Skip to content
2000
image of Combinatorial Therapy of Nanoformulation with Herbal Medicine to Circumvent Fungal Diseases

Abstract

Fungal infections now cause approximately 3.75 million deaths annually, nearly double previous estimates, and account for about 6.8% of all global deaths, surpassing those from tuberculosis and malaria combined. Fungal infections have become a greater worldwide health concern due to the emergence of drug-resistant forms, especially in immunocompromised people. Common drawbacks of conventional antifungal therapies include toxicity, low absorption, and resistance development. Low solubility, instability, and non-specific targeting are some of the reasons why conventional antifungal medicines usually show limited activity, resulting in less-than-ideal therapeutic outcomes and unfavorable side effects. A viable substitute is provided by combining nanotechnology with herbal medicine. Strong antifungal activities are found in natural bioactive chemicals found in herbal extracts. Encapsulated in nanocarriers, including metallic nanoparticles, liposomes, nanoemulsions, micelles, and ethosomes, these drugs exhibit improved solubility, stability, and targeted administration, which enhances therapeutic efficacy and decreases toxicity. According to studies, essential oils and polyphenolic chemicals work in concert to prevent fungal infections when they are encapsulated in nanocarriers. For example, fungal biofilms have been successfully penetrated by liposomal and transferosomal systems, which have been successful in getting beyond resistance mechanisms. Long-term drug release is made possible by lipid-based carriers and polymeric nanoparticles, which reduce side effects and improve patient compliance. To achieve the full potential of herbal-based nanoformulations in antifungal medication, future studies should concentrate on improving stability, refining formulation methods, and carrying out extensive clinical trials to confirm safety and efficacy. There is great potential for creating safer and more efficient medicines to fight multidrug-resistant fungal infections with this novel technique.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266394984251018070842
2026-01-02
2026-01-31
Loading full text...

Full text loading...

References

  1. Gushiken A.C. Saharia K.K. Baddley J.W. Cryptococcosis. Infectious Disease Clinics 2021 35 2 493 514 10.1016/j.idc.2021.03.012 34016288
    [Google Scholar]
  2. Lakoh S. Rickman H. Sesay M. Kenneh S. Burke R. Baldeh M. Jiba D.F. Tejan Y.S. Boyle S. Koroma C. Deen G.F. Beynon F. Prevalence and mortality of cryptococcal disease in adults with advanced HIV in an urban tertiary hospital in Sierra Leone: A prospective study. BMC Infect. Dis. 2020 20 1 141 10.1186/s12879‑020‑4862‑x 32059703
    [Google Scholar]
  3. Lockhart SR Guarner J Emerging and reemerging fungal infections. Semin. Diagn. Pathol. 2019 36 3 177 181 10.1053/j.semdp.2019.04.010 31010605
    [Google Scholar]
  4. Otto WR Green AM Fungal infections in children with haematologic malignancies and stem cell transplant recipients. Br J. Haematol. 2020 189 4 607 624 10.1111/bjh.16452 32159231
    [Google Scholar]
  5. Vila T. Sultan A.S. Montelongo-Jauregui D. Jabra-Rizk M.A. Oral candidiasis: A disease of opportunity. J. Fungi 2020 6 1 15 10.3390/jof6010015 31963180
    [Google Scholar]
  6. David F. Morais J.R. Beires F. Greenfield H. Fernandes G.L. Invasive pulmonary aspergillosis after COVID-19 pneumonia. Eur. J. Case Rep Intern Med. 2022 9 3 003209 10.12890/2022_003209 35402341
    [Google Scholar]
  7. Swain S. Ray A. Sarda R. Vyas S. Singh G. Jorwal P. Kodan P. Khanna P. Xess I. Sinha S. Wig N. Trikha A. COVID‐19‐associated subacute invasive pulmonary aspergillosis. Mycoses 2022 65 1 57 64 10.1111/myc.13369 34541719
    [Google Scholar]
  8. Blot S. Rello J. Koulenti D. Diagnosing invasive pulmonary aspergillosis in ICU patients: Putting the puzzle together. Curr. Opin. Crit. Care 2019 25 5 430 437 10.1097/MCC.0000000000000637 31361683
    [Google Scholar]
  9. Hadrich I. Ayadi A. Epidemiology of antifungal susceptibility: Review of literature. J. Mycol. Med. 2018 28 3 574 584 10.1016/j.mycmed.2018.04.011 29773435
    [Google Scholar]
  10. Jamzivar F. Shams-Ghahfarokhi M. Khoramizadeh M. Yousefi N. Gholami-Shabani M. Razzaghi-Abyaneh M. Unraveling the importance of molecules of natural origin in antifungal drug development through targeting ergosterol biosynthesis pathway. Iran. J. Microbiol. 2019 11 6 448 459 [PMID: 32148676
    [Google Scholar]
  11. Poissy J. Damonti L. Bignon A. Khanna N. Von Kietzell M. Boggian K. Neofytos D. Vuotto F. Coiteux V. Artru F. Zimmerli S. Pagani J.L. Calandra T. Sendid B. Poulain D. van Delden C. Lamoth F. Marchetti O. Bochud P.Y. Risk factors for candidemia: A prospective matched case-control study. Crit. Care 2020 24 1 109 10.1186/s13054‑020‑2766‑1 32188500
    [Google Scholar]
  12. Bonifaz A. Rojas R. Tirado-Sánchez A. Chávez-López D. Mena C. Calderón L. María P.O.R. Superficial mycoses associated with diaper dermatitis. Mycopathologia 2016 181 9-10 671 679 10.1007/s11046‑016‑0020‑9 27193417
    [Google Scholar]
