Full text loading...
Fungal infections now cause approximately 3.75 million deaths annually, nearly double previous estimates, and account for about 6.8% of all global deaths, surpassing those from tuberculosis and malaria combined. Fungal infections have become a greater worldwide health concern due to the emergence of drug-resistant forms, especially in immunocompromised people. Common drawbacks of conventional antifungal therapies include toxicity, low absorption, and resistance development. Low solubility, instability, and non-specific targeting are some of the reasons why conventional antifungal medicines usually show limited activity, resulting in less-than-ideal therapeutic outcomes and unfavorable side effects. A viable substitute is provided by combining nanotechnology with herbal medicine. Strong antifungal activities are found in natural bioactive chemicals found in herbal extracts. Encapsulated in nanocarriers, including metallic nanoparticles, liposomes, nanoemulsions, micelles, and ethosomes, these drugs exhibit improved solubility, stability, and targeted administration, which enhances therapeutic efficacy and decreases toxicity. According to studies, essential oils and polyphenolic chemicals work in concert to prevent fungal infections when they are encapsulated in nanocarriers. For example, fungal biofilms have been successfully penetrated by liposomal and transferosomal systems, which have been successful in getting beyond resistance mechanisms. Long-term drug release is made possible by lipid-based carriers and polymeric nanoparticles, which reduce side effects and improve patient compliance. To achieve the full potential of herbal-based nanoformulations in antifungal medication, future studies should concentrate on improving stability, refining formulation methods, and carrying out extensive clinical trials to confirm safety and efficacy. There is great potential for creating safer and more efficient medicines to fight multidrug-resistant fungal infections with this novel technique.
Article metrics loading...
Full text loading...
References
Data & Media loading...