskaitė E. Gylytė J. Kišonaitė M. Tumkevičius S. Matulis D. Benzenesulfonamides with benzimidazole moieties as inhibitors of carbonic anhydrases I, II, VII, XII and XIII. J. Enzyme Inhib. Med. Chem. 2014 29 1 124 131 10.3109/14756366.2012.757223 23356363
    [Google Scholar]
  96. Lin M.H. Wang J.S. Hsieh Y.C. Zheng J.H. Cho E.C. NO2 functionalized coumarin derivatives suppress cancer progression and facilitate apoptotic cell death in KRAS mutant colon cancer. Chem. Biol. Interact. 2019 309 108708 10.1016/j.cbi.2019.06.021 31199928
    [Google Scholar]
  97. Awale S. Okada T. Dibwe D.F. Maruyama T. Takahara S. Okada T. Endo S. Toyooka N. Design and synthesis of functionalized coumarins as potential anti-austerity agents that eliminates cancer cells’ tolerance to nutrition starvation. Bioorg. Med. Chem. Lett. 2019 29 14 1779 1784 10.1016/j.bmcl.2019.05.010 31097375
    [Google Scholar]
  98. Han X. Luo J. Wu F. Hou X. Yan G. Zhou M. Zhang M. Pu C. Li R. Synthesis and biological evaluation of novel 2,3-dihydrochromeno[3,4-d]imidazol-4(1H)-one derivatives as potent anticancer cell proliferation and migration agents. Eur. J. Med. Chem. 2016 114 232 243 10.1016/j.ejmech.2016.01.035 26994691
    [Google Scholar]
  99. Basanagouda M. Jambagi V.B. Barigidad N.N. Laxmeshwar S.S. Devaru V. Narayanachar, Synthesis, structure-activity relationship of iodinated-4-aryloxymethyl-coumarins as potential anti-cancer and anti-mycobacterial agents. Eur. J. Med. Chem. 2014 74 225 233 10.1016/j.ejmech.2013.12.061 24463645
    [Google Scholar]
  100. Zhang W. Li Z. Zhou M. Wu F. Hou X. Luo H. Liu H. Han X. Yan G. Ding Z. Li R. Synthesis and biological evaluation of 4-(1,2,3-triazol-1-yl)coumarin derivatives as potential antitumor agents. Bioorg. Med. Chem. Lett. 2014 24 3 799 807 10.1016/j.bmcl.2013.12.095 24418772
    [Google Scholar]
  101. Lv N. Sun M. Liu C. Li J. Design and synthesis of 2-phenylpyrimidine coumarin derivatives as anticancer agents. Bioorg. Med. Chem. Lett. 2017 27 19 4578 4581 10.1016/j.bmcl.2017.08.044 28888820
    [Google Scholar]
  102. Hassan A.S. Moustafa G.O. Awad H.M. Nossier E.S. Mady M.F. Design, synthesis, anticancer evaluation, enzymatic assays, and a molecular modeling study of novel pyrazole-indole hybrids. ACS Omega 2021 6 18 12361 12374 10.1021/acsomega.1c01604 34056388
    [Google Scholar]
  103. Wang G. Liu W. Peng Z. Huang Y. Gong Z. Li Y. Design, synthesis, molecular modeling, and biological evaluation of pyrazole-naphthalene derivatives as potential anticancer agents on MCF-7 breast cancer cells by inhibiting tubulin polymerization. Bioorg. Chem. 2020 103 104141 10.1016/j.bioorg.2020.104141 32750611
    [Google Scholar]
  104. Salem M.S. El-Helw E.A. Derbala H.A. Development of chromone-pyrazole-based anticancer agents. Russ. J. Bioorganic Chem. 2020 46 1 77 84 10.1134/S1068162020010094
    [Google Scholar]
  105. Hafez H.N. El-Gazzar A.R.B.A. Al-Hussain S.A. Novel pyrazole derivatives with oxa/thiadiazolyl, pyrazolyl moieties and pyrazolo[4,3-d]-pyrimidine derivatives as potential antimicrobial and anticancer agents. Bioorg. Med. Chem. Lett. 2016 26 10 2428 2433 10.1016/j.bmcl.2016.03.117 27080187
    [Google Scholar]
  106. Abu Bakr S.M. Abd El-Karim S.S. Said M.M. Youns M.M. Synthesis and anticancer evaluation of novel isoxazole/pyrazole derivatives. Res. Chem. Intermed. 2016 42 2 1387 1399 10.1007/s11164‑015‑2091‑5
    [Google Scholar]
  107. Abd El-Karim S.S. Anwar M.M. Mohamed N.A. Nasr T. Elseginy S.A. Design, synthesis, biological evaluation and molecular docking studies of novel benzofuran-pyrazole derivatives as anticancer agents. Bioorg. Chem. 2015 63 1 12 10.1016/j.bioorg.2015.08.006 26368040
    [Google Scholar]
  108. Xu X. Heterocyclic compounds and uses as anticancer agents. U.S. Patent US8252822B2 2020
  109. Xu X. Heterocyclic compounds and uses thereof. U.S. Patent US8940742B2 2018
  110. Oleg Vechorkin W. Heterocyclic compounds useful as pim kinase inhibitors. W.O. Patent WO2017059251A1 2019
  111. Andrew W. Heterocyclic compounds as P13K-Y inhibitors. U.S. Patent US20180009816A1 2021
  112. Binch H.A. 1-pyrimidinyl- or 1-pyridinyl-2-amino benzimidazole derivatives and related compounds as inhibitors of protein kinases for the treatment of cancer E.U. Patent EP2336122A1 2011
/content/journals/ctmc/10.2174/0115680266415564251103045646
Loading
/content/journals/ctmc/10.2174/0115680266415564251103045646
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test