Skip to content
2000
image of A Novel Perspective on Using Artificial Intelligence and Nanoinformatics to Develop Nanomedicines

Abstract

Developing novel pharmacological compounds for disease treatment is an inherently time-consuming and costly process, yet research continues unabated. Leveraging existing data resources and identifying innovative therapeutic leads are critical steps in drug design. The integration of artificial intelligence (AI) and machine learning (ML) offers powerful tools for designing and developing translational nanomedicines. The biological activity of a nanomedicine is largely determined by its physicochemical properties, including size, shape, surface charge, and chemical composition. These properties can be systematically optimized using nanoinformatics approaches, such as quantitative structure-activity/property relationship (QSAR/QSPR) models, enabling enhanced functionality of engineered nanomedicines while minimizing potential health and environmental risks during development. Physiologically based pharmacokinetic (PBPK) models further complement these approaches by predicting drug and nanomedicine distribution in body fluids, extrapolating experimental data, and establishing correlations between physicochemical properties and biodistribution. Such models are particularly valuable for toxicity assessment. This review focuses on the implementation of nanoinformatics tools and AI to facilitate the translation of nanomedicines from bench to clinic. Computational strategies for designing nanodelivery systems are highlighted, including selecting suitable nanomaterials, assessing potential nanotoxicity, and developing simulation models for and analyses. Additionally, the review examines the contributions of AI and ML to the development of translational nanomedicines, as well as the associated challenges and future research directions. The compiled insights are highly relevant to research groups involved in drug discovery, nanotechnology, and the development of advanced drug delivery systems for biomedical applications. Importantly, the methodologies discussed have broad applicability across multiple scientific disciplines.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266359804251111113649
2026-01-09
2026-01-31
Loading full text...

Full text loading...

References

  1. de la Iglesia D. Cachau R.E. García-Remesal M. Maojo V. Nanoinformatics knowledge infrastructures: Bringing efficient information management to nanomedical research. Comput. Sci. Discov. 2013 6 1 014011 10.1088/1749‑4699/6/1/014011 24932210
    [Google Scholar]
  2. Maojo V. Fritts M. de la Iglesia D. Cachau R.E. Garcia-Remesal M. Mitchell J.A. Kulikowski C. Nanoinformatics: A new area of research in nanomedicine. Int. J. Nanomedicine 2012 7 3867 3890 10.2147/IJN.S24582 22866003
    [Google Scholar]
  3. Sason H. Shamay Y. Nanoinformatics in drug delivery. Isr. J. Chem. 2020 60 12 1108 1117 10.1002/ijch.201900042
    [Google Scholar]
  4. Saha S. How nanoinformatics could pave the way to safer design of engineered nanomaterials? Frontiers in Nanotechnology, 2025 7 1559053 10.3389/fnano.2025.1559053
    [Google Scholar]
  5. Maojo V. