Skip to content
2000
image of A Review of The Place of Adipose-Derived Stem Cells among Stem Cell Applications in Neurodegenerative Diseases

Abstract

Treatment of neurodegenerative diseases aims to slow disease progression, alleviate symptoms, and improve life quality. AdiposeDerived Stem Cells (ADSCs) have emerged as a promising treatment for neurodegenerative diseases that can be easily obtained from adipose tissues. Their abundance, accessibility, and potential for multilinear differentiation make them an attractive candidate for regenerative medicine. ADSCs can release neurotrophic factors, modulate neuroinflammation, and potentially differentiate into neurons, giving hope for neuronal repair and replacement. Preclinical studies have shown the efficacy of several neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, and spinal cord injuries. ADSC has demonstrated the potential to improve functional results, promote neurogenesis, induce tissue integrity, and reduce neuron loss. Clinical trials are still underway, but evidence of the effectiveness of ADSC in neurodegeneration is still being developed. The first clinical studies focused on safety and feasibility and achieved promising results. Optimizing cell transmission, controlling tumor growth, standardizing treatment protocols and such challenges remain. Current research is aimed at addressing these obstacles and transforming ADSC therapy into a widespread clinical practice. This review focuses on the characteristics, problems, and future approaches of ADSC in the context of neurodegenerative diseases and therapeutic processes.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266363649250620113954
2025-10-31
2025-11-07
Loading full text...

Full text loading...

References

  1. Karvandi M.S. Sheikhzadeh Hesari F. Aref A.R. Mahdavi M. The neuroprotective effects of targeting key factors of neuronal cell death in neurodegenerative diseases: The role of ER stress, oxidative stress, and neuroinflammation. Front. Cell. Neurosci. 2023 17 1105247 10.3389/fncel.2023.1105247 36950516
    [Google Scholar]
  2. Niso-Santano M. Fuentes J.M. Galluzzi L. Immunological aspects of central neurodegeneration. Cell Discov. 2024 10 1 41 10.1038/s41421‑024‑00666‑z 38594240
    [Google Scholar]
  3. Hussain R. Zubair H. Pursell S. Shahab M. Neurodegenerative diseases: Regenerative mechanisms and novel therapeutic approaches. Brain Sci. 2018 8 9 177 10.3390/brainsci8090177 30223579
    [Google Scholar]
  4. Battaglia S. Avenanti A. Vécsei L. Tanaka M. Neurodegeneration in cognitive impairment and mood disorders for experimental, clinical and translational neuropsychiatry. Biomedicines 2024 12 3 574 10.3390/biomedicines12030574 38540187
    [Google Scholar]
  5. Aguzzi A. Kampmann M. Neurodegeneration enters the era of functional genomics. Science 2023 381 6662 eadk5693 10.1126/science.adk5693 37676963
    [Google Scholar]
  6. Stoker T.B. Barker R.A. Recent developments in the treatment of Parkinson’s Disease. F1000 Res. 2020 9 862 10.12688/f1000research.25634.1
    [Google Scholar]
  7. Nayer B. Tan J.L. Alshoubaki Y.K. Lu Y.Z. Legrand J.M.D. Lau S. Hu N. Park A.J. Wang X.N. Amann-Zalcenstein D. Hickey P.F. Wilson T. Kuhn G.A. Müller R. Vasanthakumar A. Akira S. Martino M.M. Local administration of regulatory T cells promotes tissue healing. Nat. Commun. 2024 15 1 7863 10.1038/s41467‑024‑51353‑2 39251592
    [Google Scholar]
  8. Niazi S.K. Magoola M. Mariam Z. Innovative therapeutic strategies in alzheimer’s disease: A synergistic approach to neurodegenerative disorders. Pharmaceuticals 2024 17 6 741 10.3390/ph17060741 38931409
    [Google Scholar]
  9. Wei M. Yang Z. Li S. Le W. Nanotherapeutic and stem cell therapeutic strategies in neurodegenerative diseases: A promising therapeutic approach. Int. J. Nanomedicine 2023 18 18 611 626 10.2147/IJN.S395010 36760756
    [Google Scholar]
  10. Wang Y.K. Zhu W.W. Wu M.H. Wu Y.H. Liu Z.X. Liang L.M. Sheng C. Hao J. Wang L. Li W. Zhou Q. Hu B.Y. Human clinical-grade parthenogenetic ESC-derived dopaminergic neurons recover locomotive defects of nonhuman primate models of parkinson’s disease. Stem Cell Reports 2018 11 1 171 182 10.1016/j.stemcr.2018.05.010 29910127
    [Google Scholar]
  11. Shroff G. Dhanda Titus J. Shroff R. A review of the emerging potential therapy for neurological disorders: Human embryonic stem cell therapy. Am. J. Stem Cells 2017 6 1 1 12 28533935
    [Google Scholar]
  12. Chang E.A. Jin S.W. Nam M.H. Kim S.D. Human induced pluripotent stem cells: Clinical significance and applications in neurologic diseases. J. Korean Neurosurg. Soc. 2019 62 5 493 501 10.3340/jkns.2018.0222 31392877
    [Google Scholar]
  13. Jarrige M. Frank E. Herardot E. Martineau S. Darle A. Benabidès M. Domingues S. Chose O. Habeler W. Lorant J. Baldeschi C. Martinat C. Monville C. Morizur L. Ben M’Barek K. The future of regenerative medicine: Cell therapy using pluripotent stem cells and acellular therapies based on extracellular vesicles. Cells 2021 10 2 240 10.3390/cells10020240 33513719
    [Google Scholar]
  14. Lee J. Tsai C. Chou C. Development of neural stem cell-based therapies for parkinson’s disease. In: Parkinson’s Disease- Understanding Pathophysiology and Developing Therapeutic Strategies;Yenisetti, S.C., Ed.Yenisetti, S.C., Ed.; InTech 2018 77 94 10.5772/intechopen.73870
    [Google Scholar]
  15. Zhang T. Ke W. Zhou X. Qian Y. Feng S. Wang R. Cui G. Tao R. Guo W. Duan Y. Zhang X. Cao X. Shu Y. Yue C. Jing N. Human neural stem cells reinforce hippocampal synaptic network and rescue cognitive deficits in a mouse model of Alzheimer’s Disease. Stem Cell Reports 2019 13 6 1022 1037 10.1016/j.stemcr.2019.10.012 31761676
    [Google Scholar]
  16. Yang L. Liu S.C. Liu Y.Y. Zhu F.Q. Xiong M.J. Hu D.X. Zhang W.J. Therapeutic role of neural stem cells in neurological diseases. Front. Bioeng. Biotechnol. 2024 12 12 1329712 10.3389/fbioe.2024.1329712 38515621
    [Google Scholar]
  17. Urrutia D.N. Caviedes P. Mardones R. Minguell J.J. Vega-Letter A.M. Jofré C.M. Comparative study of the neural differentiation capacity of mesenchymal stromal cells from different tissue sources: An approach for their use in neural regeneration therapies. PLoS One 2019 14 3 e0213032 10.1371/journal.pone.0213032 30856179
    [Google Scholar]
  18. Badyra B. Sułkowski M. Milczarek O. Majka M. Mesenchymal stem cells as a multimodal treatment for nervous system diseases. Stem Cells Transl. Med. 2020 9 10 1174 1189 10.1002/sctm.19‑0430 32573961
    [Google Scholar]
  19. Xia Y. Zhu J. Yang R. Wang H. Li Y. Fu C. Mesenchymal stem cells in the treatment of spinal cord injury: Mechanisms, current advances and future challenges. Front. Immunol. 2023 14 1141601 10.3389/fimmu.2023.1141601 36911700
    [Google Scholar]
  20. Bora P. Majumdar A.S. Adipose tissue-derived stromal vascular fraction in regenerative medicine: A brief review on biology and translation. Stem Cell Res. Ther. 2017 8 1 145 10.1186/s13287‑017‑0598‑y 28619097
    [Google Scholar]
  21. Harasymiak-Krzyżanowska I. Niedojadło A. Karwat J. Kotuła L. Gil-Kulik P. Sawiuk M. Kocki J. Adipose tissue-derived stem cells show considerable promise for regenerative medicine applications. Cell. Mol. Biol. Lett. 2013 18 4 479 493 10.2478/s11658‑013‑0101‑4 23949841
    [Google Scholar]
  22. Takahashi A. Nakajima H. Kubota A. Watanabe S. Matsumine A. Adipose-derived mesenchymal stromal cell transplantation for severe spinal cord injury: Functional improvement supported by angiogenesis and neuroprotection. Cells 2023 12 11 1470 1470 10.3390/cells12111470 37296591
    [Google Scholar]
  23. Rada T. Carvalho P. Santos T. Castro A. Reis R. Gomes M. Chondrogenic potential of two hASCs subpopulations loaded onto gellan gum hydrogel evaluated in a nude mice model. Curr. Stem Cell Res. Ther. 2013 8 5 357 364 10.2174/1574888X113089990049 23755728
    [Google Scholar]
  24. Hu L. Wang J. Zhou X. Xiong Z. Zhao J. Yu R. Huang F. Zhang H. Chen L. Author correction: Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts. Sci. Rep. 2020 10 1 6693 10.1038/s41598‑020‑63068‑7 32300115
    [Google Scholar]
  25. Biniazan F. Stoian A. Haykal S. Adipose-derived stem cells: Angiogenetic potential and utility in tissue engineering. Int. J. Mol. Sci. 2024 25 4 2356 10.3390/ijms25042356 38397032
    [Google Scholar]