  13. Costa-Orlandi C.B. Sardi J.C.O. Santos C.T. Fusco-Almeida A.M. Mendes-Giannini M.J.S. In vitro characterization of Trichophyton rubrum and T. mentagrophytes biofilms. Biofouling 2014 30 6 719 727 10.1080/08927014.2014.919282 24856309
    [Google Scholar]
  14. Heidrich D. Garcia M.R. Stopiglia C.D.O. Magagnin C.M. Daboit T.C. Vetoratto G. Schwartz J. Amaro T.G. Scroferneker M.L. Dermatophytosis: A 16-year retrospective study in a metropolitan area in southern Brazil. J. Infect. Dev. Ctries. 2015 9 8 865 871 10.3855/jidc.5479 26322879
    [Google Scholar]
  15. Maraki S. Mavromanolaki V.E. Epidemiology of Dermatophytoses in Crete, Greece. Med. Mycol. J. 2016 57 4 E69 E75 10.3314/mmj.16‑00008 27904054
    [Google Scholar]
  16. Queiroz-Telles F. Fahal A.H. Falci D.R. Caceres D.H. Chiller T. Pasqualotto A.C. Neglected endemic mycoses. Lancet Infect. Dis. 2017 17 11 e367 e377 10.1016/S1473‑3099(17)30306‑7 28774696
    [Google Scholar]
  17. Carrasco-Zuber J.E. Navarrete-Dechent C. Bonifaz A. Fich F. Vial-Letelier V. Berroeta-Mauriziano D. Cutaneous involvement in deep mycoses: A review of the literature. Part 2. Systemic mycoses. Actas Dermosifiliogr. 2016 107 10 816 822 10.1016/j.adengl.2016.05.027 27499249
    [Google Scholar]
  18. Bollam R. Yassin M. Phan T. Disseminated cryptococcosis in an immunocompetent patient. Respir. Med. Case Rep. 2020 30 101034 10.1016/j.rmcr.2020.101034 32190544
    [Google Scholar]
  19. Papachristou S.G. Iosifidis E. Sipsas N.V. Gamaletsou M.N. Walsh T.J. Roilides E. Management of osteoarticular fungal infections in the setting of immunodeficiency. Expert Rev. Anti Infect. Ther. 2020 18 5 461 474 10.1080/14787210.2020.1748499 32213145
    [Google Scholar]
  20. El-Baba F. Gao Y. Soubani A.O. Pulmonary aspergillosis: What the generalist needs to know. Am. J. Med. 2020 133 6 668 674 10.1016/j.amjmed.2020.02.025 32240631
    [Google Scholar]
  21. WHO fungal priority pathogens list to guide research, development, and public health action. 2022 Available from:https://www.who.int/publications/i/item/9789240060241
  22. Hasim S. Coleman J.J. Targeting the fungal cell wall: Current therapies and implications for development of alternative antifungal agents. Future Med. Chem. 2019 11 8 869 883 10.4155/fmc‑2018‑0465 30994368
    [Google Scholar]
  23. Aneshwari R.K. Yadav K. Banjara R.A. Kumar A. Kujur A. Jain V. Standardization and comparative evaluation of phytochemical content and antioxidant activity of Alocasia indica and Tephrosia purpurea. Int. J. Health. Sci. 2022 II 2241 2251 10.53730/ijhs.v6nS2.5485
    [Google Scholar]
  24. Mazu T.K. Bricker B.A. Flores-Rozas H. Ablordeppey S.Y. The mechanistic targets of antifungal agents: An overview. Mini Rev. Med. Chem. 2016 16 7 555 578 10.2174/1389557516666160118112103 26776224
    [Google Scholar]
  25. Abd Rashed A. Rathi D.N.G. Ahmad Nasir N.A.H. Abd Rahman A.Z. Antifungal properties of essential oils and their compounds for application in skin fungal infections: Conventional and nonconventional approaches. Molecules 2021 26 4 1093 10.3390/molecules26041093 33669627
    [Google Scholar]
  26. Fairlamb A.H. Gow N.A.R. Matthews K.R. Waters A.P. Drug resistance in eukaryotic microorganisms. Nat. Microbiol. 2016 1 7 16092 10.1038/nmicrobiol.2016.92 27572976
    [Google Scholar]
  27. Powers C.N. Osier J.L. McFeeters R.L. Brazell C.B. Olsen E.L. Moriarity D.M. Satyal P. Setzer W.N. Antifungal and cytotoxic activities of sixty commercially available essential oils. Molecules 2018 23 7 1549 10.3390/molecules23071549 29954086
    [Google Scholar]
  28. Mutlu-Ingok A. Devecioglu D. Dikmetas D.N. Karbancioglu-Guler F. Capanoglu E. Antibacterial, antifungal, antimycotoxigenic, and antioxidant activities of essential oils: An updated review. Molecules 2020 25 20 4711 10.3390/molecules25204711 33066611
    [Google Scholar]
  29. Laffleur F. Keckeis V. Advances in drug delivery systems: Work in progress still needed? Int. J. Pharm. 2020 590 119912 10.1016/j.ijpharm.2020.119912 32971178
    [Google Scholar]
  30. Srivastava R. Rawat A.K.S. Mishra M.K. Patel A.K. Advancements in nanotechnology for enhanced antifungal drug delivery: A comprehensive review. Infect. Disord. Drug Targets 2024 24 2 021123223053 10.2174/0118715265266257231022134933 38291868
    [Google Scholar]
  31. Yassin M.T. Al-Otibi F.O. Maniah K. Mohamed S. Hasan K.A. Negi A. AbdelGawwad M.R. Synergistic antifungal efficiency of eco-friendly synthesized zinc oxide nanoparticles in combination with fluconazole against drug-resistant candidal strains. Pol. J. Environ. Stud. 2025 34 2 1851 1865 10.15244/pjoes/188144
    [Google Scholar]
  32. Kaur H. Wadhwa K. Exploration of New Plant-Based Nanoparticles with Potential Antifungal Activity and their Mode of Action. Advances in Antifungal Drug Development. Singapore Springer 2024 345 371 10.1007/978‑981‑97‑5165‑5_12
    [Google Scholar]
  33. Debourgogne A. Dorin J. Machouart M. Emerging infections due to filamentous fungi in humans and animals: Only the tip of the iceberg? Environ. Microbiol. Rep. 2016 8 3 332 342 10.1111/1758‑2229.12404 27058996
    [Google Scholar]
  34. Jeong W. Keighley C. Wolfe R. Lee W.L. Slavin M.A. Kong D.C.M. Chen S.C.A. The epidemiology and clinical manifestations of mucormycosis: A systematic review and meta-analysis of case reports. Clin. Microbiol. Infect. 2019 25 1 26 34 10.1016/j.cmi.2018.07.011 30036666
