Skip to content
2000
image of A Review on Gamma-Oryzanol as a Multitarget Therapeutic Agent for Metabolic Syndrome: Mechanisms, Preclinical Evidence, and Clinical Prospects

Abstract

Metabolic syndrome (MetS) is a multifactorial disorder characterized by central obesity, insulin resistance, dyslipidemia, and hypertension, which collectively increase the risk of type 2 diabetes mellitus (T2DM), cardiovascular disease (CVD), and non-alcoholic fatty liver disease (NAFLD). Due to the growing global burden of MetS, there is increasing interest in nutraceuticals such as gamma-oryzanol (γ-ORY), a bioactive compound derived from rice bran oil (RBO), as potential therapeutic agents. A systematic literature search was conducted through July 2024 using PubMed, Google Scholar, and SciFinder. The keyword “gamma-oryzanol” was combined with terms related to MetS and its components. Original preclinical and clinical studies were included, while reviews and book chapters were excluded; however, their references were screened for additional relevant studies. Preclinical studies indicate that γ-ORY targets multiple molecular pathways, including activation of AMP-activated protein kinase, upregulation of peroxisome proliferator-activated receptor-α, inhibition of nuclear factor-κB, and promotion of glucose transporter type 4 translocation. These mechanisms collectively improve glucose and lipid metabolism, enhance insulin sensitivity, and reduce inflammation. Clinical trials, primarily involving adults with T2DM, obesity, dyslipidemia, or postmenopausal women (aged 30-70 years, mixed ethnicities), report that γ-ORY reduces total cholesterol (10-15%), LDL-C (8-12%), triglycerides (10-18%), fasting glucose (10-25 mg/dL), and HbA1c (0.3-0.8%). Compared to conventional therapies such as statins (LDL-C reduction: 30-50%) or antihypertensives (., irbesartan), γ-ORY demonstrates milder efficacy but better tolerability, and may enhance the antihypertensive effects of irbesartan. Notably, clinical studies consistently report a favorable safety profile for γ-ORY, with minimal adverse effects and no major safety concerns to date. Overall, γ-ORY shows promise as a safe, multitarget nutraceutical for MetS management, with antioxidant, anti-inflammatory, and lipid-lowering properties. However, the generalizability of current findings is limited by small sample sizes, inconsistent dosing regimens, and underrepresentation of diverse populations (., various ethnic groups and pediatric cohorts). Large-scale, well-designed clinical trials are needed to validate its efficacy, optimize dosing, and assess long-term safety compared to standard therapies.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266379551251128092015
2026-01-15
2026-01-31
Loading full text...

Full text loading...

References

  1. Jha B.K. Sherpa M.L. Imran M. Mohammed Y. Jha L.A. Paudel K.R. Jha S.K. Progress in understanding metabolic syndrome and knowledge of its complex pathophysiology. Diabetology 2023 4 2 134 159 10.3390/diabetology4020015
    [Google Scholar]
  2. Liang X. Or B. Tsoi M.F. Cheung C.L. Cheung B.M.Y. Prevalence of metabolic syndrome in the United States National Health and Nutrition Examination Survey 2011-18. Postgrad. Med. J. 2023 99 1175 985 992 10.1093/postmj/qgad008 36906842
    [Google Scholar]
  3. Masmoudi R. Hadj Kacem F. Bouattour M. Guermazi F. Sellami R. Feki I. Mnif M. Masmoudi J. Baati I. Abid M. Diabetes distress and illness perceptions in tunisian type 2 diabetes patients. Diabetes Metab. Syndr. Obes. 2023 16 3547 3556 10.2147/DMSO.S430001 37954887
    [Google Scholar]
  4. Swarup S. Goyal A. Grigorova Y. Zeltser R. Metabolic syndrome. StatPearls. Treasure Island StatPearls Publishing 2022
    [Google Scholar]
  5. Khin K. Moe A. Aung K.P. Zaw T. Structural and tectonic evolution between Indo-Myanmar ranges and central Myanmar basin: Insights from the Kabaw Fault. GeoSyst Geoenviron 2023 2 2 100176 10.1016/j.geogeo.2022.100176
    [Google Scholar]
  6. Lillich F.F. Imig J.D. Proschak E. Multi-target approaches in metabolic syndrome. Front. Pharmacol. 2021 11 554961 10.3389/fphar.2020.554961 33776749
    [Google Scholar]
  7. Abdulghani M.F. Al-Fayyadh S. Natural products for managing metabolic syndrome: A scoping review. Front. Pharmacol. 2024 15 1366946 10.3389/fphar.2024.1366946 38746011
    [Google Scholar]
  8. Ahn J. Son H.J. Seo H.D. Ha T.Y. Ahn J. Lee H. Shin S.H. Jung C.H. Jang Y.J. γ‐Oryzanol improves exercise endurance and muscle strength by upregulating PPARδ and ERRγ activity in aged mice. Mol. Nutr. Food Res. 2021 65 14 2000652 10.1002/mnfr.202000652 33932312
    [Google Scholar]
  9. Riolo R. De Rosa R. Simonetta I. Tuttolomondo A. Olive oil in the mediterranean diet and its biochemical and molecular effects on cardiovascular health through an analysis of genetics and epigenetics. Int. J. Mol. Sci. 2022 23 24 16002 10.3390/ijms232416002 36555645
    [Google Scholar]
  10. Chaachouay N. Zidane L. Perceptions and strategies of adaptation of Moroccan farmers to climate change—case of Khemisset province. J. Environ. Stud. Sci. 2024 14 2 313 327 10.1007/s13412‑024‑00889‑2
    [Google Scholar]
  11. Sangpradab J. Kamonpatana P. Suwannaporn P. Huang T.C. Ohmic heating-aided mechanical extraction of gamma-oryzanol and phytosterols in rice bran oil. Food Bioprocess Technol. 2021 14 8 1542 1554 10.1007/s11947‑021‑02655‑6
    [Google Scholar]
  12. Shaik Mohamed Sayed U.F. Moshawih S. Goh H.P. Kifli N. Gupta G. Singh S.K. Chellappan D.K. Dua K. Hermansyah A. Ser H.L. Ming L.C. Goh B.H. Natural products as novel anti-obesity agents: Insights into mechanisms of action and potential for therapeutic management. Front. Pharmacol. 2023 14 1182937 10.3389/fphar.2023.1182937 37408757
    [Google Scholar]