  26. Chan T.M. Chen J.Y.R. Ho L.I. Lin H.P. Hsueh K.W. Liu D.D. Chen Y.H. Hsieh A.C. Tsai N.M. Hueng D.Y. Tsai S.T. Chou P.W. Lin S.Z. Harn H.J. ADSC therapy in neurodegenerative disorders. Cell Transplant. 2014 23 4-5 549 557 10.3727/096368914X678445 24816450
    [Google Scholar]
  27. Nie L. Yao D. Chen S. Wang J. Pan C. Wu D. Liu N. Tang Z. Directional induction of neural stem cells, a new therapy for neurodegenerative diseases and ischemic stroke. Cell Death Discov. 2023 9 1 215 10.1038/s41420‑023‑01532‑9 37393356
    [Google Scholar]
  28. Park Y.M. Han S.H. Seo S.K. Park K.A. Lee W.T. Lee J.E. Restorative benefits of transplanting human mesenchymal stromal cells overexpressing arginine decarboxylase genes after spinal cord injury. Cytotherapy 2015 17 1 25 37 10.1016/j.jcyt.2014.08.006 25442787
    [Google Scholar]
  29. Yiğittürk G. Erbaş O. Karabay Yavasoglu N.U. Açıkgöz E. Buhur A. Gökhan A. Gürel C. Gündüz C. Yavaşoğlu A. The neuro-restorative effect of adipose-derived mesenchymal stem cell transplantation on a mouse model of diabetic neuropathy. Neurol. Res. 2022 44 2 156 164 10.1080/01616412.2021.1967679 34410214
    [Google Scholar]
  30. Madani Neishaboori A. Eshraghi A. Tasouji Asl A. Shariatpanahi M. Yousefifard M. Gorji A. Adipose tissue‐derived stem cells as a potential candidate in treatment of Alzheimer’s disease: A systematic review on preclinical studies. Pharmacol. Res. Perspect. 2022 10 4 e00977 10.1002/prp2.977 35718918
    [Google Scholar]
  31. Ferroni L. De Francesco F. Pinton P. Gardin C. Zavan B. Methods to isolate adipose tissue-derived stem cells. Methods Cell Biol. 2022 171 215 228 10.1016/bs.mcb.2022.04.011 35953202
    [Google Scholar]
  32. Coelho H.R.S. Neves S.C.D. da Silva Menezes J.N. Antoniolli-Silva A.C.M.B. Oliveira R.J. Autologous adipose-derived mesenchymal stem cell therapy reverses detrusor underactivity: open clinical trial. Stem Cell Res. Ther. 2023 14 1 64 10.1186/s13287‑023‑03294‑8 37016455
    [Google Scholar]
  33. Chiu T.L. Baskaran R. Tsai S.T. Huang C.Y. Chuang M.H. Syu W.S. Harn H.J. Lin Y.C. Chen C.H. Huang P.C. Wang Y.F. Chuang C.H. Lin P.C. Lin S.Z. Intracerebral transplantation of autologous adipose‐derived stem cells for chronic ischemic stroke: A phase I study. J. Tissue Eng. Regen. Med. 2022 16 1 3 13 10.1002/term.3256 34644444
    [Google Scholar]
  34. Palumbo P. Lombardi F. Siragusa G. Cifone M.G. Cinque B. Giuliani M. Methods of isolation, characterization and expansion of human Adipose-Derived Stem Cells (ASCs): An overview. Int. J. Mol. Sci. 2018 19 7 1897 10.3390/ijms19071897 29958391
    [Google Scholar]
  35. Kuterbekov M. Jonas A.M. Glinel K. Picart C. Osteogenic differentiation of adipose-derived stromal cells: From bench to clinics. Tissue Eng. Part B Rev. 2020 26 5 461 474 10.1089/ten.teb.2019.0225 32098603
    [Google Scholar]
  36. Bourin P. Bunnell B.A. Casteilla L. Dominici M. Katz A.J. March K.L. Redl H. Rubin J.P. Yoshimura K. Gimble J.M. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: A joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy 2013 15 6 641 648 10.1016/j.jcyt.2013.02.006 23570660
    [Google Scholar]
  37. Safford K.M. Hicok K.C. Safford S.D. Halvorsen Y.D.C. Wilkison W.O. Gimble J.M. Rice H.E. Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem. Biophys. Res. Commun. 2002 294 2 371 379 10.1016/S0006‑291X(02)00469‑2 12051722
    [Google Scholar]
  38. Gomila Pelegri N. Stanczak A.M. Bottomley A.L. Milthorpe B.K. Gorrie C.A. Padula M.P. Santos J. Adipose-derived stem cells spontaneously express neural markers when grown in a PEG-based 3D matrix. Int. J. Mol. Sci. 2023 24 15 12139 10.3390/ijms241512139 37569515
    [Google Scholar]
  39. Cao Y. Sun Z. Liao L. Meng Y. Han Q. Zhao R.C. Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochem. Biophys. Res. Commun. 2005 332 2 370 379 10.1016/j.bbrc.2005.04.135 15896706
    [Google Scholar]
  40. Liu H. Bi X. Yang N. Zhang X. Fang B. Kusuman N. Ma W. Li J. Chu J. Sun L. Li L. Lü G. Lin R. Induced hepatocyte-like cells derived from adipose-derived stem cells alleviates liver injury in mice infected with Echinococcus Multilocularis. Sci. Rep. 2024 14 1 26296 10.1038/s41598‑024‑77555‑8 39487286
    [Google Scholar]