    [Google Scholar]
  35. Du H. Bing J. Hu T. Ennis C.L. Nobile C.J. Huang G. Candida auris: Epidemiology, biology, antifungal resistance, and virulence. PLoS Pathog. 2020 16 10 1008921 10.1371/journal.ppat.1008921 33091071
    [Google Scholar]
  36. Schoch C.L. Ciufo S. Domrachev M. Hotton C.L. Kannan S. Khovanskaya R. Leipe D. Mcveigh R. O’Neill K. Robbertse B. Sharma S. Soussov V. Sullivan J.P. Sun L. Turner S. Karsch-Mizrachi I. NCBI Taxonomy: A comprehensive update on curation, resources and tools. Database 2020 2020 baaa062 10.1093/database/baaa062 32761142
    [Google Scholar]
  37. Auyeung A. Casillas-Santana M.Á. Martínez-Castañón G.A. Slavin Y.N. Zhao W. Asnis J. Häfeli U.O. Bach H. Effective control of molds using a combination of nanoparticles. PLoS One 2017 12 1 0169940 10.1371/journal.pone.0169940 28122038
    [Google Scholar]
  38. Tekaia F. Latgé J.P. Aspergillus fumigatus: Saprophyte or pathogen? Curr. Opin. Microbiol. 2005 8 4 385 392 10.1016/j.mib.2005.06.017 16019255
    [Google Scholar]
  39. Kirkland T.N. Fierer J. Coccidioides immitis and posadasii; A review of their biology, genomics, pathogenesis, and host immunity. Virulence 2018 9 1 1426 1435 10.1080/21505594.2018.1509667 30179067
    [Google Scholar]
  40. Engelthaler D.M. Roe C.C. Hepp C.M. Teixeira M. Driebe E.M. Schupp J.M. Gade L. Waddell V. Komatsu K. Arathoon E. Logemann H. Thompson G.R. Chiller T. Barker B. Keim P. Litvintseva A.P. Local population structure and patterns of Western Hemisphere dispersal for Coccidioides spp., the fungal cause of Valley Fever. MBio 2016 7 2 e00550 16 10.1128/mBio.00550‑16 27118594
    [Google Scholar]
  41. Twarog M. Thompson G.R. Coccidioidomycosis: Recent updates. Semin. Respir. Crit. Care Med. 2015 36 5 746 755 10.1055/s‑0035‑1562900 26398540
    [Google Scholar]
  42. Ibrahim A.S. Spellberg B. Walsh T.J. Kontoyiannis D.P. Pathogenesis of Mucormycosis. Clin. Infect. Dis 2012 54 Suppl1 Suppl 1 S16 S22 10.1093/cid/cir865 22247441
    [Google Scholar]
  43. Uppuluri P Alqarihi A Ibrahim AS Mucormycoses.
  44. Mba I.E. Nweze E.I. The use of nanoparticles as alternative therapeutic agents against Candida infections: An up-to-date overview and future perspectives. World J. Microbiol. Biotechnol. 2020 36 11 163 10.1007/s11274‑020‑02940‑0 32990838
    [Google Scholar]
  45. Spivak E.S. Hanson K.E. Candida auris: An emerging fungal pathogen. J. Clin. Microbiol. 2018 56 2 e01588 17 10.1128/JCM.01588‑17 29167291
    [Google Scholar]
  46. Jeevanandam J. Chan Y.S. Danquah M.K. Nano-formulations of drugs: Recent developments, impact and challenges. Biochimie 2016 128-129 99 112 10.1016/j.biochi.2016.07.008 27436182
    [Google Scholar]
  47. Dhawan S. Hooda P. Nanda S. Herbal Nano formulations: Patent and regulatory overview. Appl. Clin. Res. Clin. Trials Regul. Aff. 2018 5 3 159 180 10.2174/2213476X0501180528085407
    [Google Scholar]
  48. Sachan A.K. Gupta A. A review on nanotized herbal drugs. Int. J. Pharm. Sci. Res. 2015 6 3 961
    [Google Scholar]
  49. Sharma M. Mondal D. Mukesh C. Prasad K. Preparation of tamarind gum based soft ion gels having thixotropic properties. Carbohydr. Polym. 2014 102 467 471 10.1016/j.carbpol.2013.11.063 24507307
    [Google Scholar]
  50. Deepak Yadav DY Suruchi Suri SS Choudhary AA Mohd Sikender MS Hemant H Beg MN Veena Garg VG Altaf Ahmad AA Mohd Asif, MA Novel approach: Herbal remedies and natural products in pharmaceutical science as nano drug delivery systems. Int. J. Pharm. Technol 2011 3 3 3092 3116
    [Google Scholar]
  51. Yen F.L. Wu T.H. Lin L.T. Cham T.M. Lin C.C. Nanoparticles formulation of Cuscuta chinensis prevents acetaminophen-induced hepatotoxicity in rats. Food Chem. Toxicol. 2008 46 5 1771 1777 10.1016/j.fct.2008.01.021 18308443
    [Google Scholar]
  52. Mansingh P.P. Adhikari L. Dhara M. Herbal nanoparticles: A commitment towards contemporary approach. Indian J. Pharm. Educ. Res. 2023 57 3s s465 s480 10.5530/ijper.57.3s.55
    [Google Scholar]
  53. Imenshahidi M. Hosseinzadeh H. Berberis vulgaris and berberine: An update review. Phytother. Res. 2016 30 11 1745 1764 10.1002/ptr.5693 27528198
    [Google Scholar]
  54. Cushnie T.P.T. Lamb A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005 26 5 343 356 10.1016/j.ijantimicag.2005.09.002 16323269
    [Google Scholar]
  55. Ul-Islam M. Shehzad A. Khan S. Khattak W.A. Ullah M.W. Park J.K. Antimicrobial and biocompatible properties of nanomaterials. J. Nanosci. Nanotechnol. 2014 14 1 780 791 10.1166/jnn.2014.8761 24730297
    [Google Scholar]
  56. Mazumder R. Mendiratta T. Mondal S.C. Mazumder A. Antimicrobial potency of the leaf-stalk extract of Curcuma longa (LINN). Anc. Sci. Life 2000 20 1-2 92 96 [PMID: 22557005
    [Google Scholar]
  57. Pathak K. Herbal nanotechnology: Innovations and applications inmodern medicine. Indian J. Nat. Prod 2023 14 10
    [Google Scholar]
  58. Ahmad A. Molepo J. Patel M. Challenges in the development of antifungal agents against Candida: Scope of phytochemical research. Curr. Pharm. Des. 2016 22 27 4135 4150 10.2174/1381612822666160607072748 27281333
    [Google Scholar]