  13. Thapa M. Liu L. Barkla B.J. Kretzschmar T. Rogiers S.Y. Rose T.J. Accumulation patterns of anthocyanin and γ-oryzanol during black rice grain development. PLoS One 2024 19 5 e0302745 10.1371/journal.pone.0302745 38776277
    [Google Scholar]
  14. Nugrahani R.A. Hendrawati T.Y. Hasyim U.H. Sari F. Ramadhan A.I. Kinetic parameter for scale-up and γ-oryzanol content of rice bran oil as antioxidant: Comparison of maceration, ultrasonication, pneumatic press extraction. Heliyon 2024 10 10 e30880 10.1016/j.heliyon.2024.e30880 38770285
    [Google Scholar]
  15. Nainu F. Frediansyah A. Mamada S.S. Permana A.D. Salampe M. Chandran D. Emran T.B. Simal-Gandara J. Natural products targeting inflammation-related metabolic disorders: A comprehensive review. Heliyon 2023 9 6 e16919 10.1016/j.heliyon.2023.e16919 37346355
    [Google Scholar]
  16. de la Peña I. Afable T. Dahilig-Talan V.R. Cruz P. Review of plant extracts and active components: Mechanisms of action for the treatment of obesity-induced cognitive impairment. Brain Sci. 2023 13 6 929 10.3390/brainsci13060929 37371407
    [Google Scholar]
  17. Samtiya M. Aluko R.E. Dhewa T. Moreno-Rojas J.M. Potential health benefits of plant food-derived bioactive components: An overview. Foods 2021 10 4 839 10.3390/foods10040839 33921351
    [Google Scholar]
  18. Jafari F. Abbasi P. Rahmati M. Hodhodi T. Kazeminia M. Systematic review and meta-analysis of Tourette syndrome prevalence; 1986 to 2022. Pediatr. Neurol. 2022 137 6 16 10.1016/j.pediatrneurol.2022.08.010 36182698
    [Google Scholar]
  19. Mohammed A.S. Hashem H.A.A. Abdel Maksoud B.S. Improving the quality properties of soybean oil by using rice bran oil. Sci. Rep. 2024 14 1 2723 10.1038/s41598‑024‑53059‑3 38302565
    [Google Scholar]
  20. Rosqvist F. Cedernaes J. Martínez Mora A. Fridén M. Johansson H.E. Iggman D. Larsson A. Ahlström H. Kullberg J. Risérus U. Overfeeding polyunsaturated fat compared with saturated fat does not differentially influence lean tissue accumulation in individuals with overweight: A randomized controlled trial. Am. J. Clin. Nutr. 2024 120 1 121 128 10.1016/j.ajcnut.2024.04.010 38636844
    [Google Scholar]
  21. Jinadasa B.K.K.K. Van Bockstaele F. Cvejic J.H. Simal-Gandara J. Current trends and next generation of future edible oils. Future foods. Academic Press 2022 203 231 10.1016/B978‑0‑323‑91001‑9.00005‑0
    [Google Scholar]
  22. Ramazani E. Akaberi M. Emami S.A. Tayarani-Najaran Z. Biological and pharmacological effects of gamma-oryzanol: An updated review of the molecular mechanisms. Curr. Pharm. Des. 2021 27 19 2299 2316 10.2174/1381612826666201102101428 33138751
    [Google Scholar]
  23. Rodrigo R. Retamal C. Schupper D. Vergara-Hernández D. Saha S. Profumo E. Buttari B. Saso L. Antioxidant cardioprotection against reperfusion injury: Potential therapeutic roles of resveratrol and quercetin. Molecules 2022 27 8 2564 10.3390/molecules27082564 35458766
    [Google Scholar]
  24. Sulaiman A. Sulaiman A. Sert M. Khan M.S.A. Khan M.A. Functional and therapeutic potential of y-oryzanol. Functional Foods - Phytochemicals and Health Promoting Potential; IntechOpen 2021 259
    [Google Scholar]
  25. Jaime-Báez R. Saldo J. González-Soto R.A. Comparison of gamma-oryzanol nanoemulsions fabricated by different high energy techniques. Foods 2024 13 14 2256 10.3390/foods13142256 39063338
    [Google Scholar]
  26. Reis N. Castanho A. Lageiro M. Pereira C. Brites C.M. Vaz-Velho M. Rice bran stabilisation and oil extraction using the microwave-assisted method and its effects on GABA and gamma-oryzanol compounds. Foods 2022 11 7 912 10.3390/foods11070912 35406999
    [Google Scholar]
  27. He W.S. Zhao L. Yang H. Rui J. Li J. Chen Z.Y. Novel synthesis of phytosterol ferulate using acidic ionic liquids as a catalyst and its hypolipidemic activity. J. Agric. Food Chem. 2024 72 4 2309 2320 10.1021/acs.jafc.3c09148 38252882
    [Google Scholar]
  28. Wangdee K. Decker E.A. Onsaard E. Characterization of encapsulated γ-oryzanol powder by spray drying using whey protein and maltodextrin as wall materials. J. Food Sci. Technol. 2022 59 1 355 365 10.1007/s13197‑021‑05021‑8 35068579
    [Google Scholar]
  29. Lv L. Zhang L. Gao M. Ma F. Simultaneous determination of γ-oryzanol in agriproducts by solid-phase extraction coupled with UHPLC-MS/MS. Agriculture 2023 13 3 531 10.3390/agriculture13030531
    [Google Scholar]
  30. Pestana-Bauer V.R. Zambiazi R.C. Mendonça C.R.B. Beneito-Cambra M. Ramis-Ramos G. γ-Oryzanol and tocopherol contents in residues of rice bran oil refining. Food Chem. 2012 134 3 1479 1483 10.1016/j.foodchem.2012.03.059 25005970
    [Google Scholar]
  31. Yi B. Kim M.J. Extraction of γ-oryzanol from rice bran using diverse edible oils: Enhancement in oxidative stability of oils. Food Sci. Biotechnol. 2020 29 3 393 399 10.1007/s10068‑019‑00685‑7 32257523
    [Google Scholar]
  32. Rungratanawanich W. Abate G. Uberti D. Pharmacological profile of γ-oryzanol: Its antioxidant mechanisms and its effects in age-related diseases. Aging. Academic Press 2020 201 208 10.1016/B978‑0‑12‑818698‑5.00020‑1
    [Google Scholar]
  33. Yao Y. Yuan H. Zheng Y. Wang M. Li C. An insight into the thermal degradation pathway of γ-oryzanol and the effect on the oxidative stability of oil. J. Agric. Food Chem. 2024 72 11 5757 5765 10.1021/acs.jafc.3c08903 38445360
    [Google Scholar]
  34. Ahsan H. Ahad A. Siddiqui W.A. A review of characterization of tocotrienols from plant oils and foods. J. Chem. Biol. 2015 8 2 45 59 10.1007/s12154‑014‑0127‑8 25870713
    [Google Scholar]
  35. Villar M.A.L. Vidallon M.L.P. Rodriguez E.B. Nanostructured lipid carrier for bioactive rice bran gamma-oryzanol. Food Biosci. 2022 50 102064 10.1016/j.fbio.2022.102064
    [Google Scholar]
