Skip to content
2000
image of Ellagic Acid as a Therapeutic Agent for Blood-Brain Barrier Restoration in Neurodegenerative Diseases

Abstract

The Blood-Brain Barrier (BBB) plays a crucial role in maintaining the stability of the Central Nervous System (CNS) by regulating what enters and protecting the brain from inflammation and damage caused by harmful molecules. The disruption of the BBB is a characteristic feature of several neurodegenerative disorders and is intimately linked to oxidative stress, inflammation, and apoptosis. Ellagic Acid (EA), a polyphenolic molecule present in several fruits and nuts, has attracted interest due to its significant antioxidant, anti-inflammatory, and neuroprotective characteristics. This review examine recent findings on how EA might help keep the BBB healthy and reduce brain damage. EA works by increasing the levels of tight junction proteins, boosting antioxidant processes, and managing cell death pathways. The review also discusses EA's limited bioavailability and emphasises the therapeutic potential of its gut-derived metabolites, urolithins, which demonstrate enhanced stability and cellular transport. Although EA has considerable potential as a neuroprotective drug, its translational use necessitates more research into its pharmacokinetics, delivery mechanisms, and therapeutic effectiveness. A comprehensive understanding of EA's molecular processes, especially in brain microvascular endothelial cells, may provide innovative therapeutic approaches for safeguarding the BBB and addressing neurodegenerative disorders.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266411446250926102553
2025-10-10
2025-12-18
Loading full text...

Full text loading...

References

  1. Zierfuss B. Larochelle C. Prat A. Blood-brain barrier dysfunction in multiple sclerosis: Causes, consequences, and potential effects of therapies. Lancet Neurol. 2024 23 1 95 109 10.1016/S1474‑4422(23)00377‑0 38101906
    [Google Scholar]
  2. Patabendige A. Janigro D. The role of the blood-brain barrier during neurological disease and infection. Biochem. Soc. Trans. 2023 51 2 613 626 10.1042/BST20220830 36929707
    [Google Scholar]
  3. Chen T. Dai Y. Hu C. Lin Z. Wang S. Yang J. Zeng L. Li S. Li W. Cellular and molecular mechanisms of the blood-brain barrier dysfunction in neurodegenerative diseases. Fluids Barriers CNS 2024 21 1 60 10.1186/s12987‑024‑00557‑1 39030617
    [Google Scholar]
  4. Kim S. Jung U.J. Kim S.R. The crucial role of the blood-brain barrier in neurodegenerative diseases: Mechanisms of disruption and therapeutic implications. J. Clin. Med. 2025 14 2 386 10.3390/jcm14020386 39860392
    [Google Scholar]
  5. Sweeney M.D. Sagare A.P. Zlokovic B.V. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol. 2018 14 3 133 150 10.1038/nrneurol.2017.188 29377008
    [Google Scholar]
  6. Archie S.R. Al Shoyaib A. Cucullo L. Blood-brain barrier dysfunction in CNS disorders and putative therapeutic targets: An overview. Pharmaceutics 2021 13 11 1779 10.3390/pharmaceutics13111779 34834200
    [Google Scholar]
  7. Hubbard J.A. Binder D.K. Blood-Brain Barrier Disruption Astrocytes and epilepsy. Elsevier 2016 291 311
    [Google Scholar]
  8. Kam A. Li K.M. Razmovski-Naumovski V. Nammi S. Chan K. Li Y. Li G.Q. The protective effects of natural products on blood-brain barrier breakdown. Curr. Med. Chem. 2012 19 12 1830 1845 10.2174/092986712800099794 22376038
    [Google Scholar]
  9. Grabska-Kobyłecka I. Szpakowski P. Król A. Książek-Winiarek D. Kobyłecki A. Głąbiński A. Nowak D. Polyphenols and their impact on the prevention of neurodegenerative diseases and development. Nutrients 2023 15 15 3454 10.3390/nu15153454 37571391
    [Google Scholar]
  10. Kim S. Jung U.J. Kim S.R. Role of oxidative stress in blood-brain barrier disruption and neurodegenerative diseases. Antioxidants 2024 13 12 1462 10.3390/antiox13121462 39765790
    [Google Scholar]
  11. Diao X. Han H. Li B. Guo Z. Fu J. Wu W. The rare marine bioactive compounds in neurological disorders and diseases: Is the blood-brain barrier an obstacle or a target? Mar. Drugs 2023 21 7 406 10.3390/md21070406 37504937
    [Google Scholar]
  12. Gupta A. Singh A.K. Kumar R. Jamieson S. Pandey A.K. Bishayee A. Neuroprotective potential of ellagic acid: A critical review. Adv. Nutr. 2021 12 4 1211 1238 10.1093/advances/nmab007 33693510
    [Google Scholar]
  13. Alfei S. Zuccari G. Ellagic acid: A green multi-target weapon that reduces oxidative stress and inflammation to prevent and improve the condition of Alzheimer’s disease. Int. J. Mol. Sci. 2025 26 2 844 10.3390/ijms26020844 39859559
    [Google Scholar]
  14. Javaid N. Shah M.A. Rasul A. Chauhdary Z. Saleem U. Khan H. Ahmed N. Uddin M.S. Mathew B. Behl T. Blundell R. Neuroprotective effects of ellagic acid in Alzheimer’s disease: Focus on underlying molecular mechanisms of therapeutic potential. Curr. Pharm. Des. 2021 27 34 3591 3601 10.2174/18734286MTExnNDYgx 33183192
    [Google Scholar]
  15. Daneman R. Prat A. The blood-brain barrier. Cold Spring Harb. Perspect. Biol. 2015 7 1 a020412 10.1101/cshperspect.a020412 25561720
    [Google Scholar]
  16. Gawdi R. Emmady P. Physiology, Blood Brain Barrier. Treasure Island, FL StatPearls 2020
    [Google Scholar]
  17. Castro V. Toborek M. The Blood-Brain Barrier. Neuroinflammation Neurodegener 2014 3 28
    [Google Scholar]