  41. Al Battah F. De Kock J. Vanhaecke T. Rogiers V. Current status of human adipose-derived stem cells: Differentiation into hepatocyte-like cells. ScientificWorldJournal 2011 11 1568 1581 10.1100/tsw.2011.146 22224071
    [Google Scholar]
  42. Bajek A. Gurtowska N. Olkowska J. Maj M. Kaźmierski Ł. Bodnar M. Marszałek A. Dębski R. Drewa T. Does the harvesting technique affect the properties of adipose‐derived stem cells?—The comparative biological characterization. J. Cell. Biochem. 2017 118 5 1097 1107 10.1002/jcb.25724 27608167
    [Google Scholar]
  43. Uguten M. van der Sluis N. Vriend L. Coert J.H. Harmsen M.C. van der Lei B. van Dongen J.A. Comparing mechanical and enzymatic isolation procedures to isolate adipose‐derived stromal vascular fraction: A systematic review. Wound Repair Regen. 2024 32 6 1008 1021 10.1111/wrr.13228 39444305
    [Google Scholar]
  44. Li S.H. Liao X. Zhou T.E. Xiao L.L. Chen Y.W. Wu F. Wang J.R. Cheng B. Song J.X. Liu H.W. Evaluation of 2 purification methods for isolation of human adipose-derived stem cells based on red blood cell lysis with ammonium chloride and hypotonic sodium chloride solution. Ann. Plast. Surg. 2017 78 1 83 90 10.1097/SAP.0000000000000953 27941495
    [Google Scholar]
  45. Raposio E. Simonacci F. Perrotta R.E. Adipose-derived stem cells: Comparison between two methods of isolation for clinical applications. Ann. Med. Surg. (Lond.) 2017 20 20 87 91 10.1016/j.amsu.2017.07.018 28736612
    [Google Scholar]
  46. Priya N. Sarcar S. Majumdar A.S. SundarRaj S. Explant culture: A simple, reproducible, efficient and economic technique for isolation of mesenchymal stromal cells from human adipose tissue and lipoaspirate. J. Tissue Eng. Regen. Med. 2014 8 9 706 716 10.1002/term.1569 22837175
    [Google Scholar]
  47. Busser H. De Bruyn C. Urbain F. Najar M. Pieters K. Raicevic G. Meuleman N. Bron D. Lagneaux L. Isolation of adipose-derived stromal cells without enzymatic treatment: expansion, phenotypical, and functional characterization. Stem Cells Dev. 2014 23 19 2390 2400 10.1089/scd.2014.0071 24805167
    [Google Scholar]
  48. Jing W. Xiao J. Xiong Z. Yang X. Huang Y. Zhou M. Chen S. Lin Y. Tian W. Explant culture: An efficient method to isolate adipose-derived stromal cells for tissue engineering. Artif. Organs 2011 35 2 105 112 10.1111/j.1525‑1594.2010.01054.x 20946305
    [Google Scholar]
  49. Roxburgh J. Metcalfe A.D. Martin Y.H. The effect of medium selection on adipose-derived stem cell expansion and differentiation: implications for application in regenerative medicine. Cytotechnology 2016 68 4 957 967 10.1007/s10616‑015‑9848‑y 25795468
    [Google Scholar]
  50. Franke J. Abs V. Zizzadoro C. Abraham G. Comparative study of the effects of fetal bovine serum versus horse serum on growth and differentiation of primary equine bronchial fibroblasts. BMC Vet. Res. 2014 10 1 119 10.1186/1746‑6148‑10‑119 24886635
    [Google Scholar]
  51. Malagutti-Ferreira M.J. Crispim B.A. Barufatti A. Cardoso S.S. Guarnier L.P. Rodríguez F.F. Soares M.R. Antunes R.N.S. Ribeiro-Paes J.T. Genomic instability in long-term culture of human adipose-derived mesenchymal stromal cells. Braz. J. Med. Biol. Res. 2023 56 e12713 10.1590/1414‑431x2023e12713 37493771
    [Google Scholar]
  52. Haack-Sørensen M. Follin B. Juhl M. Brorsen S.K. Søndergaard R.H. Kastrup J. Ekblond A. Culture expansion of adipose derived stromal cells. A closed automated Quantum Cell Expansion System compared with manual flask-based culture. J. Transl. Med. 2016 14 1 319 10.1186/s12967‑016‑1080‑9 27852267
    [Google Scholar]
  53. Schive S.W. Fjukstad R. Josefsen D. Katavić M. Abadpour S. Gullestad H.P. Kvalheim G. Scholz H. Automated isolation and expansion of human adipose tissue-derived stem cells for a seamless translation into clinical trials. CellR4 2018 6 (2) e2519
    [Google Scholar]
  54. Yañez R. Lamana M.L. García-Castro J. Colmenero I. Ramírez M. Bueren J.A. Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease. Stem Cells 2006 24 11 2582 2591 10.1634/stemcells.2006‑0228 16873762
    [Google Scholar]
  55. Dicker A. Le Blanc K. Åström G. van Harmelen V. Götherström C. Blomqvist L. Arner P. Rydén M. Functional studies of mesenchymal stem cells derived from adult human adipose tissue. Exp. Cell Res. 2005 308 2 283 290 10.1016/j.yexcr.2005.04.029 15925364
    [Google Scholar]
  56. Huang S.J. Fu R.H. Shyu W.C. Liu S.P. Jong G.P. Chiu Y.W. Wu H.S. Tsou Y.A. Cheng C.W. Lin S.Z. Adipose-derived stem cells: Isolation, characterization, and differentiation potential. Cell Transplant. 2013 22 4 701 709 10.3727/096368912X655127 23068312
    [Google Scholar]
  57. Frese L. Dijkman P.E. Hoerstrup S.P. Adipose tissue-derived stem cells in regenerative medicine. Transfus. Med. Hemother. 2016 43 4 268 274 10.1159/000448180 27721702
    [Google Scholar]
  58. Zhang J. Liu Y. Chen Y. Yuan L. Liu H. Wang J. Liu Q. Zhang Y. Adipose-derived stem cells: Current applications and future directions in the regeneration of multiple tissues. Stem Cells Int. 2020 2020 1 26 10.1155/2020/8810813 33488736
    [Google Scholar]
  59. Conese M. Cassano R. Gavini E. Trapani G. Rassu G. Sanna E. Di Gioia S. Trapani A. Harnessing stem cells and neurotrophic factors with novel technologies in the treatment of parkinson’s disease. Curr. Stem Cell Res. Ther. 2019 14 7 549 569 10.2174/1574888X14666190301150210 30827260
    [Google Scholar]
  60. Iyyanki T. Hubenak J. Liu J. Chang E.I. Beahm E.K. Zhang Q. Harvesting technique affects adipose-derived stem cell yield. Aesthet. Surg. J. 2015 35 4 467 476 10.1093/asj/sju055 25791999
    [Google Scholar]
  61. Pelegri N.G. Milthorpe B.K. Gorrie C.A. Santos J. Neurogenic marker expression in differentiating human adipose derived adult mesenchymal stem cells. Stem Cell. Investig. AME Publishing Company 2023 10 1 15
    [Google Scholar]
  62. Choi H.S. Kim H.J. Oh J.H. Park H.G. Ra J.C. Chang K.A. Suh Y.H. Therapeutic potentials of human adipose-derived stem cells on the mouse model of Parkinson’s disease. Neurobiol. Aging 2015 36 10 2885 2892 10.1016/j.neurobiolaging.2015.06.022 26242706
    [Google Scholar]
  63. Ching R.C. Wiberg M. Kingham P.J. Schwann cell-like differentiated adipose stem cells promote neurite outgrowth via secreted exosomes and RNA transfer. Stem Cell Res. Ther. 2018 9 1 266 10.1186/s13287‑018‑1017‑8 30309388
    [Google Scholar]
  64. Pinton S. Sampaio T.B. Savall A.S. Gutierrez M.E.Z. Neurotrophic factors in Alzheimer’s and Parkinson’s diseases: Implications for pathogenesis and therapy. Neural Regen. Res. 2017 12 4 549 557 10.4103/1673‑5374.205084 28553325
    [Google Scholar]
  65. Gong B. Dong Y. He C. Jiang W. Shan Y. Zhou B.Y. Li W. Intravenous transplants of human adipose-derived stem cell protect the rat brain from ischemia-induced damage. J. Stroke Cerebrovasc. Dis. 2019 28 3 595 603 10.1016/j.jstrokecerebrovasdis.2018.10.037 30482485
    [Google Scholar]
  66. Wang X. Zhang Y. Jin T. Botchway B.O.A. Fan R. Wang L. Liu X. Adipose-derived mesenchymal stem cells combined with extracellular vesicles may improve amyotrophic lateral sclerosis. Front. Aging Neurosci. 2022 14 14 830346 10.3389/fnagi.2022.830346 35663577
    [Google Scholar]
  67. Santamaria G. Brandi E. Vitola P.L. Grandi F. Ferrara G. Pischiutta F. Vegliante G. Zanier E.R. Re F. Uccelli A. Forloni G. de Rosbo N.K. Balducci C. Intranasal delivery of mesenchymal stem cell secretome repairs the brain of Alzheimer’s mice. Cell Death Differ. 2021 28 1 203 218 10.1038/s41418‑020‑0592‑2 32704089
    [Google Scholar]
  68. Zhou B. Chen Q. Zhang Q. Tian W. Chen T. Liu Z. Therapeutic potential of adipose-derived stem cell extracellular vesicles: From inflammation regulation to tissue repair. Stem Cell Res. Ther. 2024 15 1 249 10.1186/s13287‑024‑03863‑5 39113098
    [Google Scholar]
  69. Ceccarelli S. Pontecorvi P. Anastasiadou E. Napoli C. Marchese C. Immunomodulatory effect of adipose-derived stem cells: The cutting edge of clinical application. Front. Cell Dev. Biol. 2020 8 236 10.3389/fcell.2020.00236 32363193
    [Google Scholar]
  70. Jiang L. Mee T. Zhou X. Jia X. Augmenting peripheral nerve regeneration with adipose-derived stem cells. Stem Cell Rev. Rep. 2022 18 2 544 558 10.1007/s12015‑021‑10236‑5 34417730
    [Google Scholar]
  71. Ma X. Huang M. Zheng M. Dai C. Song Q. Zhang Q. Li Q. Gu X. Chen H. Jiang G. Yu Y. Liu X. Li S. Wang G. Chen H. Lu L. Gao X. ADSCs-derived extracellular vesicles alleviate neuronal damage, promote neurogenesis and rescue memory loss in mice with Alzheimer’s disease. J. Control. Release 2020 327 688 702 10.1016/j.jconrel.2020.09.019 32931898