  36. Rodsuwan U. Pithanthanakul U. Thisayakorn K. Uttapap D. Boonpisuttinant K. Vatanyoopaisarn S. Thumthanaruk B. Rungsardthong V. Preparation and characterization of gamma oryzanol loaded zein nanoparticles and its improved stability. Food Sci. Nutr. 2021 9 2 616 624 10.1002/fsn3.1973 33598147
    [Google Scholar]
  37. Castanho A. Lageiro M. Calhelha R.C. Ferreira I.C.F.R. Sokovic M. Cunha L.M. Brites C. Exploiting the bioactive properties of γ-oryzanol from bran of different exotic rice varieties. Food Funct. 2019 10 5 2382 2389 10.1039/C8FO02596G 30950464
    [Google Scholar]
  38. Li H. Zeng W. Su Y. Curative effect observation of oryzanol and irbesartan combination therapy for urban and rural community hypertension. Chin Mod Med. 2013 12 86 87
    [Google Scholar]
  39. Lesma G. Luraghi A. Bavaro T. Bortolozzi R. Rainoldi G. Roda G. Viola G. Ubiali D. Silvani A. Phytosterol and γ-oryzanol conjugates: Synthesis and evaluation of their antioxidant, antiproliferative, and anticholesterol activities. J. Nat. Prod. 2018 81 10 2212 2221 10.1021/acs.jnatprod.8b00465 30360625
    [Google Scholar]
  40. Jamali Z. Ayoobi F. Jalali Z. Bidaki R. Lotfi M.A. Esmaeili-Nadimi A. Khalili P. Metabolic syndrome: A population-based study of prevalence and risk factors. Sci. Rep. 2024 14 1 3987 10.1038/s41598‑024‑54367‑4 38368464
    [Google Scholar]
  41. Rus M. Crisan S. Andronie-Cioara F.L. Indries M. Marian P. Pobirci O.L. Ardelean A.I. Prevalence and risk factors of metabolic syndrome: A prospective study on cardiovascular health. Medicina 2023 59 10 1711 10.3390/medicina59101711 37893429
    [Google Scholar]
  42. Lin L. Li T. Sun M. Liang Q. Ma Y. Wang F. Duan J. Sun Z. Global association between atmospheric particulate matter and obesity: A systematic review and meta-analysis. Environ. Res. 2022 209 112785 10.1016/j.envres.2022.112785 35077718
    [Google Scholar]
  43. Bays H.E. Kirkpatrick C. Maki K.C. Toth P.P. Morgan R.T. Tondt J. Jacobson T.A. Obesity, dyslipidemia, and cardiovascular disease: A joint expert review from the Obesity Medicine Association and the National Lipid Association 2024. Obes Pillars 2024 100108
    [Google Scholar]
  44. Jin X. Qiu T. Li L. Yu R. Chen X. Li C. Proud C.G. Jiang T. Pathophysiology of obesity and its associated diseases. Acta Pharm. Sin. B 2023 13 6 2403 2424 10.1016/j.apsb.2023.01.012 37425065
    [Google Scholar]
  45. Kumar R.B. Srivastava G. Reid T.J. Aronne L.J. Understanding the pathophysiologic pathways that underlie obesity and options for treatment. Expert Rev. Endocrinol. Metab. 2021 16 6 321 338 10.1080/17446651.2021.1991310 34904501
    [Google Scholar]
  46. Pappan N. Rehman A. Continuing education activity. 2023 Available from: https://sc.edu/about/offices_and_divisions/continuing_education/ceu_documentation/continuing_education_activity/index.php
  47. Uddandrao V.V.S. Brahma Naidu P. Chandrasekaran P. Saravanan G. Pathophysiology of obesity-related infertility and its prevention and treatment by potential phytotherapeutics. Int. J. Obes. 2024 48 2 147 165 10.1038/s41366‑023‑01411‑4 37963998
    [Google Scholar]
  48. Kesavadev J. Saboo B. Makkar B.M. Agarwal S. Chawla M. Chandran V. Shankar A. Basanth A. Continuous glucose monitoring in non-insulin type 2 diabetes. Int. J. Diabetes Technol 2023 2 1 16 21 10.4103/ijdt.ijdt_26_23
    [Google Scholar]
  49. Ke C. Chu A. Shah B.R. Tobe S. Tu K. Fang J. Vaid H. Liu P. Cader A. Lee D.S. Association of prior outpatient diabetes screening with cardiovascular events and mortality among people with incident diabetes: A population-based cohort study. Cardiovasc. Diabetol. 2023 22 1 227 10.1186/s12933‑023‑01952‑y 37641086
    [Google Scholar]
  50. Fahed G. Aoun L. Bou Zerdan M. Allam S. Bou Zerdan M. Bouferraa Y. Assi H.I. Metabolic syndrome: Updates on pathophysiology and management in 2021. Int. J. Mol. Sci. 2022 23 2 786 10.3390/ijms23020786 35054972
    [Google Scholar]
  51. Ojo O.A. Ibrahim H.S. Rotimi D.E. Ogunlakin A.D. Ojo A.B. Diabetes mellitus: From molecular mechanism to pathophysiology and pharmacology. Med. Novel Technol. Devices 2023 19 100247 10.1016/j.medntd.2023.100247
    [Google Scholar]
  52. Ma J. Chen X. Advances in pathogenesis and treatment of essential hypertension. Front. Cardiovasc. Med. 2022 9 1003852 10.3389/fcvm.2022.1003852 36312252
    [Google Scholar]
  53. Aydin S. Aksoy A. Aydin S. Kalayci M. Yilmaz M. Kuloglu T. Citil C. Catak Z. Today’s and yesterday’s of pathophysiology: Biochemistry of metabolic syndrome and animal models. Nutrition 2014 30 1 1 9 10.1016/j.nut.2013.05.013 24290591
    [Google Scholar]
  54. Nolan J.J. O’Gorman D.J. Pathophysiology of the metabolic syndrome. The Metabolic Syndrome: Pharmacology and Clinical Aspects Springer Vienna: Vienna 2013 17 42 10.1007/978‑3‑7091‑1331‑8_3
    [Google Scholar]
  55. Nguyen P.H. Goldberg R.J. Allison J.J. Nguyen D.B. Tran H.T. Tran O.M. Ha D.A. Nguyen H.L. Tran B.A. Wang B. Nguyen H.L. Lifestyle practices and associated factors among adults with hypertension: Conquering Hypertension in Vietnam-solutions at the grassroots level study. PLoS One 2024 19 6 e0303354 10.1371/journal.pone.0303354 38843274
    [Google Scholar]
  56. Theodorakis N. Nikolaou M. From cardiovascular-kidney-metabolic syndrome to cardiovascular-renal-hepatic-metabolic syndrome: Proposing an expanded framework. Biomolecules 2025 15 2 213 10.3390/biom15020213 40001516
    [Google Scholar]
  57. Hall Y.N. Anderson M.L. McClure J.B. Ehrlich K. Hansell L.D. Hsu C.W. Margolis K.L. Munson S.A. Thompson M.J. Green B.B. Relationship of blood pressure, health behaviors, and new diagnosis and control of hypertension in the BP-CHECK study. Circ. Cardiovasc. Qual. Outcomes 2024 17 2 e010119 10.1161/CIRCOUTCOMES.123.010119 38328915
    [Google Scholar]
  58. Kazamel M. Stino A.M. Smith A.G. Metabolic syndrome and peripheral neuropathy. Muscle Nerve 2021 63 3 285 293 10.1002/mus.27086 33098165
    [Google Scholar]