  18. Benarroch E.E. Blood-brain barrier: Recent developments and clinical correlations. Neurology 2012 78 16 1268 1276 10.1212/WNL.0b013e318250d8bc 22508848
    [Google Scholar]
  19. Angelini G. Bani A. Constantin G. Rossi B. The interplay between T helper cells and brain barriers in the pathogenesis of multiple sclerosis. Front. Cell. Neurosci. 2023 17 1101379 10.3389/fncel.2023.1101379 36874213
    [Google Scholar]
  20. Nagata S. Yamasaki R. The involvement of glial cells in blood-brain barrier damage in neuroimmune diseases. Int. J. Mol. Sci. 2024 25 22 12323 10.3390/ijms252212323 39596390
    [Google Scholar]
  21. Netzahualcoyotzi C. Santillán-Cigales J.J. Adalid-Peralta L.V. Velasco I. Infiltration of immune cells to the brain and its relation to the pathogenesis of Alzheimer’s and Parkinson’s diseases. J. Neurochem. 2024 168 9 2316 2334 10.1111/jnc.16106 38549444
    [Google Scholar]
  22. Lau K. Kotzur R. Richter F. Blood-brain barrier alterations and their impact on Parkinson’s disease pathogenesis and therapy. Transl. Neurodegener. 2024 13 1 37 10.1186/s40035‑024‑00430‑z 39075566
    [Google Scholar]
  23. Fang Y.C. Hsieh Y.C. Hu C.J. Tu Y.K. Endothelial dysfunction in neurodegenerative diseases. Int. J. Mol. Sci. 2023 24 3 2909 10.3390/ijms24032909 36769234
    [Google Scholar]
  24. Steinruecke M. Lonergan R.M. Selvaraj B.T. Chandran S. Diaz-Castro B. Stavrou M. Blood-CNS barrier dysfunction in amyotrophic lateral sclerosis: Proposed mechanisms and clinical implications. J. Cereb. Blood Flow Metab. 2023 43 5 642 654 10.1177/0271678X231153281 36704819
    [Google Scholar]
  25. Kim K. Ko D.S. Kim J.W. Lee D. Son E. Kim H.W. Song T.J. Kim Y.H. Association of smoking with amyotrophic lateral sclerosis: A systematic review, and meta-analysis, including dose-response analysis. Tob. Induc. Dis. 2024 22 January 1 13 10.18332/tid/175731 38239315
    [Google Scholar]
  26. Shimizu F. Nakamori M. Blood-brain barrier disruption in neuroimmunological disease. Int. J. Mol. Sci. 2024 25 19 10625 10.3390/ijms251910625 39408955
    [Google Scholar]
  27. de Rus Jacquet A. Alpaugh M. Denis H.L. Tancredi J.L. Boutin M. Decaestecker J. Beauparlant C. Herrmann L. Saint-Pierre M. Parent M. Droit A. Breton S. Cicchetti F. The contribution of inflammatory astrocytes to BBB impairments in a brain-chip model of Parkinson’s disease. Nat. Commun. 2023 14 1 3651 10.1038/s41467‑023‑39038‑8 37339976
    [Google Scholar]
  28. Manu D.R. Slevin M. Barcutean L. Forro T. Boghitoiu T. Balasa R. Astrocyte involvement in blood-brain barrier function: A critical update highlighting novel, complex, neurovascular interactions. Int. J. Mol. Sci. 2023 24 24 17146 10.3390/ijms242417146 38138976
    [Google Scholar]
  29. Segura-Collar B. Mondejar-Ruescas L. Garranzo-Asensio M. Mata-Martinez P. Hernández-Laín A. Sepúlveda J.M. Nuñez Á.P. Avila J. Sánchez-Gómez P. Gargini R. BBB dysfunction drives neurotoxic myeloid cells in glioblastoma and Alzheimer’s disease. Preprint 2023 10.21203/rs.3.rs‑3610020/v1
    [Google Scholar]
  30. Alkhalifa A.E. Al-Ghraiybah N.F. Odum J. Shunnarah J.G. Austin N. Kaddoumi A. Blood-brain barrier breakdown in Alzheimer’s disease: Mechanisms and targeted strategies. Int. J. Mol. Sci. 2023 24 22 16288 10.3390/ijms242216288 38003477
    [Google Scholar]
  31. Andjelkovic A.V. Situ M. Citalan-Madrid A.F. Stamatovic S.M. Xiang J. Keep R.F. Blood-brain barrier dysfunction in normal aging and neurodegeneration: Mechanisms, impact, and treatments. Stroke 2023 54 3 661 672 10.1161/STROKEAHA.122.040578 36848419
    [Google Scholar]
  32. Majerova P. Kovac A. Pathophysiology of the blood-brain barrier in neuroinflammatory diseases. In: The Blood Brain Barrier and Inflammation. Cham Springer 2017 61 79 10.1007/978‑3‑319‑45514‑3_4
    [Google Scholar]
  33. Patel A.A. Ganepola G.A.P. Rutledge J.R. Chang D.H. The potential role of dysregulated miRNAs in Alzheimer’s disease pathogenesis and progression. J. Alzheimers Dis. 2019 67 4 1123 1145 10.3233/JAD‑181078 30714963
    [Google Scholar]
  34. a Götz J. Halliday G. Nisbet R.M. Molecular pathogenesis of the tauopathies. Annu. Rev. Pathol. 2019 14 1 239 261 10.1146/annurev‑pathmechdis‑012418‑012936 30355155
    [Google Scholar]
  35. b Braak H. Braak E. Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol. Aging 1995 16 271 278
    [Google Scholar]
  36. Bhute S. Sarmah D. Datta A. Rane P. Shard A. Goswami A. Borah A. Kalia K. Dave K.R. Bhattacharya P. Molecular pathogenesis and interventional strategies for Alzheimer’s disease: Promises and pitfalls. ACS Pharmacol. Transl. Sci. 2020 3 3 472 488 10.1021/acsptsci.9b00104 32566913
    [Google Scholar]
  37. Singh Y.P. Kumar H. Berberine derivatives as inhibitors of acetylcholinesterase: A systematic review. Chem. Biol. Drug Des. 2023 102 6 1592 1603 10.1111/cbdd.14337 37665093
    [Google Scholar]
  38. Mendiola-Precoma J. Berumen L.C. Padilla K. Garcia-Alcocer G. Therapies for prevention and treatment of Alzheimer’s disease. BioMed Res. Int. 2016 2016 1 17 10.1155/2016/2589276 27547756
    [Google Scholar]
  39. Singh Y.P. Kumar H. Recent advances in medicinal chemistry of memantine against Alzheimer’s disease. Chem. Biol. Drug Des. 2024 104 4 14638 10.1111/cbdd.14638 39370170
    [Google Scholar]
  40. Sayyaed A. Saraswat N. Vyawahare N. Kulkarni A. A detailed review of pathophysiology, epidemiology, cellular and molecular pathways involved in the development and prognosis of Parkinson’s disease with insights into screening models. Bull. Natl. Res. Cent. 2023 47 1 70 10.1186/s42269‑023‑01047‑4