    [Google Scholar]
  72. Zhao K. Li R. Gu C. Liu L. Jia Y. Guo X. Zhang W. Pei C. Tian L. Li B. Jia J. Cheng H. Xu H. Li L. Intravenous administration of adipose-derived stem cell protein extracts improves neurological deficits in a rat model of stroke. Stem Cells Int. 2017 2017 1 11 10.1155/2017/2153629 28265288
    [Google Scholar]
  73. Tse K.H. Novikov L.N. Wiberg M. Kingham P.J. Intrinsic mechanisms underlying the neurotrophic activity of adipose derived stem cells. Exp. Cell Res. 2015 331 1 142 151 10.1016/j.yexcr.2014.08.034 25193075
    [Google Scholar]
  74. Widgerow A.D. Salibian A.A. Lalezari S. Evans G.R.D. Neuromodulatory nerve regeneration: Adipose tissue‐derived stem cells and neurotrophic mediation in peripheral nerve regeneration. J. Neurosci. Res. 2013 91 12 1517 1524 10.1002/jnr.23284 24105674
    [Google Scholar]
  75. Dong L. Li X. Leng W. Guo Z. Cai T. Ji X. Xu C. Zhu Z. Lin J. Adipose stem cells in tissue regeneration and repair: From bench to bedside. Regen. Ther. 2023 24 24 547 560 10.1016/j.reth.2023.09.014 37854632
    [Google Scholar]
  76. Kinnaird T. Stabile E. Burnett M.S. Lee C.W. Barr S. Fuchs S. Epstein S.E. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ. Res. 2004 94 5 678 685 10.1161/01.RES.0000118601.37875.AC 14739163
    [Google Scholar]
  77. Kang T. Jones T.M. Naddell C. Bacanamwo M. Calvert J.W. Thompson W.E. Bond V.C. Chen Y.E. Liu D. Adipose-derived stem cells induce angiogenesis via microvesicle transport of miRNA-31. Stem Cells Transl. Med. 2016 5 4 440 450 10.5966/sctm.2015‑0177 26933040
    [Google Scholar]
  78. Liang X. Zhang L. Wang S. Han Q. Zhao R.C. Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a. J. Cell Sci. 2016 129 11 2182 2189 10.1242/jcs.170373 27252357
    [Google Scholar]
  79. Ciervo Y. Gatto N. Allen C. Grierson A. Ferraiuolo L. Mead R.J. Shaw P.J. Adipose-derived stem cells protect motor neurons and reduce glial activation in bothin vitro and in vivo models of ALS. Mol. Ther. Methods Clin. Dev. 2021 21 21 413 433 10.1016/j.omtm.2021.03.017 33869658
    [Google Scholar]
  80. Nakamura Y. Tada K. Akahane M. Hattori T. Matsuta M. Murai A. Honda S. Hori O. Demura S. Efficacy of adipose-derived stem cells in preventing peripheral nerve adhesion and promoting nerve regeneration: A laboratory investigation in a rat model. J. Orthop. Sci. 2024 7 S0949 S2658 10.1016/j.jos.2024.09.005 39379214
    [Google Scholar]
  81. Khaled M.M. Ibrahium A.M. Abdelgalil A.I. El-Saied M.A. Yassin A.M. Abouquerin N. Rizk H. El-Bably S.H. Efficacy of adipose-derived stem cells in preventing peripheral nerve adhesion and promoting nerve regeneration: A laboratory investigation in a rat model. J. Orthop. Sci. 2024 7 S0949 S2658 10.1016/j.jos.2024.09.005 39379214
    [Google Scholar]
  82. Ishikura T. Shiga H. Nakamura Y. Kanitani T. Ishigaki Y. Miwa T. Olfactory Regeneration with Nasally Administered Murine Adipose-Derived Stem Cells in Olfactory Epithelium Damaged Mice. Cells 2023 12 5 765 10.3390/cells12050765 36899901
    [Google Scholar]
  83. González-Cubero E. González-Fernández M.L. Rodríguez-Díaz M. Palomo-Irigoyen M. Woodhoo A. Villar-Suárez V. Application of adipose-derived mesenchymal stem cells in an in vivo model of peripheral nerve damage. Front. Cell. Neurosci. 2022 16 992221 10.3389/fncel.2022.992221 36159399
    [Google Scholar]
  84. Klein S. Siegmund A. Eigenberger A. Hartmann V. Langewost F. Hammer N. Anker A. Klein K. Morsczeck C. Prantl L. Felthaus O. Peripheral nerve regeneration-adipose-tissue-derived stem cells differentiated by a three-step protocol promote neurite elongation via NGF secretion. Cells 2022 11 18 2887 10.3390/cells11182887
    [Google Scholar]
  85. Yuan X. Li W. Yuan Y. Zhu X. Meng Y. Wu Q. Yan Q. Zhang P. Characterization of neuronal differentiation in human adipose-derived stromal cells: Morphological, molecular, and ultrastructural insights. J. Neurosci. Methods 2024 412 110296 10.1016/j.jneumeth.2024.110296 39357604
    [Google Scholar]