  59. Radu F. Potcovaru C.G. Salmen T. Filip P.V. Pop C. Fierbințeanu-Braticievici C. The link between NAFLD and metabolic syndrome. Diagnostics 2023 13 4 614 10.3390/diagnostics13040614 36832102
    [Google Scholar]
  60. Chou T.W. Ma C.Y. Cheng H.H. Chen Y.Y. Lai M.H. A rice bran oil diet improves lipid abnormalities and suppress hyperinsulinemic responses in rats with streptozotocin/nicotinamide-induced type 2 diabetes. J. Clin. Biochem. Nutr. 2009 45 1 29 36 10.3164/jcbn.08‑257 19590704
    [Google Scholar]
  61. Yanai H. Yoshida H. Beneficial effects of adiponectin on glucose and lipid metabolism and atherosclerotic progression: Mechanisms and perspectives. Int. J. Mol. Sci. 2019 20 5 1190 10.3390/ijms20051190 30857216
    [Google Scholar]
  62. Bradley D. Smith A.J. Blaszczak A. Shantaram D. Bergin S.M. Jalilvand A. Wright V. Wyne K.L. Dewal R.S. Baer L.A. Wright K.R. Stanford K.I. Needleman B. Brethauer S. Noria S. Renton D. Joseph J.J. Lovett-Racke A. Liu J. Hsueh W.A. Interferon gamma mediates the reduction of adipose tissue regulatory T cells in human obesity. Nat. Commun. 2022 13 1 5606 10.1038/s41467‑022‑33067‑5 36153324
    [Google Scholar]
  63. Begum M. Choubey M. Tirumalasetty M.B. Arbee S. Mohib M.M. Wahiduzzaman M. Mamun M.A. Uddin M.B. Mohiuddin M.S. Adiponectin: A promising target for the treatment of diabetes and its complications. Life 2023 13 11 2213 10.3390/life13112213 38004353
    [Google Scholar]
  64. Ohara K. Uchida A. Nagasaka R. Ushio H. Ohshima T. The effects of hydroxycinnamic acid derivatives on adiponectin secretion. Phytomedicine 2009 16 2-3 130 137 10.1016/j.phymed.2008.09.012 19013780
    [Google Scholar]
  65. Ohara K. Kiyotani Y. Uchida A. Nagasaka R. Maehara H. Kanemoto S. Hori M. Ushio H. Oral administration of γ-aminobutyric acid and γ-oryzanol prevents stress-induced hypoadiponectinemia. Phytomedicine 2011 18 8-9 655 660 10.1016/j.phymed.2011.01.003 21316207
    [Google Scholar]
  66. Cheng H.H. Ma C.Y. Chou T.W. Chen Y.Y. Lai M.H. Gamma-oryzanol ameliorates insulin resistance and hyperlipidemia in rats with streptozotocin/nicotinamide-induced type 2 diabetes. Int. J. Vitam. Nutr. Res. 2010 80 1 45 53 10.1024/0300‑9831/a000005 20533244
    [Google Scholar]
  67. Ghatak S.B. Panchal S.J. Anti-hyperlipidemic activity of oryzanol, isolated from crude rice bran oil, on Triton WR-1339-induced acute hyperlipidemia in rats. Rev. Bras. Farmacogn. 2012 22 3 642 648 10.1590/S0102‑695X2012005000023
    [Google Scholar]
  68. Nagasaka R. Yamsaki T. Uchida A. Ohara K. Ushio H. γ-Oryzanol recovers mouse hypoadiponectinemia induced by animal fat ingestion. Phytomedicine 2011 18 8-9 669 671 10.1016/j.phymed.2011.01.004 21310601
    [Google Scholar]
  69. Francisqueti-Ferron F.V. Ferron A.J.T. Altomare A. Garcia J.L. Moreto F. Ferreira A.L.A. Minatel I.O. Aldini G. Corrêa C.R. Gamma-oryzanol reduces renal inflammation and oxidative stress by modulating AGEs/RAGE axis in animals submitted to high sugar-fat diet. J. Bras. Nefrol. 2021 43 4 460 469 10.1590/2175‑8239‑jbn‑2021‑0002 34174064
    [Google Scholar]
  70. Khalid N. Kobayashi I. Neves M.A. Uemura K. Nakajima M. Nabetani H. Encapsulation of β-sitosterol plus γ-oryzanol in O/W emulsions: Formulation characteristics and stability evaluation with microchannel emulsification. Food Bioprod. Process. 2017 102 222 232 10.1016/j.fbp.2017.01.002
    [Google Scholar]
  71. Mattei L. Francisqueti-Ferron F.V. Garcia J.L. Ferron A.J.T. Silva C.C.V.A. Gregolin C.S. Nakandakare-Maia E.T. Silva J.C.P. Moreto F. Minatel I.O. Corrêa C.R. Antioxidant and anti-inflammatory properties of gamma- oryzanol attenuates insulin resistance by increasing GLUT- 4 expression in skeletal muscle of obese animals. Mol. Cell. Endocrinol. 2021 537 111423 10.1016/j.mce.2021.111423 34400258
    [Google Scholar]
  72. Diane A. Allouch A. Mu-U-Min R.B.A. Al-Siddiqi H.H. Endoplasmic reticulum stress in pancreatic β-cell dysfunctionality and diabetes mellitus: A promising target for generation of functional hPSC-derived β-cells in vitro. Front. Endocrinol. 2024 15 1386471 10.3389/fendo.2024.1386471 38966213
    [Google Scholar]
  73. Gao Y. Ryu H. Lee H. Kim Y.J. Lee J.H. Lee J. ER stress and unfolded protein response (UPR) signaling modulate GLP-1 receptor signaling in the pancreatic islets. Mol. Cells 2024 47 1 100004 10.1016/j.mocell.2023.12.002 38376482
    [Google Scholar]
  74. Kozuka C. Sunagawa S. Ueda R. Higa M. Tanaka H. Shimizu-Okabe C. Ishiuchi S. Takayama C. Matsushita M. Tsutsui M. Miyazaki J. Oyadomari S. Shimabukuro M. Masuzaki H. γ-Oryzanol protects pancreatic β-cells against endoplasmic reticulum stress in male mice. Endocrinology 2015 156 4 1242 1250 10.1210/en.2014‑1748 25594697
    [Google Scholar]
  75. Kozuka C. Kaname T. Shimizu-Okabe C. Takayama C. Tsutsui M. Matsushita M. Abe K. Masuzaki H. Impact of brown rice-specific γ-oryzanol on epigenetic modulation of dopamine D2 receptors in brain striatum in high-fat-diet-induced obesity in mice. Diabetologia 2017 60 8 1502 1511 10.1007/s00125‑017‑4305‑4 28528402
    [Google Scholar]
  76. Kozuka C. Shimizu-Okabe C. Takayama C. Nakano K. Morinaga H. Kinjo A. Fukuda K. Kamei A. Yasuoka A. Kondo T. Abe K. Egashira K. Masuzaki H. Marked augmentation of PLGA nanoparticle-induced metabolically beneficial impact of γ-oryzanol on fuel dyshomeostasis in genetically obese-diabetic ob/ob mice. Drug Deliv. 2017 24 1 558 568 10.1080/10717544.2017.1279237 28181829
    [Google Scholar]
  77. Jung C. Lee D.H. Ahn J. Lee H. Choi W. Jang Y. Ha T.Y. γ-Oryzanol enhances adipocyte differentiation and glucose uptake. Nutrients 2015 7 6 4851 4861 10.3390/nu7064851 26083118
    [Google Scholar]
  78. Masuzaki H. Kozuka C. Okamoto S. Yonamine M. Tanaka H. Shimabukuro M. Brown rice‐specific γ‐oryzanol as a promising prophylactic avenue to protect against diabetes mellitus and obesity in humans. J. Diabetes Investig. 2019 10 1 18 25 10.1111/jdi.12892 29978570