  59. Panariti A. Miserocchi G. Rivolta I. The effect of nanoparticle uptake on cellular behavior: Disrupting or enabling functions? Nanotechnol. Sci. Appl. 2012 5 87 100 10.2147/NSA.S25515 24198499
    [Google Scholar]
  60. Sahay G. Alakhova D.Y. Kabanov A.V. Endocytosis of nanomedicines. J. Control. Release 2010 145 3 182 195 10.1016/j.jconrel.2010.01.036 20226220
    [Google Scholar]
  61. Ravi Kumar M.N.V. Bakowsky U. Lehr C.M. Preparation and characterization of cationic PLGA nanospheres as DNA carriers. Biomaterials 2004 25 10 1771 1777 10.1016/j.biomaterials.2003.08.069 14738840
    [Google Scholar]
  62. Liu Y. Tan J. Thomas A. Ou-Yang D. Muzykantov V.R. The shape of things to come: Importance of design in nanotechnology for drug delivery. Ther. Deliv. 2012 3 2 181 194 10.4155/tde.11.156 22834196
    [Google Scholar]
  63. Geng Y. Dalhaimer P. Cai S. Tsai R. Tewari M. Minko T. Discher D.E. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2007 2 4 249 255 10.1038/nnano.2007.70 18654271
    [Google Scholar]
  64. Patil V.R.S. Campbell C.J. Yun Y.H. Slack S.M. Goetz D.J. Particle diameter influences adhesion under flow. Biophys. J. 2001 80 4 1733 1743 10.1016/S0006‑3495(01)76144‑9 11259287
    [Google Scholar]
  65. Rupp R. Rosenthal S.L. Stanberry L.R. VivaGel (SPL7013 Gel): A candidate dendrimer--microbicide for the prevention of HIV and HSV infection. Int. J. Nanomedicine 2007 2 4 561 566 [PMID: 18203424
    [Google Scholar]
  66. Cooper D.L. Conder C.M. Harirforoosh S. Nanoparticles in drug delivery: Mechanism of action, formulation and clinical application towards reduction in drug-associated nephrotoxicity. Expert Opin. Drug Deliv. 2014 11 10 1661 1680 10.1517/17425247.2014.938046 25054316
    [Google Scholar]
  67. Yadav R. Pradhan M. Yadav K. Mahalvar A. Yadav H. Present scenarios and future prospects of herbal nanomedicine for antifungal therapy. J. Drug Deliv. Sci. Technol. 2022 74 103430 10.1016/j.jddst.2022.103430 35582019
    [Google Scholar]
  68. Shilpa V.P. Samuel Thavamani B. Roshni E.R. Sangeetha Vijayan U. Lekshmi Panicker M.S. Bhagyasree S. Jilsha G. Muddukrishnaiah K. Green synthesis Zinc Oxide nanoparticle using Allamanda cathartica leaf extract and their cytotoxic and antibacterial activity. Nanomedicine Research Journal 2020 5 3 298 305
    [Google Scholar]
  69. Srinivasan N. S. Recent advances in herbal-nano formulation: A systematic review. Asian. J. Biol. Life Sci. 2023 12 1 22 32 10.5530/ajbls.2023.12.4
    [Google Scholar]
  70. Shi X. Zhou W. Ma D. Ma Q. Bridges D. Ma Y. Hu A. Electrospinning of nanofibers and their applications for energy devices. J. Nanomater. 2015 2015 1 140716 10.1155/2015/140716
    [Google Scholar]
  71. Ahlin Grabnar P. Kristl J. The manufacturing techniques of drug-loaded polymeric nanoparticles from preformed polymers. J. Microencapsul. 2011 28 4 323 335 10.3109/02652048.2011.569763 21545323
    [Google Scholar]
  72. Jain S. Cherukupalli S.K. Mahmood A. Gorantla S. Rapalli V.K. Dubey S.K. Singhvi G. Emerging nanoparticulate systems: Preparation techniques and stimuli responsive release characteristics. J. Appl. Pharm. Sci. 2019 9 8 130 143 10.7324/JAPS.2019.90817
    [Google Scholar]
  73. Song C.X. Labhasetwar V. Murphy H. Qu X. Humphrey W.R. Shebuski R.J. Levy R.J. Formulation and characterization of biodegradable nanoparticles for intravascular local drug delivery. J. Control. Release 1997 43 2-3 197 212 10.1016/S0168‑3659(96)01484‑8
    [Google Scholar]
  74. Naseri N. Valizadeh H. Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application. Adv. Pharm. Bull. 2015 5 3 305 313 10.15171/apb.2015.043 26504751
    [Google Scholar]
  75. Parhi R. Suresh P. Preparation and characterization of solid lipid nanoparticles-a review. Curr. Drug Discov. Technol. 2012 9 1 2 16 10.2174/157016312799304552 22235925
    [Google Scholar]
  76. Nagavarma B.V. Yadav H.K. Ayaz A.V. Vasudha L.S. Shivakumar H.G. Different techniques for the preparation of polymeric nanoparticles review. Asian J. Pharm. Clin. Res. 2012 5 3 16 23
    [Google Scholar]
  77. Loh Z.H. Samanta A.K. Sia Heng P.W. Overview of milling techniques for improving the solubility of poorly water-soluble drugs. Asian J. Pharm. Sci. 2015 10 4 255 274 10.1016/j.ajps.2014.12.006
    [Google Scholar]
  78. Plant R.M. Dinh L. Argo S. Shah M. The essentials of essential oils. Adv. Pediatr. 2019 66 111 122 10.1016/j.yapd.2019.03.005 31230688
    [Google Scholar]
  79. Elaissi A. Rouis Z. Salem N.A.B. Mabrouk S. ben Salem, Y.; Salah, K.B.H.; Aouni, M.; Farhat, F.; Chemli, R.; Harzallah-Skhiri, F.; Khouja, M.L. Chemical composition of 8 eucalyptus species’ essential oils and the evaluation of their antibacterial, antifungal and antiviral activities. BMC Complement. Altern. Med. 2012 12 1 81 10.1186/1472‑6882‑12‑81 22742534
    [Google Scholar]
  80. Tariq S. Wani S. Rasool W. Shafi K. Bhat M.A. Prabhakar A. Shalla A.H. Rather M.A. A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microb. Pathog. 2019 134 103580 10.1016/j.micpath.2019.103580 31195112
    [Google Scholar]
  81. Uma K. Huang X. Kumar B.A. Antifungal effect of plant extract and essential oil. Chin. J. Integr. Med. 2017 23 3 233 239 10.1007/s11655‑016‑2524‑z 27590142
    [Google Scholar]