    [Google Scholar]
  41. Sun C. Armstrong M.J. Treatment of Parkinson’s disease with cognitive impairment: Current approaches and future directions. Behav. Sci. 2021 11 4 54 10.3390/bs11040054 33920698
    [Google Scholar]
  42. Crowley E.K. Nolan Y.M. Sullivan A.M. Exercise as a therapeutic intervention for motor and non-motor symptoms in Parkinson’s disease: Evidence from rodent models. Prog. Neurobiol. 2019 172 2 22 10.1016/j.pneurobio.2018.11.003 30481560
    [Google Scholar]
  43. a Choi E.-H. Kim M.-H. Park S.-J. Targeting mitochondrial dysfunction and reactive oxygen species for neurodegenerative disease treatment. Int. J. Mol. Sci. 2024 25 14 7952
    [Google Scholar]
  44. b Wen P. Sun Z. Gou F. Wang J. Fan Q. Zhao D. Yang L. Oxidative stress and mitochondrial impairment: Key drivers in neurodegenerative disorders. Ageing Res. Rev. 2025 104 102667
    [Google Scholar]
  45. Dighriri I.M. Aldalbahi A.A. Albeladi F. Tahiri A.A. Kinani E.M. Almohsen R.A. Alamoudi N.H. Alanazi A.A. Alkhamshi S.J. Althomali N.A. Alrubaiei S.N. Altowairqi F.K. An overview of the history, pathophysiology, and pharmacological interventions of multiple sclerosis. Cureus 2023 15 1 33242 10.7759/cureus.33242 36733554
    [Google Scholar]
  46. Huang W.J. Chen W.W. Zhang X. Multiple sclerosis: Pathology, diagnosis and treatments. Exp. Ther. Med. 2017 13 6 3163 3166 10.3892/etm.2017.4410 28588671
    [Google Scholar]
  47. Zéphir H. Progress in understanding the pathophysiology of multiple sclerosis. Rev. Neurol. 2018 174 6 358 363 10.1016/j.neurol.2018.03.006 29680179
    [Google Scholar]
  48. a Pellerin L. Jenks J.A. Bégin P. Bacchetta R. Nadeau K.C. Regulatory T cells and their roles in immune dysregulation and allergy. Immunol. Res. 2014 58 2 358 368
    [Google Scholar]
  49. b Kitz A. Singer E. Hafler D. Regulatory T cells: from discovery to autoimmunity. Cold Spring Harb. Perspect. Med. 2018 8 12 a029041
    [Google Scholar]
  50. Gold R. Wolinsky J.S. Pathophysiology of multiple sclerosis and the place of teriflunomide. Acta Neurol. Scand. 2011 124 2 75 84 10.1111/j.1600‑0404.2010.01444.x 20880295
    [Google Scholar]
  51. Ward M. Goldman M.D. Epidemiology and pathophysiology of multiple sclerosis. Continuum 2022 28 4 988 1005 10.1212/CON.0000000000001136 35938654
    [Google Scholar]
  52. Pender M.P. The essential role of Epstein-Barr virus in the pathogenesis of multiple sclerosis. Neuroscientist 2011 17 4 351 367 10.1177/1073858410381531 21075971
    [Google Scholar]
  53. Zivadinov R. Guan Y. Jakimovski D. Ramanathan M. Weinstock-Guttman B. The role of Epstein-Barr virus in multiple sclerosis: From molecular pathophysiology to in vivo imaging. Neural Regen. Res. 2019 14 3 373 386 10.4103/1673‑5374.245462 30539801
    [Google Scholar]
  54. Chong Z.Z. Souayah N. Pathogenic TDP-43 in amyotrophic lateral sclerosis. Drug Discov. Today 2025 30 5 104351 10.1016/j.drudis.2025.104351 40188980
    [Google Scholar]
  55. Zeng J. Luo C. Jiang Y. Hu T. Lin B. Xie Y. Lan J. Miao J. Decoding TDP-43: The molecular chameleon of neurodegenerative diseases. Acta Neuropathol. Commun. 2024 12 1 205 10.1186/s40478‑024‑01914‑9 39736783
    [Google Scholar]
  56. Pongrácová E. Buratti E. Romano M. Prion-like spreading of disease in TDP-43 proteinopathies. Brain Sci. 2024 14 11 1132 10.3390/brainsci14111132 39595895
    [Google Scholar]
  57. Garcia-Montojo M. Fathi S. Rastegar C. Simula E.R. Doucet-O’Hare T. Cheng Y.H.H. Abrams R.P.M. Pasternack N. Malik N. Bachani M. Disanza B. Maric D. Lee M.H. Wang H. Santamaria U. Li W. Sampson K. Lorenzo J.R. Sanchez I.E. Mezghrani A. Li Y. Sechi L.A. Pineda S. Heiman M. Kellis M. Steiner J. Nath A. TDP-43 proteinopathy in ALS is triggered by loss of ASRGL1 and associated with HML-2 expression. Nat. Commun. 2024 15 1 4163 10.1038/s41467‑024‑48488‑7 38755145
    [Google Scholar]
  58. Zhao J. Wang X. Huo Z. Chen Y. Liu J. Zhao Z. Meng F. Su Q. Bao W. Zhang L. Wen S. Wang X. Liu H. Zhou S. The impact of mitochondrial dysfunction in amyotrophic lateral sclerosis. Cells 2022 11 13 2049 10.3390/cells11132049 35805131
    [Google Scholar]
  59. Bond S. Saxena S. Sierra-Delgado J.A. Microglia in ALS: Insights into mechanisms and therapeutic potential. Cells 2025 14 6 421 10.3390/cells14060421 40136670
    [Google Scholar]
  60. Harper P. A review of the dietary intake, bioavailability and health benefits of ellagic acid (EA) with a primary focus on its anti-cancer properties. Cureus 2023 15 8 43156 10.7759/cureus.43156 37692691
    [Google Scholar]
  61. Landete J.M. Ellagitannins, ellagic acid and their derived metabolites: A review about source, metabolism, functions and health. Food Res. Int. 2011 44 5 1150 1160 10.1016/j.foodres.2011.04.027
    [Google Scholar]
  62. Derosa G. Maffioli P. Sahebkar A. Ellagic acid and its role in chronic diseases. Anti-inflamm Nutraceuticals Chronic Dis 2016 473 479 10.1007/978‑3‑319‑41334‑1_20
    [Google Scholar]
  63. Karczmarz K. Szmagara A. Stefaniak E.A. Ellagic acid content in selected wild species of fruit roses. Acta Sci. Pol. Hortorum Cultus 2019 18 5 131 140 10.24326/asphc.2019.5.13
    [Google Scholar]
  64. Rawat V. Jain V. Formulation, optimization and characterization of ellagic acid phyto-vesicular system for bioavailability enhancement. Indian Drugs 2023 60 7 42 49 10.53879/id.60.07.13552