    [Google Scholar]
  79. Kaup A.R. Simonsick E.M. Harris T.B. Satterfield S. Metti A.L. Ayonayon H.N. Rubin S.M. Yaffe K. Older adults with limited literacy are at increased risk for likely dementia. J. Gerontol. A Biol. Sci. Med. Sci. 2014 69 7 900 906 10.1093/gerona/glt176 24158765
    [Google Scholar]
  80. Ham H. Lee Y.Y. Park J.Y. Lee C. Kwak J. Kim I.H. Lee J. Protective mechanisms of unsaponifiable matter from rice bran against tert‐butyl hydroperoxide‐induced oxidative damage in HepG2 cells. J. Food Biochem. 2016 40 4 526 534 10.1111/jfbc.12251
    [Google Scholar]
  81. Park H. Yu S. Kim W. Rice bran oil attenuates chronic inflammation by inducing m2 macrophage switching in high-fat diet-fed obese mice. Foods 2021 10 2 359 10.3390/foods10020359 33562395
    [Google Scholar]
  82. Kim H.W. Kim J.B. Shanmugavelan P. Kim S.N. Cho Y.S. Kim H.R. Lee J.T. Jeon W.T. Lee D.J. Evaluation of Î3-oryzanol content and composition from the grains of pigmented rice-germplasms by LC-DAD-ESI/MS. BMC Res. Notes 2013 6 1 149 10.1186/1756‑0500‑6‑149
    [Google Scholar]
  83. Justo M.L. Rodriguez-Rodriguez R. Claro C.M. Alvarez de Sotomayor M. Parrado J. Herrera M.D. Water-soluble rice bran enzymatic extract attenuates dyslipidemia, hypertension and insulin resistance in obese Zucker rats. Eur. J. Nutr. 2013 52 2 789 797 10.1007/s00394‑012‑0385‑6 22661284
    [Google Scholar]
  84. Bhaskaragoud G. Rajath S. Mahendra V.P. Kumar G.S. Gopala Krishna A.G. Kumar G.S. Hypolipidemic mechanism of oryzanol components- ferulic acid and phytosterols. Biochem. Biophys. Res. Commun. 2016 476 2 82 89 10.1016/j.bbrc.2016.05.053 27179780
    [Google Scholar]
  85. G, B.; v, G.; T, S.; A S, M.K.; C, H.K.; G, S.K. Hypolipidemic and antioxidant properties of Oryzanol concentrate in reducting diabetic nephropathy via SREBP1 downregulation rather than beta-oxidation. Mol. Nutr. Food Res. 2018 62 8 e1700511 10.1002/mnfr.201700511 29469229
    [Google Scholar]
  86. Bhaskaragoud G. Chatterjee P. Kumar G.S. Effect of oryzanol concentrate on hypolipidemic properties and antioxidant enzymes of liver in high fat fed and low STZ induced-male Wistar rats. Biomedicine 2020 40 1 25 31
    [Google Scholar]
  87. Francisqueti F. Minatel I. Ferron A. Bazan S. Silva V. Garcia J. De Campos D. Ferreira A. Moreto F. Cicogna A. Corrêa C. Effect of gamma-oryzanol as therapeutic agent to prevent cardiorenal metabolic syndrome in animals submitted to high sugar-fat diet. Nutrients 2017 9 12 1299 10.3390/nu9121299 29186059
    [Google Scholar]
  88. Perez-Ternero C. Bermudez Pulgarin B. Alvarez de Sotomayor M. Herrera M.D. Atherosclerosis-related inflammation and oxidative stress are improved by rice bran enzymatic extract. J. Funct. Foods 2016 26 610 621 10.1016/j.jff.2016.08.037
    [Google Scholar]
  89. Perez-Ternero C. Claro C. Parrado J. Herrera M.D. Alvarez de Sotomayor M. Rice bran enzymatic extract reduces atherosclerotic plaque development and steatosis in high-fat fed ApoE−/− mice. Nutrition 2017 37 22 29 10.1016/j.nut.2016.12.005 28359358
    [Google Scholar]
  90. Perez-Ternero C. Herrera M.D. Laufs U. Alvarez de Sotomayor M. Werner C. Food supplementation with rice bran enzymatic extract prevents vascular apoptosis and atherogenesis in ApoE−/− mice. Eur. J. Nutr. 2017 56 1 225 236 10.1007/s00394‑015‑1074‑z 26476632
    [Google Scholar]
  91. Chen L.C. Lai M.C. Hong T.Y. Liu I.M. γ-oryzanol from rice bran antagonizes glutamate-induced excitotoxicity in an in vitro model of differentiated HT-22 cells. Nutrients 2024 16 8 1237 10.3390/nu16081237 38674927
    [Google Scholar]
  92. Sobhy R. Eid M. Zhan F. Liang H. Li B. Toward understanding the in vitro anti-amylolytic effects of three structurally different phytosterols in an aqueous medium using multispectral and molecular docking studies. J. Mol. Liq. 2019 283 225 234 10.1016/j.molliq.2019.03.098
    [Google Scholar]
  93. Sompong R. Siebenhandl-Ehn S. Linsberger-Martin G. Berghofer E. Physicochemical and antioxidative properties of red and black rice varieties from Thailand, China and Sri Lanka. Food Chem. 2011 124 1 132 140 10.1016/j.foodchem.2010.05.115
    [Google Scholar]
  94. Ara T. Kogure K. Nanoparticles encapsulated γ-oryzanol as a natural prodrug of ferulic acid for the treatment of oxidative liver damage. Biol. Pharm. Bull. 2023 46 10 1403 1411 10.1248/bpb.b23‑00181 37779041
    [Google Scholar]
  95. Moko E.M. Rahardiyan D. Structure of stigmasterols in bran of red rice from Minahasa Regency, North Sulawesi, Indonesia. Fuller J. Chem. 2020 5 1 16 22 10.37033/fjc.v5i1.145
    [Google Scholar]
  96. Nikooyeh B. Zargaraan A. Ebrahimof S. Kalayi A. Zahedirad M. Yazdani H. Neyestani T.R. Formulation of canola oil with γ-oryzanol and evaluation of the effectiveness of its consumption compared with unfortified canola and sunflower oils on certain cardiometabolic, oxidative stress and immunity indicators of adults with type 2 diabetes: A randomized controlled clinical trial study protocol. Nutr. Food. Sci. Res. 2022 9 3 29 33
    [Google Scholar]
  97. Nikooyeh B. Zargaraan A. Ebrahimof S. Kalayi A. Zahedirad M. Yazdani H. Rismanchi M. Karami T. Khazraei M. Jafarpour A. Neyestani T.R. Added γ-oryzanol boosted anti-inflammatory effects of canola oil in adult subjects with type 2 diabetes: A randomized controlled clinical trial. Eur. J. Nutr. 2024 63 2 425 433 10.1007/s00394‑023‑03275‑w 37971692
    [Google Scholar]
  98. Nikooyeh B. Zargaraan A. Ebrahimof S. Kalayi A. Zahedirad M. Yazdani H. Rismanchi M. Karami T. Khazraei M. Jafarpour A. Neyestani T.R. Daily consumption of γ-oryzanol-fortified canola oil, compared with unfortified canola and sunflower oils, resulted in a better improvement of certain cardiometabolic biomarkers of adult subjects with type 2 diabetes: A randomized controlled clinical trial. Eur. J. Med. Res. 2023 28 1 416 10.1186/s40001‑023‑01409‑8 37817285
    [Google Scholar]
  99. Tang L. Liu R. Xu Y. Zhang X. Liu R. Chang M. Wang X. Synergistic and antagonistic interactions of α-tocopherol, γ-oryzanol and phytosterol in refined coconut oil. Lebensm. Wiss. Technol. 2022 154 112789 10.1016/j.lwt.2021.112789
    [Google Scholar]
  100. Devarajan S. Chatterjee B. Urata H. Zhang B. Ali A. Singh R. Ganapathy S. A blend of sesame and rice bran oils lowers hyperglycemia and improves the lipids. Am. J. Med. 2016 129 7 731 739 10.1016/j.amjmed.2016.02.044 27046245
    [Google Scholar]
  101. Yahya A.B. Usaku C. Daisuk P. Shotipruk A. Enzymatic hydrolysis as a green alternative for glyceride removal from rice bran acid oil before γ-oryzanol recovery: Statistical process optimization. Biocatal. Agric. Biotechnol. 2023 50 102727 10.1016/j.bcab.2023.102727
    [Google Scholar]
  102. Bastia R. Pandit E. Sanghamitra P. Barik S.R. Nayak D.K. Sahoo A. Moharana A. Meher J. Dash P.K. Raj R. Jena B.K. Pradhan K.C. Lenka D. Basak N. Lenka S. Pradhan S.K. Association mapping for quantitative trait loci controlling superoxide dismutase, flavonoids, anthocyanins, carotenoids, γ-oryzanol and antioxidant activity in rice. Agronomy 2022 12 12 3036 10.3390/agronomy12123036
    [Google Scholar]
  103. Phothi T. Tunsophon S. Tiyaboonchai W. Khongsombat O. Effects of curcumin and γ oryzanol solid dispersion on the brain of middle aged rats. Biomed. Rep. 2022 17 1 59 10.3892/br.2022.1542 35719843
    [Google Scholar]
  104. Hao C.L. Lin H.L. Ke L.Y. Yen H.W. Shen K.P. Pre-germinated brown rice extract ameliorates high-fat diet-induced metabolic syndrome. J. Food Biochem. 2019 43 3 e12769 10.1111/jfbc.12769 31353547
    [Google Scholar]
  105. Siqueira J.S. Garcia J.L. Ferron A.J.T. Moreto F. Sormani L.E. Costa M.R. Palacio T.L.N. Nai G.A. Aldini G. Francisqueti-Ferron F.V. Correa C.R. D’Amato A. Proteomic study of gamma-oryzanol preventive effect on a diet-induced non-alcoholic fatty liver disease model. J. Nutr. Biochem. 2024 127 109607 10.1016/j.jnutbio.2024.109607 38432453
    [Google Scholar]
  106. Alwadani A.H. Almasri S.A. Aloud A.A. Albadr N.A. Alshammari G.M. Yahya M.A. The synergistic protective effect of γ-oryzanol (OZ) and N-acetylcysteine (NAC) against experimentally induced NAFLD in rats entails hypoglycemic, antioxidant, and PPARα stimulatory effects. Nutrients 2022 15 1 106 10.3390/nu15010106 36615764
    [Google Scholar]
  107. Munkong N. Somnuk S. Jantarach N. Ruxsanawet K. Nuntaboon P. Kanjoo V. Yoysungnoen B. Red rice bran extract alleviates high-fat diet-induced non-alcoholic fatty liver disease and dyslipidemia in mice. Nutrients 2023 15 1 246 10.3390/nu15010246 36615905
    [Google Scholar]
  108. Ghatak S.B. Panchal S.J. Investigation of the immunomodulatory potential of oryzanol isolated from crude rice bran oil in experimental animal models. Phytother. Res. 2012 26 11 1701 1708 10.1002/ptr.4627 22407738
    [Google Scholar]
  109. Bagheri Y. Aghajani S. Hosseinzadeh M. Hoshmandan F. Abdollahpour A. Vahed S.Z. Protective effects of Gamma Oryzanol on distant organs after kidney ischemia-reperfusion in rats: A focus on liver protection. Hum. Exp. Toxicol. 2021 40 6 1022 1030 10.1177/0960327120979014 33325270
    [Google Scholar]
  110. Kunisaki M. Umeda F. Ishii H. Yamauchi T. Nawata H. Effects of γ-oryzanol on prostaglandin metabolism in vascular wall and platelet. Domyaku Koka 1990 18 6 677 683
    [Google Scholar]
  111. Berger A. Rein D. Schäfer A. Monnard I. Gremaud G. Lambelet P. Bertoli C. Similar cholesterol-lowering properties of rice bran oil, with varied γ-oryzanol, in mildly hypercholesterolemic men. Eur. J. Nutr. 2005 44 3 163 173 10.1007/s00394‑004‑0508‑9 15309429
    [Google Scholar]
  112. Li X. Nian B.B. Tan C.P. Liu Y.F. Xu Y.J. Deep‐frying oil induces cytotoxicity, inflammation and apoptosis on intestinal epithelial cells. J. Sci. Food Agric. 2022 102 8 3160 3168 10.1002/jsfa.11659 34786719
    [Google Scholar]
  113. Shiwakoti S. Gong D. Sharma K. Kang K.W. Schini-Kerth V.B. Kim H.J. Ko J.Y. Oak M.H. γ-Oryzanol ameliorates fine dust-induced premature endothelial senescence and dysfunction via attenuating oxidative stress. Food Chem. Toxicol. 2023 179 113981 10.1016/j.fct.2023.113981 37549806
    [Google Scholar]
  114. Qin J. Yang L. Clinical study of bushentiaochong recipe in treatment of 40 cases of patients with menopausal hypertension. 2014
    [Google Scholar]
  115. Wisetkomolmat J. Arjin C. Hongsibsong S. Ruksiriwanich W. Niwat C. Tiyayon P. Jamjod S. Yamuangmorn S. Prom-U-Thai C. Sringarm K. Antioxidant activities and characterization of polyphenols from selected Northern Thai rice husks: Relation with seed attributes. Rice Sci. 2023 30 2 148 159 10.1016/j.rsci.2023.01.007
    [Google Scholar]
  116. Long L. Wu S. Sun J. Wang J. Zhang H. Qi G. Effects of octacosanol extracted from rice bran on blood hormone levels and gene expressions of glucose transporter protein-4 and adenosine monophosphate protein kinase in weaning piglets. Anim. Nutr. 2015 1 4 293 298 10.1016/j.aninu.2015.12.005 29767050
    [Google Scholar]
  117. Okubo R. Kondo M. Imasawa T. Saito C. Kai H. Tsunoda R. Hoshino J. Watanabe T. Narita I. Matsuo S. Makino H. Hishida A. Yamagata K. Health-related quality of life in 10 years long-term survivors of chronic kidney disease: A from-J study. J. Ren. Nutr. 2024 34 2 161 169 10.1053/j.jrn.2023.10.001 37832838
    [Google Scholar]
  118. Panchal S.S. Patidar R.K. Jha A.B. Allam A.A. Ajarem J. Butani S.B. Anti-inflammatory and antioxidative stress effects of oryzanol in glaucomatous rabbits. J. Ophthalmol. 2017 2017 1 1 9 10.1155/2017/1468716 28168044
    [Google Scholar]