  86. Gao S. Guo X. Zhao S. Jin Y. Zhou F. Yuan P. Cao L. Wang J. Qiu Y. Sun C. Kang Z. Gao F. Xu W. Hu X. Yang D. Qin Y. Ning K. Shaw P.J. Zhong G. Cheng L. Zhu H. Gao Z. Chen X. Xu J. Differentiation of human adipose-derived stem cells into neuron/motoneuron-like cells for cell replacement therapy of spinal cord injury. Cell Death Dis. 2019 10 8 597 10.1038/s41419‑019‑1772‑1 31395857
    [Google Scholar]
  87. Valencia-Salgado C. Jacobo-Arreola S. Said-Fernandez S. Soto-Dominguez A. Camacho-Morales A. Martinez-Rodriguez H. Rodriguez-Rocha H. Delgado-Gonzalez P. Quiroz-Reyes A. Islas J. Garza-Treviño E. Promoting differentiation of human adipose mesenchymal stem cells into oligodendrocyte-like cells and neuron-like cells through coculture on decellularized sciatic nerves. Scientific Letters 2022 1 1 2
    [Google Scholar]
  88. Roballo K.C.S. da Silveira J.C. Bressan F.F. de Souza A.F. Pereira V.M. Porras J.E.P. Rós F.A. Pulz L.H. Strefezzi R.F. Martins D.D.S. Meirelles F.V. Ambrósio C.E. Neurons-derived extracellular vesicles promote neural differentiation of ADSCs: A model to prevent peripheral nerve degeneration. Sci. Rep. 2019 9 1 11213 10.1038/s41598‑019‑47229‑x 31371742
    [Google Scholar]
  89. Orbay H. Uysal A.C. Hyakusoku H. Mizuno H. Differentiated and undifferentiated adipose-derived stem cells improve function in rats with peripheral nerve gaps. J. Plast. Reconstr. Aesthet. Surg. 2012 65 5 657 664 10.1016/j.bjps.2011.11.035 22137687
    [Google Scholar]
  90. Zeng X. Liu Y. Li Z. He Y. Li F. Zhang S. Gu J. Lu L. Induced differentiation of adipose-derived stem cells enhance secretion of neurotrophic factors. Invest. Clin. 2023 64 3 267 280 10.54817/IC.v64n3a01
    [Google Scholar]
  91. Sun X. Zhu Y. Yin H. Guo Z. Xu F. Xiao B. Jiang W. Guo W. Meng H. Lu S. Wang Y. Peng J. Differentiation of adipose-derived stem cells into Schwann cell-like cells through intermittent induction: Potential advantage of cellular transient memory function. Stem Cell Res. Ther. 2018 9 1 133 10.1186/s13287‑018‑0884‑3 29751848
    [Google Scholar]
  92. Liu M. Lu Y. Sun F. Li Y. Wu J. Zou Q. The Nerve-induced adipose stem cells promote nerve repair in stress urinary incontinence by regulating schwann cell repair phenotype conversion through activation of the notch pathway. Mol. Neurobiol. 2025 Epub ahead of print 10.1007/s12035‑025‑04704‑z
    [Google Scholar]
  93. Yang E. Liu N. Tang Y. Hu Y. Zhang P. Pan C. Dong S. Zhang Y. Tang Z. Generation of neurospheres from human adipose-derived stem cells. BioMed Res. Int. 2015 2015 1 10 10.1155/2015/743714 25815334
    [Google Scholar]
  94. Kwak K.A. Lee S.P. Yang J.Y. Park Y.S. Current Perspectives regarding stem cell-based therapy for alzheimer’s disease. Stem Cells Int. 2018 2018 1 14 10.1155/2018/6392986 29686714
    [Google Scholar]
  95. Luo L. Hu D.H. Yin J.Q. Xu R.X. Molecular mechanisms of transdifferentiation of adipose-derived stem cells into neural cells: Current status and perspectives. Stem Cells Int. 2018 2018 1 14 10.1155/2018/5630802 30302094
    [Google Scholar]
  96. Peng C. Lü L. Li Y. Hu J. Neurospheres induced from human adipose-derived stem cells as a new source of neural progenitor cells. Cell Transplant. 2019 28 66S 75S 10.1177/09636897241265808
    [Google Scholar]
  97. Anand S. Stem cell approaches for treatment of neurodegenerative diseases. Clin. Pharmacol. Biopharm. 2014 3 2 126 10.4172/2167‑065X.1000126
    [Google Scholar]
  98. Masoudi Asil S. Ahlawat J. Guillama Barroso G. Narayan M. Application of nanotechnology in stem-cell-based therapy of neurodegenerative diseases. Appl. Sci. 2020 10 14 4852 10.3390/app10144852
    [Google Scholar]
  99. Kim D.Y. Choi Y.S. Kim S.E. Lee J.H. Kim S.M. Kim Y.J. Rhie J.W. Jun Y.J. In vivo effects of adipose-derived stem cells in inducing neuronal regeneration in Sprague-Dawley rats undergoing nerve defect bridged with polycaprolactone nanotubes J. Korean Med. Sci. 2014 29 (Suppl 3) S183 S192 (Suppl 3) 10.3346/jkms.2014.29.S3.S183 25473208
    [Google Scholar]
  100. Girolamo L. Lopa S. Arrigoni E. Sartori M.F. Baruffaldi Preis F.W. Brini A.T. Human adipose-derived stem cells isolated from young and elderly women: Their differentiation potential and scaffold interaction during in vitro osteoblastic differentiation. Cytotherapy 2009 11 6 793 803 10.3109/14653240903079393 19878065