  82. Kalemba D. Kunicka A. Antibacterial and antifungal properties of essential oils. Curr. Med. Chem. 2003 10 10 813 829 10.2174/0929867033457719 12678685
    [Google Scholar]
  83. Tolba H. Moghrani H. Benelmouffok A. Kellou D. Maachi R. Essential oil of Algerian Eucalyptus citriodora: Chemical composition, antifungal activity. J. Mycol. Med. 2015 25 4 e128 e133 10.1016/j.mycmed.2015.10.009 26597375
    [Google Scholar]
  84. da Silva Bomfim N. Kohiyama C.Y. Nakasugi L.P. Nerilo S.B. Mossini S.A.G. Romoli J.C.Z. Graton Mikcha J.M. Abreu Filho B.A. Machinski M. Antifungal and antiaflatoxigenic activity of rosemary essential oil (Rosmarinus officinalis L.) against Aspergillus flavus. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2020 37 1 153 161 10.1080/19440049.2019.1678771 31644378
    [Google Scholar]
  85. Maccioni A. Falconieri D. Porcedda S. Piras A. Gonçalves M.J. Alves-Silva J.M. Salgueiro L. Maxia A. Antifungal activity and chemical composition of the essential oil from the aerial parts of two new Teucrium capitatum L. chemotypes from Sardinia Island, Italy. Nat. Prod. Res. 2021 35 24 6007 6013 10.1080/14786419.2020.1813136 32856485
    [Google Scholar]
  86. Ghasemi G. Alirezalu A. Ishkeh S.R. Ghosta Y. Phytochemical properties of essential oil from Artemisia sieberi Besser (Iranian accession) and its antioxidant and antifungal activities. Nat. Prod. Res. 2021 35 21 4154 4158 10.1080/14786419.2020.1741576 32202146
    [Google Scholar]
  87. Da X. Nishiyama Y. Tie D. Hein K.Z. Yamamoto O. Morita E. Antifungal activity and mechanism of action of Ou-gon (Scutellaria root extract) components against pathogenic fungi. Sci. Rep. 2019 9 1 1683 10.1038/s41598‑019‑38916‑w 30737463
    [Google Scholar]
  88. Simonetti G. Brasili E. Pasqua G. Antifungal activity of phenolic and polyphenolic compounds from different matrices of Vitis vinifera L. against human pathogens. Molecules 2020 25 16 3748 10.3390/molecules25163748 32824589
    [Google Scholar]
  89. Meena B.R. Meena S. Chittora D. Sharma, K Antifungal efficacy of Thevetia peruviana leaf extract against Alternaria solani and characterization of novel inhibitory compounds by Gas Chromatography-Mass Spectrometry analysis. Biochem. Biophys. Rep. 2021 25 100914 10.1016/j.bbrep.2021.100914 33506117
    [Google Scholar]
  90. Butassi E Svetaz LA Zhou S Wolfender JL Cortes JC Ribas JC Díaz C Perez-del Palacio J Vicente F Zacchino SA The antifungal activity and mechanisms of action of quantified extracts from berries, leaves and roots of Phytolacca tetramera. Phytomedicine 2019 60 152884 10.1016/j.phymed.2019.152884 30922815
    [Google Scholar]
  91. Xu W Li J Li D Tan J Ma H Mu Y Wen Y Gan L Huang X Li L Chemical characterization, antiproliferative and antifungal activities of Clinacanthus nutans. Fitoterapia 2021 155 105061 10.1016/j.fitote.2021.105061 34673146
    [Google Scholar]
  92. Li X. Wang X. Li C. Khutsishvili M. Fayvush G. Atha D. Zhang Y. Borris R.P. Unusual flavones from primula macrocalyx as inhibitors of OAT1 and OAT3 and as antifungal agents against Candida rugosa. Sci. Rep. 2019 9 1 9230 10.1038/s41598‑019‑45728‑5 31239507
    [Google Scholar]
  93. do Nascimento A.M. Salvador M.J. Candido R.C. de Albuquerque S. de Oliveira D.C.R. Trypanocidal and antifungal activities of p -hydroxyacetophenone derivatives from Calea uniflora (Heliantheae, Asteraceae). J. Pharm. Pharmacol. 2004 56 5 663 669 10.1211/0022357023231 15142345
    [Google Scholar]
  94. Kumar Mishra K. Deep Kaur C. Kumar Sahu A. Panik R. Kashyap P. Prasad Mishra S. Dutta S. Medicinal plants having antifungal properties. Medicinal Plants-Use in Prevention and Treatment of Diseases 2020 1 4 10.5772/intechopen.90674
    [Google Scholar]
  95. Kang T.H. Hwang E.I. Yun B.S. Shin C.S. Kim S.U. Chitin synthase 2 inhibitory activity of O-methyl pisiferic acid and 8,20-dihydroxy-9(11),13-abietadien-12-one, isolated from Chamaecyparis pisifera. Biol. Pharm. Bull. 2008 31 4 755 759 10.1248/bpb.31.755 18379078
    [Google Scholar]
  96. Manojlovic N.T. Solujic S. Sukdolak S. Milosev M. Antifungal activity of Rubia tinctorum, Rhamnus frangula and Caloplaca cerina. Fitoterapia 2005 76 2 244 246 10.1016/j.fitote.2004.12.002 15752641
    [Google Scholar]
  97. Kim Y.M. Lee C.H. Kim H.G. Lee H.S. Anthraquinones isolated from Cassia tora (Leguminosae) seed show an antifungal property against phytopathogenic fungi. J. Agric. Food Chem. 2004 52 20 6096 6100 10.1021/jf049379p 15453672
    [Google Scholar]
  98. Bawazeer S. Rauf A. In vitro antibacterial and antifungal potential of amyrin‐type triterpenoid isolated from Datura metel Linnaeus. BioMed Res. Int. 2021 2021 1 1543574 10.1155/2021/1543574 34589544
    [Google Scholar]
  99. Castro J.C. Pante G.C. Centenaro B.M. Almeida R.T.R.D. Pilau E.J. Dias Filho B.P. Mossini S.A.G. Abreu Filho B.A.D. Matioli G. Machinski M. Junior Antifungal and antimycotoxigenic effects of Zingiber officinale, Cinnamomum zeylanicum and Cymbopogon martinii essential oils against Fusarium verticillioides. Food. Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2020 37 9 1531 1541 10.1080/19440049.2020.1778183 32684097
    [Google Scholar]
  100. Portillo A Vila R Freixa B Ferro E Parella T Casanova J Cañigueral S Antifungal sesquiterpene from the root of Vernonanthura tweedieana. J. Ethnopharmacol. 2005 97 1 49 52 10.1016/j.jep.2004.09.052 15652274