    [Google Scholar]
  65. Abe L.T. Lajolo F.M. Genovese M.I. Potential dietary sources of ellagic acid and other antioxidants among fruits consumed in Brazil: Jabuticaba (Myrciaria jaboticaba (Vell.) Berg). J. Sci. Food Agric. 2012 92 8 1679 1687 10.1002/jsfa.5531 22173652
    [Google Scholar]
  66. Lorenzo J.M. Munekata P.E. Putnik P. Kovačević D.B. Muchenje V. Barba F.J. Sources, chemistry, and biological potential of ellagitannins and ellagic acid derivatives. Stud Nat. Prod Chem. 2019 60 189 221 10.1016/B978‑0‑444‑64181‑6.00006‑1
    [Google Scholar]
  67. Usta C. Ozdemir S. Schiariti M. Puddu P.E. The pharmacological use of ellagic acid-rich pomegranate fruit. Int. J. Food Sci. Nutr. 2013 64 7 907 913 10.3109/09637486.2013.798268 23700985
    [Google Scholar]
  68. Zhang N. Li J. Jiang H. Cornus officinalis Sieb. et Zucc. seeds as a dietary source of ellagic acid Nat. Prod Commun 2022 17 1934578X221080342 10.1177/1934578X221080342
    [Google Scholar]
  69. Yağmur N. Şahin S. Encapsulation of ellagic acid from pomegranate peels in microalgae optimized by response surface methodology and an investigation of its controlled released under simulated gastrointestinal studies. J. Food Sci. 2020 85 4 998 1006 10.1111/1750‑3841.15085 32154918
    [Google Scholar]
  70. Zhang M. Cui S. Mao B. Zhang Q. Zhao J. Zhang H. Tang X. Chen W. Ellagic acid and intestinal microflora metabolite urolithin A: A review on its sources, metabolic distribution, health benefits, and biotransformation. Crit. Rev. Food Sci. Nutr. 2023 63 24 6900 6922 10.1080/10408398.2022.2036693 35142569
    [Google Scholar]
  71. Ceci C. Graziani G. Faraoni I. Cacciotti I. Strategies to improve ellagic acid bioavailability: From natural or semisynthetic derivatives to nanotechnological approaches based on innovative carriers. Nanotechnology 2020 31 38 382001 10.1088/1361‑6528/ab912c 32380485
    [Google Scholar]
  72. Taïlé J. Arcambal A. Clerc P. Gauvin-Bialecki A. Gonthier M.P. Medicinal plant polyphenols attenuate oxidative stress and improve inflammatory and vasoactive markers in cerebral endothelial cells during hyperglycemic condition. Antioxidants 2020 9 7 573 10.3390/antiox9070573 32630636
    [Google Scholar]
  73. Taïlé J. Bringart M. Planesse C. Patché J. Rondeau P. Veeren B. Clerc P. Gauvin-Bialecki A. Bourane S. Meilhac O. Couret D. Gonthier M.P. Antioxidant polyphenols of Antirhea borbonica medicinal plant and caffeic acid reduce cerebrovascular, inflammatory and metabolic disorders aggravated by high-fat diet-induced obesity in a mouse model of stroke. Antioxidants 2022 11 5 858 10.3390/antiox11050858 35624723
    [Google Scholar]
  74. Hussain T. Tan B. Yin Y. Blachier F. Tossou M.C.B. Rahu N. Oxidative stress and inflammation: What polyphenols can do for us? Oxid. Med. Cell. Longev. 2016 7432797 10.1155/2016/7432797 27738491
    [Google Scholar]
  75. Arcambal A. Taïlé J. Couret D. Planesse C. Veeren B. Diotel N. Gauvin-Bialecki A. Meilhac O. Gonthier M.P. Protective effects of antioxidant polyphenols against hyperglycemia‐mediated alterations in cerebral endothelial cells and a mouse stroke model. Mol. Nutr. Food Res. 2020 64 13 1900779 10.1002/mnfr.201900779 32447828
    [Google Scholar]
  76. Marques D. Moura-Louro D. Silva I.P. Matos S. Santos C.N. Figueira I. Unlocking the potential of low-molecular-weight (Poly)phenol metabolites: Protectors at the blood-brain barrier frontier. Neurochem. Int. 2024 179 105836 10.1016/j.neuint.2024.105836 39151552
    [Google Scholar]
  77. Kim Y. Cho A.Y. Kim H.C. Ryu D. Jo S.A. Jung Y.S. Effects of natural polyphenols on oxidative stress-mediated blood-brain barrier dysfunction. Antioxidants 2022 11 2 197 10.3390/antiox11020197 35204080
    [Google Scholar]
  78. Figueira I. Garcia G. Pimpão R.C. Terrasso A.P. Costa I. Almeida A.F. Tavares L. Pais T.F. Pinto P. Ventura M.R. Filipe A. McDougall G.J. Stewart D. Kim K.S. Palmela I. Brites D. Brito M.A. Brito C. Santos C.N. Polyphenols journey through blood-brain barrier towards neuronal protection. Sci. Rep. 2017 7 1 11456 10.1038/s41598‑017‑11512‑6 28904352
    [Google Scholar]
  79. Silva R.F.M. Pogačnik L. Polyphenols from food and natural products: Neuroprotection and safety. Antioxidants 2020 9 1 61 10.3390/antiox9010061 31936711
    [Google Scholar]
  80. Abdelsalam S.A. Renu K. Zahra H.A. Abdallah B.M. Ali E.M. Veeraraghavan V.P. Sivalingam K. Ronsard L. Ammar R.B. Vidya D.S. Karuppaiya P. Al-Ramadan S.Y. Rajendran P. Polyphenols mediate neuroprotection in cerebral ischemic stroke—An update. Nutrients 2023 15 5 1107 10.3390/nu15051107 36904106
    [Google Scholar]
  81. Rozentsvit A. Vinokur K. Samuel S. Li Y. Gerdes A.M. Carrillo-Sepulveda M.A. Ellagic acid reduces high glucose-induced vascular oxidative stress through ERK1/2/NOX4 signaling pathway. Cell. Physiol. Biochem. 2017 44 3 1174 1187 10.1159/000485448 29179217
    [Google Scholar]
  82. Rozentsvit A. Samuel S. Gerdes M. Carrillo-Sepulveda M.A. Ellagic acid reduces high glucose‐induced endothelial dysfunction. FASEB J. 2016 30 S1 1282 1285 10.1096/fasebj.30.1_supplement.1282.5
    [Google Scholar]
  83. Yu Y.M. Wang Z.H. Liu C.H. Chen C.S. Ellagic acid inhibits IL-1β-induced cell adhesion molecule expression in human umbilical vein endothelial cells. Br. J. Nutr. 2007 97 4 692 698 10.1017/S0007114507666409 17349082
    [Google Scholar]
  84. Liu Q. Liang X. Liang M. Qin R. Qin F. Wang X. Ellagic acid ameliorates renal ischemic-reperfusion injury through NOX4/JAK/STAT signaling pathway. Inflammation 2020 43 1 298 309 10.1007/s10753‑019‑01120‑z 31768706
    [Google Scholar]
  85. Saha S. Buttari B. Panieri E. Profumo E. Saso L. An overview of Nrf2 signaling pathway and its role in inflammation. Molecules 2020 25 22 5474 10.3390/molecules25225474 33238435
    [Google Scholar]
  86. Zhu W. Tang H. Li J. Guedes R.M. Cao L. Guo C. Ellagic acid attenuates interleukin-1β-induced oxidative stress and exerts protective effects on chondrocytes through the Kelch-like ECH-associated protein 1 (Keap1)/Nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. Bioengineered 2022 13 4 9249 9263 10.1080/21655979.2022.2059995
    [Google Scholar]
  87. Xiong Y. Zeng W. Protective effect of ellagic acid in vascular epoxidation damage in a murine model of atherosclerosis. Farmacia 2019 67 3 490 495 10.31925/farmacia.2019.3.17
    [Google Scholar]
  88. Kuo M-Y. Ou H-C. Lee W-J. Kuo W-W. Hwang L-L. Song T-Y. Huang C-Y. Chiu T-H. Tsai K-L. Tsai C-S. Ellagic acid inhibits oxidized low-density lipoprotein (OxLDL)-Induced Metalloproteinase (MMP) expression by modulating the protein kinase C-α/extracellular signal-regulated kinase/peroxisome proliferator-activated receptor γ/nuclear factor-KB (PKC-α/ERK/. J. Agric. Food Chem. 2011 59 5100 5108 10.1021/jf1041867 21480623
    [Google Scholar]
  89. Hosseini A. Sheibani M. Valipour M. Exploring the therapeutic potential of BBB ‐penetrating phytochemicals with p38 MAPK modulatory activity in addressing oxidative stress‐induced neurodegenerative disorders, with a focus on Alzheimer’s disease. Phytother. Res. 2024 38 12 5598 5625 10.1002/ptr.8329 39300812
    [Google Scholar]
  90. Song K. Li Y. Zhang H. An N. Wei Y. Wang L. Tian C. Yuan M. Sun Y. Xing Y. Gao Y. Oxidative stress-mediated blood-brain barrier (BBB) disruption in neurological diseases. Oxid. Med. Cell. Longev. 2020 2020 1 27 10.1155/2020/4356386
    [Google Scholar]
  91. Neves Carvalho A. Firuzi O. Joao Gama M. van Horssen J. Saso L. Oxidative stress and antioxidants in neurological diseases: Is there still hope? Curr. Drug Targets 2017 18 6 705 718 10.2174/1389450117666160401120514 27033198
    [Google Scholar]
  92. Zhu H. Yan Y. Jiang Y. Meng X. Ellagic acid and its anti-aging effects on central nervous system. Int. J. Mol. Sci. 2022 23 18 10937 10.3390/ijms231810937 36142849
    [Google Scholar]
  93. Ahmed T. Setzer W.N. Nabavi S.F. Orhan I.E. Braidy N. Sobarzo-Sanchez E. Nabavi S.M. Insights into effects of ellagic acid on the nervous system: A mini review. Curr. Pharm. Des. 2016 22 10 1350 1360 10.2174/1381612822666160125114503 26806345
    [Google Scholar]
  94. Jha A.B. Panchal S.S. Shah A. Ellagic acid: Insights into its neuroprotective and cognitive enhancement effects in sporadic Alzheimer’s disease. Pharmacol. Biochem. Behav. 2018 175 33 46 10.1016/j.pbb.2018.08.007 30171934
    [Google Scholar]
  95. Ardah M.T. Bharathan G. Kitada T. Haque M.E. Ellagic acid prevents dopamine neuron degeneration from oxidative stress and neuroinflammation in MPTP model of Parkinson’s disease. Biomolecules 2020 10 11 1519 10.3390/biom10111519 33172035
    [Google Scholar]
  96. Ismail E.N. Azmi N. Jantan I. Ellagic acid protects against activation of microglia by inhibiting MAPKs and NF-κB signalling. Indian J. Pharm. Educ. Res. 2020 54 3s s529 s536 10.5530/ijper.54.3s.152
    [Google Scholar]
  97. Hoang S.H. Dao H. Lam E.M. A network pharmacology approach to elucidate the anti-inflammatory effects of ellagic acid. J. Biomol. Struct. Dyn. 2024 42 14 7409 7420 10.1080/07391102.2023.2240417 37522847
    [Google Scholar]
  98. Dornelles G.L. de Oliveira J.S. de Almeida E.J.R. Mello C.B.E. Rodrigues B.R. da Silva C.B. Petry L.S. Pillat M.M. Palma T.V. de Andrade C.M. Ellagic acid inhibits neuroinflammation and cognitive impairment induced by lipopolysaccharides. Neurochem. Res. 2020 45 10 2456 2473 10.1007/s11064‑020‑03105‑z 32779097
    [Google Scholar]
  99. Radwan N. Khan E. Ardah M.T. Kitada T. Haque M.E. Ellagic acid prevents α-synuclein spread and mitigates toxicity by enhancing autophagic flux in an animal model of Parkinson’s disease. Nutrients 2023 16 1 85 10.3390/nu16010085 38201915
    [Google Scholar]
  100. Farbood Y. Sarkaki A. Dolatshahi M. Taqhi Mansouri S.M. Khodadadi A. Ellagic acid protects the brain against 6-hydroxydopamine induced neuroinflammation in a rat model of Parkinson’s disease. Basic Clin. Neurosci. 2015 6 2 83 89 27307952
    [Google Scholar]
  101. He X. Zhou Y. Sheng S. Li J. Wang G. Zhang F. Ellagic acid protects dopamine neurons via inhibition of NLRP3 inflammasome activation in microglia. Oxid. Med. Cell. Longev. 2020 2020 1 13 10.1155/2020/2963540 33294118
    [Google Scholar]
  102. Liu Y.L. Huang H.J. Sheu S.Y. Liu Y.C. Lee I.J. Chiang S.C. Lin A.M.Y. Oral ellagic acid attenuated LPS-induced neuroinflammation in rat brain: MEK1 interaction and M2 microglial polarization. Exp. Biol. Med. 2023 248 7 656 664 10.1177/15353702231182230 37340785
    [Google Scholar]
  103. Jafari Karegar S. Aryaeian N. Hajiluian G. Suzuki K. Shidfar F. Salehi M. Ashtiani B.H. Farhangnia P. Delbandi A.A. Ellagic acid effects on disease severity, levels of cytokines and T-bet, RORγt, and GATA3 genes expression in multiple sclerosis patients: A multicentral-triple blind randomized clinical trial. Front. Nutr. 2023 10 1238846 10.3389/fnut.2023.1238846 37794975