    [Google Scholar]
  101. Huang S.C. Wu T.C. Yu H.C. Chen M.R. Liu C.M. Chiang W.S. Lin K.M. Mechanical strain modulates age-related changes in the proliferation and differentiation of mouse adipose-derived stromal cells. BMC Cell Biol. 2010 11 1 18 10.1186/1471‑2121‑11‑18 20219113
    [Google Scholar]
  102. Chen L. Qiu R. Xu Q. Mesenchymal stem cell therapy for neurodegenerative diseases. J. Nanosci. Nanotechnol. 2014 14 1 969 975 10.1166/jnn.2014.9126 24730313
    [Google Scholar]
  103. Kuźma-Kozakiewicz M. Marchel A. Kaminska A. Gaweł M. Sznajder J. Figiel-Dąbrowska A. Nowak A. Maj E. Krześniak N.E. Noszczyk B.H. Domanska-Janik K. Sarnowska A. Intraspinal transplantation of the adipose tissue-derived regenerative cells in amyotrophic lateral sclerosis in accordance with the current experts’ recommendations: Choosing optimal monitoring tools. Stem Cells Int. 2018 2018 4392017 1 16 10.1155/2018/4392017 30158984
    [Google Scholar]
  104. De Gioia R. Biella F. Citterio G. Rizzo F. Abati E. Nizzardo M. Bresolin N. Comi G.P. Corti S. Neural stem cell transplantation for neurodegenerative diseases. Int. J. Mol. Sci. 2020 21 9 3103 10.3390/ijms21093103 32354178
    [Google Scholar]
  105. Nakajima T. Tada K. Nakada M. Matsuta M. Tsuchiya H. Facilitatory effects of artificial nerve filled with adipose-derived stem cell sheets on peripheral nerve regeneration: An experimental study. J. Orthop. Sci. 2021 26 6 1113 1118 10.1016/j.jos.2020.09.014 33248872
    [Google Scholar]
  106. Bydon M. Qu W. Moinuddin F.M. Hunt C.L. Garlanger K.L. Reeves R.K. Windebank A.J. Zhao K.D. Jarrah R. Trammell B.C. Intrathecal delivery of adipose-derived mesenchymal stem cells in traumatic spinal cord injury: Phase I trial. Nat. Commun. 2024 15 1 2201 10.1038/s41467‑024‑46259‑y 38561341
    [Google Scholar]
  107. Zhang Z. Zhang M. Sun Y. Li M. Chang C. Liu W. Zhu X. Wei L. Wen F. Liu Y. Effects of adipose derived stem cells pretreated with resveratrol on sciatic nerve regeneration in rats. Sci. Rep. 2023 13 1 5812 10.1038/s41598‑023‑32906‑9 37037844
    [Google Scholar]
  108. Syu W.Z. Hueng D.Y. Chen W.L. Chan J.Y.H. Chen S.G. Huang S.M. Adipose-derived neural stem cells combined with acellular dermal matrix as a neural conduit enhances peripheral nerve repair. Cell Transplant. 2019 28 9-10 1220 1230 10.1177/0963689719853512 31148461
    [Google Scholar]
  109. Masgutov R. Masgutova G. Mukhametova L. Garanina E. Arkhipova S.S. Zakirova E. Mukhamedshina Y.O. Margarita Z. Gilazieva Z. Syromiatnikova V. Mullakhmetova A. Kadyrova G. Nigmetzyanova M. Mikhail S. Igor P. Yagudin R. Rizvanov A. Allogenic adipose derived stem cells transplantation improved sciatic nerve regeneration in rats: Autologous nerve graft model. Front. Pharmacol. 2018 9 86 10.3389/fphar.2018.00086 29559908
    [Google Scholar]
  110. Rodríguez Sánchez D.N. de Lima Resende L.A. Boff Araujo Pinto G. de Carvalho Bovolato A.L. Possebon F.S. Deffune E. Amorim R.M. Canine adipose-derived mesenchymal stromal cells enhance neuroregeneration in a rat model of sciatic nerve crush injury. Cell Transplant. 2019 28 1 47 54 10.1177/0963689718809045 30369261
    [Google Scholar]
  111. Vij R. Kim H. Park H. Cheng T. Lotfi D. Chang D. Safety and efficacy of adipose-derived mesenchymal stem cell therapy in elderly Parkinson’s disease patients: An intermediate-size expanded access program. Cytotherapy 2025 27 2 181 187 10.1016/j.jcyt.2024.09.004 39425736
    [Google Scholar]
  112. Fernández O. Izquierdo G. Fernández V. Leyva L. Reyes V. Guerrero M. León A. Arnaiz C. Navarro G. Páramo M.D. Cuesta A. Soria B. Hmadcha A. Pozo D. Fernandez-Montesinos R. Adipose-derived mesenchymal stem cells (AdMSC) for the treatment of secondary-progressive multiple sclerosis: A triple blinded, placebo controlled, randomized phase I/II safety and feasibility study. PLoS One 2018 13 5 e0195891 10.1371/journal.pone.0195891 29768414
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266363649250620113954
Loading
/content/journals/ctmc/10.2174/0115680266363649250620113954
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test