    [Google Scholar]
  101. Yemele Bouberte M. Krohn K. Hussain H. Dongo E. Schulz B. Hu Q. Tithoniamarin and tithoniamide: A structurally unique isocoumarin dimer and a new ceramide fromTithonia diversifolia. Nat. Prod. Res. 2006 20 9 842 849 10.1080/14786410500462892 16753922
    [Google Scholar]
  102. de Souza Araújo E. Pimenta A.S. Feijó F.M.C. Castro R.V.O. Fasciotti M. Monteiro T.V.C. de Lima K.M.G. Antibacterial and antifungal activities of pyroligneous acid from wood of Eucalyptus urograndis and Mimosa tenuiflora. J. Appl. Microbiol. 2018 124 1 85 96 10.1111/jam.13626 29095556
    [Google Scholar]
  103. Sampietro D.A. Gomez A.A. Jimenez C.M. Lizarraga E.F. Ibatayev Z.A. Suleimen Y.M. Catalán C.A. Chemical composition and antifungal activity of essential oils from medicinal plants of Kazakhstan. Nat. Prod. Res. 2017 31 12 1464 1467 10.1080/14786419.2016.1258560 27879146
    [Google Scholar]
  104. Leite J.J.G. Brito É.H.S. Cordeiro R.A. Brilhante R.S.N. Sidrim J.J.C. Bertini L.M. Morais S.M. Rocha M.F.G. Chemical composition, toxicity and larvicidal and antifungal activities of Persea americana (avocado) seed extracts. Rev. Soc. Bras. Med. Trop. 2009 42 2 110 113 10.1590/S0037‑86822009000200003 19448924
    [Google Scholar]
  105. Torres K. Lima S. Ueda S. Activity of the aqueous extract of Schinus terebinthifolius Raddi on strains of the Candida genus. Rev. Bras. Ginecol. Obstet. 2016 38 12 593 599 10.1055/s‑0036‑1597694 28038478
    [Google Scholar]
  106. Savarirajan D. Ramesh V.M. Muthaiyan A. In vitro antidermatophytic activity of bioactive compounds from selected medicinal plants. J. Anal. Sci. Technol. 2021 12 1 53 10.1186/s40543‑021‑00304‑3 34745684
    [Google Scholar]
  107. Chen C. Long L. Zhang F. Chen Q. Chen C. Yu X. Liu Q. Bao J. Long Z. Antifungal activity, main active components and mechanism of Curcuma longa extract against Fusarium graminearum. PLoS One 2018 13 3 0194284 10.1371/journal.pone.0194284 29543859
    [Google Scholar]
  108. Jassal K. Kaushal S. Rashmi; Rani, R. Antifungal potential of guava (Psidium guajava) leaves essential oil, major compounds: Beta-caryophyllene and caryophyllene oxide. Arch. Phytopathol. Pflanzenschutz 2021 54 19-20 2034 2050 10.1080/03235408.2021.1968287
    [Google Scholar]
  109. Santos K.K.A. Matias E.F.F. Tintino S.R. Souza C.E.S. Braga M.F.B.M. Guedes G.M.M. Costa J.G.M. Menezes I.R.A. Coutinho H.D.M. Enhancement of the antifungal activity of antimicrobial drugs by Eugenia uniflora L. J. Med. Food 2013 16 7 669 671 10.1089/jmf.2012.0245 23819641
    [Google Scholar]
  110. Wilson B. Abraham G. Manju V.S. Mathew M. Vimala B. Sundaresan S. Nambisan B. Antimicrobial activity of Curcuma zedoaria and Curcuma malabarica tubers. J. Ethnopharmacol. 2005 99 1 147 151 10.1016/j.jep.2005.02.004 15848035
    [Google Scholar]
  111. Khan H. Mubarak M.S. Amin S. Antifungal potential of alkaloids as an emerging therapeutic target. Curr. Drug Targets 2017 18 16 1825 1835 10.2174/1389450117666160719095517 27440186
    [Google Scholar]
  112. Kumar A. Khan F. Saikia D. Exploration of medicinal plants as sources of novel anticandidal drugs. Curr. Top. Med. Chem. 2019 19 28 2579 2592 10.2174/1568026619666191025155856 31654513
    [Google Scholar]
  113. Arif T. Bhosale J.D. Kumar N. Mandal T.K. Bendre R.S. Lavekar G.S. Dabur R. Natural products - Antifungal agents derived from plants. J. Asian Nat. Prod. Res. 2009 11 7 621 638 10.1080/10286020902942350 20183299
    [Google Scholar]
  114. Liu Q. Luyten W. Pellens K. Wang Y. Wang W. Thevissen K. Liang Q. Cammue B.P.A. Schoofs L. Luo G. Antifungal activity in plants from Chinese traditional and folk medicine. J. Ethnopharmacol. 2012 143 3 772 778 10.1016/j.jep.2012.06.019 22867635
    [Google Scholar]
  115. Rajeh M.A.B. Zuraini Z. Sasidharan S. Latha L.Y. Amutha S. Assessment of Euphorbia hirta L. leaf, flower, stem and root extracts for their antibacterial and antifungal activity and brine shrimp lethality. Molecules 2010 15 9 6008 6018 10.3390/molecules15096008 20877206
    [Google Scholar]
  116. Bottari N.B. Lopes L.Q.S. Pizzuti K. Filippi dos Santos Alves C. Corrêa M.S. Bolzan L.P. Zago A. de Almeida Vaucher R. Boligon A.A. Giongo J.L. Baldissera M.D. Santos R.C.V. Antimicrobial activity and phytochemical characterization of Carya illinoensis. Microb. Pathog. 2017 104 190 195 10.1016/j.micpath.2017.01.037 28126664
    [Google Scholar]
  117. de Andrade Monteiro C dos Santos JR Phytochemicals and their antifungal potential against pathogenic yeasts. In: Phytochemicals in Human Health. IntechOpen 2019 10.5772/intechopen.87302
    [Google Scholar]
  118. Waller S.B. Cleff M.B. Serra E.F. Silva A.L. Gomes A.R. de Mello J.R.B. de Faria R.O. Meireles M.C.A. Plants from Lamiaceae family as source of antifungal molecules in humane and veterinary medicine. Microb. Pathog. 2017 104 232 237 10.1016/j.micpath.2017.01.050 28131955
    [Google Scholar]
  119. Barros Cota B. Batista Carneiro de Oliveira D. Carla Borges T. Cristina Catto A. Valverde Serafim C. Rogelis Aquiles Rodrigues A. Kohlhoff M. Leomar Zani C. Assunção Andrade A. Antifungal activity of extracts and purified saponins from the rhizomes of Chamaecostus cuspidatus against Candida and Trichophyton species. J. Appl. Microbiol. 2021 130 1 61 75 10.1111/jam.14783 32654270