    [Google Scholar]
  104. Sanadgol N. Golab F. Mostafaie A. Mehdizadeh M. Abdollahi M. Sharifzadeh M. Ravan H. Ellagic acid ameliorates cuprizone-induced acute CNS inflammation via restriction of microgliosis and down-regulation of CCL2 and CCL3 pro-inflammatory chemokines. Cell. Mol. Biol. 2016 62 12 24 30 27894396
    [Google Scholar]
  105. Liu M. Chen Z. Zhang H. Cai Z. Liu T. Zhang M. Wu X. Ai F. Liu G. Zeng C. Shen J. Urolithin A alleviates early brain injury after subarachnoid hemorrhage by regulating the AMPK/mTOR pathway-mediated autophagy. Neurochirurgie 2023 69 5 101480 10.1016/j.neuchi.2023.101480 37598622
    [Google Scholar]
  106. Ahsan A. Zheng Y.R. Wu X.L. Tang W.D. Liu M.R. Ma S.J. Jiang L. Hu W.W. Zhang X.N. Chen Z. Urolithin A‐activated autophagy but not mitophagy protects against ischemic neuronal injury by inhibiting ER stress in vitro and in vivo. CNS Neurosci. Ther. 2019 25 9 976 986 10.1111/cns.13136 30972969
    [Google Scholar]
  107. Li Y. Wu P. Dai J. Zhang T. Bihl J. Wang C. Liu Y. Shi H. Inhibition of mTOR alleviates early brain injury after subarachnoid hemorrhage via relieving excessive mitochondrial fission. Cell. Mol. Neurobiol. 2020 40 4 629 642 10.1007/s10571‑019‑00760‑x 31728694
    [Google Scholar]
  108. Velagapudi R. Lepiarz I. El-Bakoush A. Katola F.O. Bhatia H. Fiebich B.L. Olajide O.A. Induction of autophagy and activation of SIRT‐1 deacetylation mechanisms mediate neuroprotection by the pomegranate metabolite Urolithin A in BV2 microglia and differentiated 3D human neural progenitor cells. Mol. Nutr. Food Res. 2019 63 10 1801237 10.1002/mnfr.201801237 30811877
    [Google Scholar]
  109. Kumar M. Bansal N. Ellagic acid prevents dementia through modulation of PI3-kinase-endothelial nitric oxide synthase signalling in streptozotocin-treated rats. Naunyn Schmiedebergs Arch. Pharmacol. 2018 391 9 987 1001 10.1007/s00210‑018‑1524‑2 29947909
    [Google Scholar]
  110. Wang Q. Botchway B.O.A. Zhang Y. Liu X. Ellagic acid activates the Keap1-Nrf2-ARE signaling pathway in improving Parkinson’s disease: A review. Biomed. Pharmacother. 2022 156 113848 10.1016/j.biopha.2022.113848 36242848
    [Google Scholar]
  111. Hassonizadeh Falahieh K. Sarkaki A. Edalatmanesh M. Gharib Naseri M.K. Farbood Y. Ellagic acid attenuates post-cerebral ischemia and reperfusion behavioral deficits by decreasing brain tissue inflammation in rats. Iran. J. Basic Med. Sci. 2020 23 5 645 653 10.22038/ijbms.2020.41821.9882 32742603
    [Google Scholar]
  112. Ou H.C. Lee W.J. Lee S.D. Huang C.Y. Chiu T.H. Tsai K.L. Hsu W.C. Sheu W.H.H. Ellagic acid protects endothelial cells from oxidized low-density lipoprotein-induced apoptosis by modulating the PI3K/Akt/eNOS pathway. Toxicol. Appl. Pharmacol. 2010 248 2 134 143 10.1016/j.taap.2010.07.025 20691200
    [Google Scholar]
  113. Chen S-W. Tian H-L. Gong Q-Y. Cai L. Jing Y. Wang W. Yang D-X. Urolithin A. Urolithin A alleviates blood-brain barrier disruption and attenuates neuronal apoptosis following traumatic brain injury in mice. Neural Regen. Res. 2022 17 9 2007 2013 10.4103/1673‑5374.335163 35142690
    [Google Scholar]
  114. Hou Y. Chu X. Park J.H. Zhu Q. Hussain M. Li Z. Madsen H.B. Yang B. Wei Y. Wang Y. Fang E.F. Croteau D.L. Bohr V.A. Urolithin A improves Alzheimer’s disease cognition and restores mitophagy and lysosomal functions. Alzheimers Dement. 2024 20 6 4212 4233 10.1002/alz.13847 38753870
    [Google Scholar]
  115. Qiu J. Chen Y. Zhuo J. Zhang L. Liu J. Wang B. Sun D. Yu S. Lou H. Urolithin A. Urolithin A promotes mitophagy and suppresses NLRP3 inflammasome activation in lipopolysaccharide-induced BV2 microglial cells and MPTP-induced Parkinson’s disease model. Neuropharmacology 2022 207 108963 10.1016/j.neuropharm.2022.108963 35065082
    [Google Scholar]
  116. Gong Z. Huang J. Xu B. Ou Z. Zhang L. Lin X. Ye X. Kong X. Long D. Sun X. He X. Xu L. Li Q. Xuan A. Urolithin A attenuates memory impairment and neuroinflammation in APP/PS1 mice. J. Neuroinflammation 2019 16 1 62 10.1186/s12974‑019‑1450‑3 30871577
    [Google Scholar]
  117. Singh G. Kumar S. Panda S.R. Kumar P. Rai S. Verma H. Singh Y.P. Kumar S. Srikrishna S. Naidu V.G.M. Modi G. Design, synthesis, and biological evaluation of ferulic acid-piperazine derivatives targeting pathological hallmarks of Alzheimer’s disease. ACS Chem. Neurosci. 2024 15 15 2756 2778 10.1021/acschemneuro.4c00130 39076038
    [Google Scholar]
  118. Leng P. Wang Y. Xie M. Ellagic acid and gut microbiota: Interactions, and implications for health. Food Sci. Nutr. 2025 13 4 70133 10.1002/fsn3.70133 40196228
    [Google Scholar]
  119. Peng B. Xue L. Yu Q. Zhong T. Ellagic acid alleviates TNBS-induced intestinal barrier dysfunction by regulating mucin secretion and maintaining tight junction integrity in rats. Int. J. Food Sci. Nutr. 2023 74 4 476 486 10.1080/09637486.2023.2230525 37455358
    [Google Scholar]
  120. Naraki K. Rameshrad M. Hosseinzadeh H. Protective effects and therapeutic applications of ellagic acid against natural and synthetic toxicants: A review article. Iran. J. Basic Med. Sci. 2022 25 12 1402 1415 10.22038/IJBMS.2022.64790.14267 36544528
    [Google Scholar]
  121. Greene C. Hanley N. Campbell M. Claudin-5: Gatekeeper of neurological function. Fluids Barriers CNS 2019 16 1 3 10.1186/s12987‑019‑0123‑z 30691500
    [Google Scholar]