  119. Januario E. Barakat A. Rajsundar A. Fatima Z. Nanda Palienkar V. Bullapur A.V. Singh Brar S. Kharel P. Koyappathodi Machingal M.M. Backosh A. A comprehensive review of pathophysiological link between non-alcoholic fatty liver disease, insulin resistance, and metabolic syndrome. Cureus 2024 16 12 e75677 10.7759/cureus.75677 39807459
    [Google Scholar]
  120. Zhao J. Duan L. Li J. Yao C. Wang G. Mi J. Yu Y. Ding L. Zhao Y. Yan G. Li J. Zhao Z. Wang X. Li M. New insights into the interplay between autophagy, gut microbiota and insulin resistance in metabolic syndrome. Biomed. Pharmacother. 2024 176 116807 10.1016/j.biopha.2024.116807 38795644
    [Google Scholar]
  121. Song K. Lee E. Lee H.S. Lee H. Lee J.W. Chae H.W. Kwon Y.J. Comparison of SPISE and METS-IR and other markers to predict insulin resistance and elevated liver transaminases in children and adolescents. Diabetes Metab. J. 2025 49 2 264 274 10.4093/dmj.2024.0302 39532082
    [Google Scholar]
  122. Islam M.S. Wei P. Suzauddula M. Nime I. Feroz F. Acharjee M. Pan F. The interplay of factors in metabolic syndrome: Understanding its roots and complexity. Mol. Med. 2024 30 1 279 10.1186/s10020‑024‑01019‑y 39731011
    [Google Scholar]
  123. Yang W. Cai X. Hu J. Wen W. Mulalibieke H. Yao X. Yao L. Zhu Q. Hong J. Luo Q. Liu S. Li N. The metabolic score for insulin resistance (METS-IR) predicts cardiovascular disease and its subtypes in patients with hypertension and obstructive sleep apnea. Clin. Epidemiol. 2023 15 177 189 10.2147/CLEP.S395938 36815173
    [Google Scholar]
  124. Gong S. Gan S. Zhang Y. Zhou H. Zhou Q. Gamma-glutamyl transferase to high-density lipoprotein cholesterol ratio is a more powerful marker than TyG index for predicting metabolic syndrome in patients with type 2 diabetes mellitus. Front. Endocrinol. 2023 14 1248614 10.3389/fendo.2023.1248614 37854188
    [Google Scholar]
  125. Cao S. Meng L. Lin L. Hu X. Li X. The association between the metabolic score for insulin resistance (METS-IR) index and urinary incontinence in the United States: Results from the National Health and Nutrition Examination Survey (NHANES) 2001-2018. Diabetol. Metab. Syndr. 2023 15 1 248 10.1186/s13098‑023‑01226‑3 38041100
    [Google Scholar]
  126. Sasanfar B. Emrani A. Zademohammadi F. Forootani B. Emamgholipour S. Jambarsang S. Khayyatzadeh S.S. Pourrajab F. Yasini Ardakani S.A. Esmaillzadeh A. Salehi-Abarghouei A. The impact of a blend of Pistacia atlantica seed and canola oil compared with a blend of corn-canola oil with synthetic antioxidant and corn-canola oil without synthetic antioxidant on oxidative stress markers in patients with metabolic syndrome: Protocol for a triple-blind, randomized, three-way cross-over clinical trial. Trials 2023 24 1 473 10.1186/s13063‑023‑07269‑1 37488571
    [Google Scholar]
  127. Mahdavi-Roshan M. Shoaibinobarian N. Evazalipour M. Salari A. Ghorbani Z. Savarrakhsh A. Ahmadnia Z. An open label randomized controlled trial of the effects of rice bran oil on cardiometabolic risk factors, lipid peroxidation and antioxidant status in overweight/obese adults with metabolic syndrome. Lipids Health Dis. 2024 23 1 273 10.1186/s12944‑024‑02260‑4 39198792
    [Google Scholar]
  128. Wu X. Guo T. Luo F. Lin Q. Brown rice: A missing nutrient-rich health food. Food Sci. Hum. Wellness 2023 12 5 1458 1470 10.1016/j.fshw.2023.02.010
    [Google Scholar]
  129. Ghorbani Z. Shoaibinobarian N. Zamani E. Salari A. Mahdavi-Roshan M. Porteghali P. Ahmadnia Z. Supplementing the standard diet with brown rice bran powder might effectively improve the metabolic syndrome characteristics and antioxidant status: An open label randomized controlled trial. Food Funct. 2025 16 2 750 762 10.1039/D4FO03642E 39775811
    [Google Scholar]
  130. Ghosh S. Bollinedi H. Krishnan S.G. Kumar S. Bhowmick P.K. M, N.; Vinod, K.K.; Ellur, R.K.; Singh, A.K. Grain γ-oryzanol and its constituent compounds show high genetic variability, diversity and significant site x genotype interactions in rice. Indian J. Genet. Plant Breed. 2023 83 2 157 167 10.31742/ISGPB.83.2.1
    [Google Scholar]
  131. Mapoung S. Semmarath W. Arjsri P. Thippraphan P. Srisawad K. Umsumarng S. Phromnoi K. Jamjod S. Prom-u-Thai C. Dejkriengkraikul P. Comparative analysis of bioactive-phytochemical characteristics, antioxidants activities, and anti-inflammatory properties of selected black rice germ and bran (Oryza sativa L.) varieties. Eur. Food Res. Technol. 2023 249 2 451 464 10.1007/s00217‑022‑04129‑1 36246093
    [Google Scholar]
  132. Wei X. Wang J. Wang Y. Zhao Y. Long Y. Tan B. Li Q.X. Dong Z. Wan X. Dietary fiber and polyphenols from whole grains: Effects on the gut and health improvements. Food Funct. 2024 15 9 4682 4702 10.1039/D4FO00715H 38590246
    [Google Scholar]
  133. Ying T. Zheng J. Kan J. Li W. Xue K. Du J. Liu Y. He G. Effects of whole grains on glycemic control: A systematic review and dose-response meta-analysis of prospective cohort studies and randomized controlled trials. Nutr. J. 2024 23 1 47 10.1186/s12937‑024‑00952‑2 38664726
    [Google Scholar]
  134. Saikia S. Dutta H. Gamma oryzanol. Nutraceuticals and Health. Care. Academic Press 2022 245 257 10.1016/B978‑0‑323‑89779‑2.00019‑3
    [Google Scholar]
  135. Toorani M.R. Golmakani M.T. Effect of triacylglycerol structure on the antioxidant activity of γ-oryzanol. Food Chem. 2022 370 130974 10.1016/j.foodchem.2021.130974 34500298
    [Google Scholar]
  136. Tangpromphan P. Duangsrisai S. Jaree A. Development of separation method for Alpha-Tocopherol and Gamma-Oryzanol extracted from rice bran oil using Three-Zone simulated moving bed process. Separ. Purif. Tech. 2021 272 118930 10.1016/j.seppur.2021.118930
    [Google Scholar]
  137. Wu N.N. Li R. Li Z.J. Tan B. Effect of germination in the form of paddy rice and brown rice on their phytic acid, GABA, γ-oryzanol, phenolics, flavonoids and antioxidant capacity. Food Res. Int. 2022 159 111603 10.1016/j.foodres.2022.111603 35940799