    [Google Scholar]
  120. Terças A.G. Monteiro A.S. Moffa E.B. Santos J.R.A. Sousa E.M. Pinto A.R.B. Costa P.C.S. Borges A.C.R. Torres L.M.B. Barros Filho A.K.D. Fernandes E.S. Monteiro C.A. Phytochemical characterization of Terminalia catappa Linn. extracts and their antifungal activities against Candida spp. Front. Microbiol. 2017 8 595 10.3389/fmicb.2017.00595 28443078
    [Google Scholar]
  121. Akroum S. Antifungal activity of acetone extracts from Punica granatum L., Quercus suber L. and Vicia faba L. J. Mycol. Med. 2017 27 1 83 89 10.1016/j.mycmed.2016.10.004 27856170
    [Google Scholar]
  122. El-Sakhawy M. Abusalim G. Ashour A. Balah M. Action mechanisms of medicinal plant components as antimycosis: a literature review. Salud Cienc Tecnol 2025 5 1647 10.56294/saludcyt20251647
    [Google Scholar]
  123. Mani-López E. Cortés-Zavaleta O. López-Malo A. A review of the methods used to determine the target site or the mechanism of action of essential oils and their components against fungi. SN Appl. Sci. 2021 3 1 44 10.1007/s42452‑020‑04102‑1
    [Google Scholar]
  124. Shahina Z. Dahms T.E.S. A comparative review of eugenol and citral anticandidal mechanisms: Partners in crimes against fungi. Molecules 2024 29 23 5536 10.3390/molecules29235536 39683696
    [Google Scholar]
  125. Peralta-Ruiz Y. Molina Hernandez J.B. Grande-Tovar C.D. Serio A. Valbonetti L. Chaves-López C. Antifungal mechanism of Ruta graveolens essential oil: A Colombian traditional alternative against anthracnose caused by Colletotrichum gloeosporioides. Molecules 2024 29 15 3516 10.3390/molecules29153516 39124920
    [Google Scholar]
  126. Akroum S. Antifungal activity of Camellia sinensis crude extracts against four species of Candida and Microsporum persicolor. J. Mycol. Med. 2018 28 3 424 427 10.1016/j.mycmed.2018.06.003 29960870
    [Google Scholar]
  127. Todorović V. Milenković M. Vidović B. Todorović Z. Sobajić S. Correlation between antimicrobial, antioxidant activity, and polyphenols of alkalized/nonalkalized cocoa powders. J. Food Sci. 2017 82 4 1020 1027 [Apr; 10.1111/1750‑3841.13672 28272800
    [Google Scholar]
  128. Huang R. Song H. Li S. Guan X. Selection strategy for encapsulation of hydrophilic and hydrophobic ingredients with food-grade materials: A systematic review and analysis. Food Chem. X 2025 25 102149 10.1016/j.fochx.2024.102149 39867216
    [Google Scholar]
  129. Bilia A.R. Isacchi B. Righeschi C. Guccione C. Bergonzi M.C. Flavonoids loaded in nanocarriers: An opportunity to increase oral bioavailability and bioefficacy. Food Nutr. Sci. 2014 5 13 1212 1327 10.4236/fns.2014.513132
    [Google Scholar]
  130. Karimi N. Ghanbarzadeh B. Hamishehkar H. Mehramuz B. Kafil HS Antioxidant, antimicrobial, and physicochemical properties of turmeric extract-loaded nanostructured lipid carrier (NLC). Colloid Interface Sci. Commun. 2018 22 18 24 10.1016/j.colcom.2017.11.006
    [Google Scholar]
  131. Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release 2001 70 1-2 1 20
    [Google Scholar]
  132. Oshiro Junior JA Mortari G.R. de Freitas R.M. Marcantonio-Junior E. Lopes L. Spolidorio L.C. Marcantonio R.A. Chiavacci L.A. Assessment of biocompatibility of ureasil-polyether hybrid membranes for future use in implantodontology. Int. J. Polym. Mater. 2016 65 13 647 652 10.1080/00914037.2016.1157796
    [Google Scholar]
  133. Hughes GA Nanostructure-mediated drug delivery. Nanomedicine 2005 1 1 22 30 10.1016/j.nano.2004.11.009 17292054
    [Google Scholar]
  134. Bhalaria MK Naik S Misra AN Ethosomes: A novel delivery system for antifungal drugs in the treatment of topical fungal diseases. Indian J. Exp. Biol. 2009 47 5 368 375 [PMID: 19579803
    [Google Scholar]
  135. Shetty S. Jose J. Kumar L. Charyulu R.N. Novel ethosomal gel of clove oil for the treatment of cutaneous candidiasis. J. Cosmet. Dermatol. 2019 18 3 862 869 10.1111/jocd.12765 30171656
    [Google Scholar]
  136. Yan F. Li L. Deng Z. Jin Q. Chen J. Yang W. Yeh C.K. Wu J. Shandas R. Liu X. Zheng H. Paclitaxel-liposome-microbubble complexes as ultrasound-triggered therapeutic drug delivery carriers. J. Control. Release 2013 166 3 246 255 10.1016/j.jconrel.2012.12.025 23306023
    [Google Scholar]
  137. Needham D. Anyarambhatla G. Kong G. Dewhirst M.W. A new temperature-sensitive liposome for use with mild hyperthermia: Characterization and testing in a human tumor xenograft model. Cancer Res. 2000 60 5 1197 1201 [PMID: 10728674
    [Google Scholar]
  138. Samad A. Sultana Y. Aqil M. Liposomal drug delivery systems: An update review. Curr. Drug Deliv. 2007 4 4 297 305 10.2174/156720107782151269 17979650
    [Google Scholar]
  139. Singh Y Meher JG Raval K Khan FA Chaurasia M Jain NK Chourasia MK Nanoemulsion: Concepts, development and applications in drug delivery. J. Control. Release 2017 252 28 49 10.1016/j.jconrel.2017.03.008 28279798
    [Google Scholar]
  140. Shetty R. Fretté X. Jensen B. Shetty N.P. Jensen J.D. Jørgensen H.J.L. Newman M.A. Christensen L.P. Silicon-induced changes in antifungal phenolic acids, flavonoids, and key phenylpropanoid pathway genes during the interaction between miniature roses and the biotrophic pathogen Podosphaera pannosa. Plant Physiol. 2011 157 4 2194 2205