  122. Li H.L. Zhang S.Y. Ren Y.S. Zhou J.C. Zhou Y.X. Huang W.Z. Piao X.H. Yang Z.Y. Wang S.M. Ge Y.W. Identification of ellagic acid and urolithins as natural inhibitors of Aβ25-35-induced neurotoxicity and the mechanism predication using network pharmacology analysis and molecular docking. Front. Nutr. 2022 9 966276 10.3389/fnut.2022.966276 35983489
    [Google Scholar]
  123. Chen S.Y. Zheng K. Wang Z. Neuroprotective effects of ellagic acid on neonatal hypoxic brain injury via inhibition of inflammatory mediators and down-regulation of JNK/p38 MAPK activation. Trop. J. Pharm. Res. 2016 15 2 241 251 10.4314/tjpr.v15i2.4
    [Google Scholar]
  124. Yang X. Chu F. Jiao Z. Yu H. Yang W. Li Y. Lu C. Ma H. Wang S. Liu Z. Qin S. Sun H. Ellagic acid ameliorates arsenic-induced neuronal ferroptosis and cognitive impairment via Nrf2/GPX4 signaling pathway. Ecotoxicol. Environ. Saf. 2024 283 116833 10.1016/j.ecoenv.2024.116833 39128446
    [Google Scholar]
  125. Wei Y. Zhu G. Zheng C. Li J. Sheng S. Li D. Wang G. Zhang F. Ellagic acid protects dopamine neurons from rotenone‐induced neurotoxicity via activation of Nrf2 signalling. J. Cell. Mol. Med. 2020 24 16 9446 9456 10.1111/jcmm.15616 32657027
    [Google Scholar]
  126. Liu Y. Chen C. Hao Z. Shen J. Tang S. Dai C. Ellagic acid reduces cadmium exposure-induced apoptosis in HT22 cells via inhibiting oxidative stress and mitochondrial dysfunction and activating Nrf2/HO-1 pathway. Antioxidants 2024 13 11 1296 10.3390/antiox13111296 39594438
    [Google Scholar]
  127. Liu Q. Deng R. Li S. Li X. Li K. Kebaituli G. Li X. Liu R. Ellagic acid protects against neuron damage in ischemic stroke through regulating the ratio of Bcl-2/Bax expression. Appl. Physiol. Nutr. Metab. 2017 42 8 855 860 10.1139/apnm‑2016‑0651 28388366
    [Google Scholar]
  128. Liu Q.S. Li S.R. Li K. Li X. Yin X. Pang Z. Ellagic acid improves endogenous neural stem cells proliferation and neurorestoration through Wnt/β‐catenin signaling in vivo and in vitro. Mol. Nutr. Food Res. 2017 61 3 1600587 10.1002/mnfr.201600587
    [Google Scholar]
  129. García-Villalba R. Tomás-Barberán F.A. Iglesias-Aguirre C.E. Giménez-Bastida J.A. González-Sarrías A. Selma M.V. Espín J.C. Ellagitannins, urolithins, and neuroprotection: Human evidence and the possible link to the gut microbiota. Mol. Aspects Med. 2023 89 101109 10.1016/j.mam.2022.101109 35940941
    [Google Scholar]
  130. An L. Lu Q. Wang K. Wang Y. Urolithins: A prospective alternative against brain aging. Nutrients 2023 15 18 3884 10.3390/nu15183884 37764668
    [Google Scholar]
  131. Lalnundika B. Hassan S. Prathiviraj R. Kumar H.K. Qadri S. Kiran G.S. Bramhachari P.V. Selvin J. Elucidating the Role of Gut-Brain-Axis in Neuropsychiatric and Neurological Disorders. In: Human Microbiome in Health., Disease, and Therapy. Springer 2023 11 38 10.1007/978‑981‑99‑5114‑7_2
    [Google Scholar]
  132. Jarouliya U. Jain M. Nutraceuticals and Gutbiota-Brain Axis. In: Nutraceutical Fruits and Foods for Neurodegenerative Disorders. Elsevier 2024 405 420 10.1016/B978‑0‑443‑18951‑7.00022‑0
    [Google Scholar]
  133. Ashique S. Mohanto S. Ahmed M.G. Mishra N. Garg A. Chellappan D.K. Omara T. Iqbal S. Kahwa I. Gut-brain axis: A cutting-edge approach to target neurological disorders and potential synbiotic application. Heliyon 2024 10 13 34092 10.1016/j.heliyon.2024.e34092 39071627
    [Google Scholar]
  134. Zhang H. Luo M. Li Y. Liu L. Bian J. Gong L. He C. Han L. Wang M. Ellagic acid ameliorates alcohol-induced cognitive and social dysfunction through the gut microbiota-mediated CCL21-CCR7 axis. Food Funct. 2024 15 22 11186 11205 10.1039/D4FO03985H 39449276
    [Google Scholar]
  135. Jaberi K.R. Alamdari-palangi V. Savardashtaki A. Vatankhah P. Jamialahmadi T. Tajbakhsh A. Sahebkar A. Modulatory effects of phytochemicals on gut-brain axis: Therapeutic implication. Curr. Dev. Nutr. 2024 8 6 103785 10.1016/j.cdnut.2024.103785 38939650
    [Google Scholar]
  136. Kim D. Kim J.S. Kwon J.H. Kwun I.S. Baek M.C. Kwon G.S. Rungratanawanich W. Song B.J. Kim D.K. Kwon H.J. Cho Y.E. Ellagic acid prevented dextran-sodium-sulfate-induced colitis, liver, and brain injury through gut microbiome changes. Antioxidants 2023 12 10 1886 10.3390/antiox12101886 37891965
    [Google Scholar]
  137. Han B. Shi L. Bao M.Y. Yu F.L. Zhang Y. Lu X.Y. Wang Y. Li D.X. Lin J.C. Jia W. Li X. Zhang Y. Dietary ellagic acid therapy for CNS autoimmunity: Targeting on Alloprevotella rava and propionate metabolism. Microbiome 2024 12 1 114 10.1186/s40168‑024‑01819‑8 38915127
    [Google Scholar]
  138. Banc R. Rusu M.E. Filip L. Popa D.S. The impact of ellagitannins and their metabolites through gut microbiome on the gut health and brain wellness within the gut-brain axis. Foods 2023 12 2 270 10.3390/foods12020270 36673365
    [Google Scholar]
  139. Maisto N. Mango D. Barbato G. Marianecci C. Carafa M. Rinaldi F. Nisticò R. The therapeutic potential of ellagic acid loaded in nanocarriers for the treatment of the Alzheimer’s disease. Alzheimers Dement. 2023 19 S21 075588 10.1002/alz.075588
    [Google Scholar]
  140. de Oliveira M.R. The effects of ellagic acid upon brain cells: A mechanistic view and future directions. Neurochem. Res. 2016 41 6 1219 1228 10.1007/s11064‑016‑1853‑9 26846140
    [Google Scholar]
  141. Kanwar J. Sriramoju B. Kanwar R.K. Neurological disorders and therapeutics targeted to surmount the blood-brain barrier. Int. J. Nanomedicine 2012 7 3259 3278 10.2147/IJN.S30919 22848160