    [Google Scholar]
  138. Jasim A.J. Albukhaty S. Sulaiman G.M. Al-Karagoly H. Jabir M.S. Abomughayedh A.M. Mohammed H.A. Abomughaid M.M. Liposome nanocarriers based on γ Oryzanol: Preparation, characterization, and in vivo assessment of toxicity and antioxidant activity. ACS Omega 2024 9 3 acsomega.3c07339 10.1021/acsomega.3c07339 38284009
    [Google Scholar]
  139. Sharif N. Golmakani M.T. Hajjari M.M. Integration of physicochemical, molecular dynamics, and in vitro evaluation of electrosprayed γ-oryzanol-loaded gliadin nanoparticles. Food Chem. 2022 395 133589 10.1016/j.foodchem.2022.133589 35779508
    [Google Scholar]
  140. Tao J. Liu L. Ma Q. Ma K.Y. Chen Z.Y. Ye F. Lei L. Zhao G. Effect of γ-oryzanol on oxygen consumption and fatty acids changes of canola oil. Lebensm. Wiss. Technol. 2022 160 113275 10.1016/j.lwt.2022.113275
    [Google Scholar]
  141. Shen Y. Wu D. Fogliano V. Pellegrini N. Rice varieties with a high endosperm lipid content have reduced starch digestibility and increased γ-oryzanol bioaccessibility. Food Funct. 2021 12 22 11547 11556 10.1039/D1FO03039F 34708854
    [Google Scholar]
  142. Sun P. Xia B. Ni Z.J. Wang Y. Elam E. Thakur K. Ma Y.L. Wei Z.J. Characterization of functional chocolate formulated using oleogels derived from β-sitosterol with γ-oryzanol/lecithin/stearic acid. Food Chem. 2021 360 130017 10.1016/j.foodchem.2021.130017 33984566
    [Google Scholar]
  143. Musapoor S. Davoodian N. Kadivar A. Ahmadi E. Nazari H. Media supplementation with gamma‐oryzanol improves the outcome of ovine oocyte maturation in vitro. Vet. Med. Sci. 2025 11 1 e70134 10.1002/vms3.70134 39688528
    [Google Scholar]
  144. Taarji N. Bouhoute M. Kobayashi I. Tominaga K. Isoda H. Nakajima M. Preparation and characterization of concentrated γ-Oryzanol nanodispersions by solvent displacement method: Effect of processing conditions on nanoparticles formation. Food Hydrocoll. 2022 123 107161 10.1016/j.foodhyd.2021.107161
    [Google Scholar]
  145. Najafi A. Daghigh-Kia H. Mehdipour M. Mohammadi H. Hamishehkar H. Comparing the effect of rooster semen extender supplemented with gamma-oryzanol and its nano form on post-thaw sperm quality and fertility. Poult. Sci. 2022 101 3 101637 10.1016/j.psj.2021.101637 35038650
    [Google Scholar]
  146. Elmowafy E.O. El-Derany M. Casettari L. Soliman M.E. El-Gogary R.I. Gamma oryzanol loaded into micelle-core/chitosan-shell: From translational nephroprotective potential to emphasis on sirtuin-1 associated machineries. Int. J. Pharm. 2023 631 122482 10.1016/j.ijpharm.2022.122482 36513255
    [Google Scholar]
  147. Daisuk P. Takami S. Honda M. Goto M. Usaku C. Shotipruk A. Liquefied dimethyl ether as alternative extraction solvent for high γ-oryzanol rice bran oil: Systematic HSP theory and experimental evaluation. J. Bioresour Bioproducts 2024 9 4 577 591 10.1016/j.jobab.2024.06.002
    [Google Scholar]
  148. Matheson A.B. Dalkas G. Lloyd G.O. Hart A. Bot A. den Adel R. Koutsos V. Clegg P.S. Euston S.R. Exploring how changes to the steroidal core alter oleogelation capability in sterol: Γ‐oryzanol blends. J. Am. Oil Chem. Soc. 2022 99 11 943 950 10.1002/aocs.12624 36619665
    [Google Scholar]
  149. Ahire E.D. Jadhav R.L. Patil M.V. Keservani R.K. The role of functional foods to combat weight gain and obesity. Nutraceuticals in Obesity Management and Control. Apple Academic Press 2025 413 424
    [Google Scholar]
  150. Koppula S. Shaik B. Maddi S. Phytosomes as a new frontier and emerging nanotechnology platform for phytopharmaceuticals: Therapeutic and clinical applications. Phytother. Res. 2025 39 5 2217 2249 10.1002/ptr.8465 40110760
    [Google Scholar]
  151. Lomarat P. Phechkrajang C. Sunghad P. Anantachoke N. Raman spectroscopy coupled with the PLSR model: A rapid method for analyzing gamma-oryzanol content in rice bran oil. Food Chem. X 2024 24 101923 10.1016/j.fochx.2024.101923 39525060
    [Google Scholar]
  152. Duangsa B. Rodpon P. Khongla C. Musika S. Rattanajun P. Khumpumuang P. Sawisit A. Gamma-oryzanol, physicochemical and antioxidant properties of stabilized rice bran oil from dough and mature grain stages. Curr. Appl. Sci. Technol 2024 25 1 e0260012 10.55003/cast.2024.260012
    [Google Scholar]
  153. Dewi A.M.P. Setyaningsih W. Palma M. Rapid method for simultaneous determination of γ-oryzanol compounds in rice (Oryza sativa) grains using UV-Vis spectroscopy and chemometrics. Trends Sci. 2024 21 12 8550 8550 10.48048/tis.2024.8550
    [Google Scholar]
  154. Luo X. Wang C. Su R. Du J. Zhao S. Jia C. Niu M. Xu Y. Revealing the indigestion mechanism of starch-γ-oryzanol complex to starch digestive enzymes: Insights from structural properties, molecular dynamics simulation and molecular docking. Int. J. Biol. Macromol. 2025 315 Pt 1 144495 10.1016/j.ijbiomac.2025.144495 40409639
    [Google Scholar]
  155. Abate G. Pezzotta A. Pucci M. Bortolotto V. Ribaudo G. Bonini S.A. Mastinu A. Maccarinelli G. Ongaro A. Tirelli E. Zizioli D. Gianoncelli A. Memo M. Grilli M. Uberti D. The bioactive gamma-oryzanol from Oryza sativa L. promotes neuronal differentiation in different in vitro and in vivo models. Antioxidants 2024 13 8 969 10.3390/antiox13080969 39199215
    [Google Scholar]
  156. Ravilla J. Rajendran S. Basavaraj V.M. Satheeshan G. Narayanan J. Venkatesh T. Sundaram G.M. Plant-derived nanovesicles from soaked rice water: A novel and sustainable platform for the delivery of natural anti-oxidant γ-oryzanol. Antioxidants 2025 14 6 717 10.3390/antiox14060717 40563350
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266379551251128092015
Loading
/content/journals/ctmc/10.2174/0115680266379551251128092015
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test