    [Google Scholar]
  141. Mahajan R. Tandon R. Kalia A. Mahajan B.V.C. Nanoemulsion formulation of Ocimum gratissimum essential oil and its antifungal activity against Penicillium digitatum. J. Nanosci. Nanotechnol. 2021 21 6 3556 3565 10.1166/jnn.2021.19008 34739807
    [Google Scholar]
  142. Kammoun A.K. Khedr A. Hegazy M.A. Almalki A.J. Hosny K.M. Abualsunun W.A. Murshid S.S.A. Bakhaidar R.B. Formulation, optimization, and nephrotoxicity evaluation of an antifungal in situ nasal gel loaded with voriconazole‒clove oil transferosomal nanoparticles. Drug Deliv. 2021 28 1 2229 2240 10.1080/10717544.2021.1992040 34668818
    [Google Scholar]
  143. Tanbour R. Martins A.M. Pitt W.G. Husseini G.A. Drug delivery systems based on polymeric micelles and ultrasound: A review. Curr. Pharm. Des. 2016 22 19 2796 2807 10.2174/1381612822666160217125215 26898742
    [Google Scholar]
  144. Nishiyama N. Kato Y. Sugiyama Y. Kataoka K. Cisplatin-loaded polymer-metal complex micelle with time-modulated decaying property as a novel drug delivery system. Pharm. Res. 2001 18 7 1035 1041 10.1023/A:1010908916184 11496942
    [Google Scholar]
  145. Gaucher G. Dufresne M.H. Sant V.P. Kang N. Maysinger D. Leroux J.C. Block copolymer micelles: Preparation, characterization and application in drug delivery. J. Control. Release 2005 109 1-3 169 188 10.1016/j.jconrel.2005.09.034 16289422
    [Google Scholar]
  146. Biswas S. Kumari P. Lakhani P.M. Ghosh B. Recent advances in polymeric micelles for anti-cancer drug delivery. Eur. J. Pharm. Sci. 2016 83 184 202 10.1016/j.ejps.2015.12.031 26747018
    [Google Scholar]
  147. Yokoyama M. Polymeric micelles as a new drug carrier system and their required considerations for clinical trials. Expert Opin. Drug Deliv. 2010 7 2 145 158 10.1517/17425240903436479 20095939
    [Google Scholar]
  148. Lu Y. Park K. Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int. J. Pharm. 2013 453 1 198 214 10.1016/j.ijpharm.2012.08.042 22944304
    [Google Scholar]
  149. Hu X. Han R. Quan L.H. Liu C.Y. Liao Y.H. Stabilization and sustained release of zeylenone, a soft cytotoxic drug, within polymeric micelles for local antitumor drug delivery. Int. J. Pharm. 2013 450 1-2 331 337 10.1016/j.ijpharm.2013.04.007 23587966
    [Google Scholar]
  150. Wei Z. Hao J. Yuan S. Li Y. Juan W. Sha X. Fang X. Paclitaxel-loaded Pluronic P123/F127 mixed polymeric micelles: Formulation, optimization and in vitro characterization. Int. J. Pharm. 2009 376 1-2 176 185 10.1016/j.ijpharm.2009.04.030 19409463
    [Google Scholar]
  151. Blanco E. Kessinger C.W. Sumer B.D. Gao J. Multifunctional micellar nanomedicine for cancer therapy. Exp. Biol. Med. 2009 234 2 123 131 10.3181/0808‑MR‑250 19064945
    [Google Scholar]
  152. Vangijzegem T. Stanicki D. Laurent S. Magnetic iron oxide nanoparticles for drug delivery: Applications and characteristics. Expert Opin. Drug Deliv. 2019 16 1 69 78 10.1080/17425247.2019.1554647 30496697
    [Google Scholar]
  153. Yadav K Pradhan M Singh D Singh MR Targeting autoimmune disorders through metal nanoformulation in overcoming the fences of conventional treatment approaches. In: Translational Autoimmunity: Treatment of Autoimmune Diseases. Cambridge, Massachusetts Academic Press 2022 361 393 10.1016/B978‑0‑12‑824390‑9.00017‑7
    [Google Scholar]
  154. Mohammadi M. Shahisaraee S.A. Tavajjohi A. Pournoori N. Muhammadnejad S. Mohammadi S.R. Poursalehi R. Delavari H.H. Green synthesis of silver nanoparticles using Zingiber officinale and Thymus vulgaris extracts: Characterisation, cell cytotoxicity, and its antifungal activity against Candida albicans in comparison to fluconazole. IET Nanobiotechnol. 2019 13 2 114 119 10.1049/iet‑nbt.2018.5146 31051440
    [Google Scholar]
  155. Mohammadi F. Ghasemi Z. Familsatarian B. Salehi E. Sharifynia S. Barikani A. mirzadeh, M.; Hosseini, M.A. Relationship between antifungal susceptibility profile and virulence factors in Candida albicans isolated from nail specimens. Rev. Soc. Bras. Med. Trop. 2020 53 20190214 10.1590/0037‑8682‑0214‑2019 32049200
    [Google Scholar]
  156. Paul S. Mohanram K. Kannan I. Antifungal activity of curcumin-silver nanoparticles against fluconazole-resistant clinical isolates of Candida species. Ayu 2018 39 3 182 186 10.4103/ayu.AYU_24_18 31000996
    [Google Scholar]
  157. Kathole K.S. Hatwar P.R. Bakal R.L. Karule V.G. Nano technology-based drug delivery systems and herbal medicine. J. Drug Deliv. Ther. 2025 15 3 133 141 10.22270/jddt.v15i3.7017
    [Google Scholar]
  158. Gatto M.S. Johnson M.P. Najahi-Missaoui W. Targeted liposomal drug delivery: Overview of the current applications and challenges. Life 2024 14 6 672 10.3390/life14060672 38929656
    [Google Scholar]
  159. Kaur N. Singh G. Aggarwal D. Nanotechnology in herbal drug delivery systems: Enhancing therapeutic efficacy and patient compliance. Res. J. Pharm. Technol 2024 17 2 934 938
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266394984251018070842
Loading
/content/journals/ctmc/10.2174/0115680266394984251018070842
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test