    [Google Scholar]
  142. Mashhadizadeh S. Farbood Y. Dianat M. Khodadadi A. Sarkaki A. Therapeutic effects of ellagic acid on memory, hippocampus electrophysiology deficits, and elevated TNF-α level in brain due to experimental traumatic brain injury. Iran. J. Basic Med. Sci. 2017 20 4 399 407 28804609
    [Google Scholar]
  143. Zuccari G. Baldassari S. Ailuno G. Turrini F. Alfei S. Caviglioli G. Formulation strategies to improve oral bioavailability of ellagic acid. Appl. Sci. 2020 10 10 3353 10.3390/app10103353
    [Google Scholar]
  144. Espín J.C. Larrosa M. García-Conesa M.T. Tomás-Barberán F. Biological significance of urolithins, the gut microbial ellagic Acid-derived metabolites: The evidence so far. Evid. Based Complement. Alternat. Med. 2013 2013 1 15 10.1155/2013/270418 23781257
    [Google Scholar]
  145. Raya-Morquecho E.M. Aguilar-Zarate P. Sepúlveda L. Michel M.R. Iliná A. Aguilar C.N. Ascacio-Valdés J.A. Ellagitannins and their derivatives: A review on the metabolization, absorption, and some benefits related to intestinal health. Microbiol. Res. 2025 16 6 113 10.3390/microbiolres16060113
    [Google Scholar]
  146. García-Villalba R. Giménez-Bastida J.A. Cortés-Martín A. Ávila-Gálvez M.Á. Tomás-Barberán F.A. Selma M.V. Espín J.C. González-Sarrías A. Urolithins: A comprehensive update on their metabolism, bioactivity, and associated gut microbiota. Mol. Nutr. Food Res. 2022 66 21 2101019 10.1002/mnfr.202101019 35118817
    [Google Scholar]
  147. Ávila-Gálvez M.Á. Romo-Vaquero M. Mazarío-Gárgoles C. Tomé-Carneiro J. López de las Hazas M.C. Dávalos A. Selma M.V. González-Sarrías A. Espín J.C. Oral delivery of ellagic acid encapsulated in milk exosomes: Sex‐based differences in bioavailability, urolithin production, and gut microbiota modulation. Mol. Nutr. Food Res. 2025 70104 10.1002/mnfr.70104 40351018
    [Google Scholar]
  148. Lin X.H Ye X.J Li Q.F Gong Z Cao X Li J.H Zhao S.T Sun X.D He X.S Xuan A.G Urolithin A prevents focal cerebral ischemic injury via attenuating apoptosis and neuroinflammation in mice. Neuroscience 2020 448 94 106
    [Google Scholar]
  149. Ju J. Kim S.D. Shin M. Pomegranate polyphenol-derived injectable therapeutic hydrogels to enhance neuronal regeneration. Mol. Pharm. 2023 20 9 4786 4795 10.1021/acs.molpharmaceut.3c00623 37581425
    [Google Scholar]
  150. Mohi-ud-din R. Mir R.H. Wani T.U. Shah A.J. Mohi-Ud-Din I. Dar M.A. Pottoo F.H. Novel drug delivery system for curcumin: Implementation to improve therapeutic efficacy against neurological disorders. Comb. Chem. High Throughput Screen. 2022 25 4 607 615 10.2174/1386207324666210705114058 34225614
    [Google Scholar]
  151. Paul A. Gogoi M. Zaman K. Nanodelivery of Polyphenols as Nutraceuticals for Neurological Disorders. Polyphenols. Wiley Online Library 2023 248 259 10.1002/9781394188864.ch12
    [Google Scholar]
  152. Kumari N. Daram N. Alam M.S. Verma A.K. Rationalizing the use of polyphenol nano-formulations in the therapy of neurodegenerative diseases. Disord. 2022 21 10 966 976 10.2174/1871527321666220512153854 35549866
    [Google Scholar]
  153. Karim N. Khan H. Khan I. Guo O. Sobarzo-Sánchez E. Rastrelli L. Kamal M.A. An increasing role of polyphenols as novel therapeutics for Alzheimer’s: A review. Med. Chem. 2020 16 8 1007 1021 10.2174/1573406415666191105154407 31702507
    [Google Scholar]
  154. Kaur H. Ghosh S. Kumar P. Basu B. Nagpal K. Ellagic acid-loaded, tween 80-coated, chitosan nanoparticles as a promising therapeutic approach against breast cancer: In-vitro and in-vivo study. Life Sci. 2021 284 119927 10.1016/j.lfs.2021.119927 34492262
    [Google Scholar]
  155. Ahlawat J. Neupane R. Deemer E. Sreenivasan S.T. Narayan M. Chitosan-ellagic acid nanohybrid for mitigating rotenone-induced oxidative stress. ACS Appl. Mater. Interfaces 2020 12 16 18964 18977 10.1021/acsami.9b21215 32216327
    [Google Scholar]
  156. Ramakrishna K. Viswanadh M.K. Dumala N. Chakravarth G. Venkateswarlu K. Gutti G. Yadagiri G. Duguluri S. Rai S.N. Advanced Biomaterials in Neuroprotection: Innovations and Clinical Applications. In: Biomaterials and Neurodegenerative Disorders. Springer 2025 69 92 10.1007/978‑981‑97‑9959‑6_4
    [Google Scholar]
  157. Prajapati C. Tripathi P.N. Sood S. Rai S.N. Mishra S.S. Singh S.K. Tiwari A.K. Intellectual Property Rights in Neuroprotective Biomaterials. In: Biomaterials and Neurodegenerative Disorders. Springer 2025 251 269 10.1007/978‑981‑97‑9959‑6_10
    [Google Scholar]
  158. Alfei S. Marengo B. Zuccari G. Oxidative stress, antioxidant capabilities, and bioavailability: Ellagic acid or urolithins? Antioxidants 2020 9 8 707 10.3390/antiox9080707 32759749
    [Google Scholar]
  159. Villalgordo J.M. Trulli L. García-Villalba R. García V. Althobaiti Y. Tomás-Barberán F.A. Novel regioselective synthesis of urolithin glucuronides—human gut microbiota cometabolites of ellagitannins and ellagic acid. J. Agric. Food Chem. 2022 70 19 5819 5828 10.1021/acs.jafc.2c00170 35533350
    [Google Scholar]
  160. Ríos J.L. Giner R. Marín M. Recio M. A pharmacological update of ellagic acid. Planta Med. 2018 84 15 1068 1093 10.1055/a‑0633‑9492 29847844
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266411446250926102553
Loading
/content/journals/ctmc/10.2174/0115680266411446250926102553
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test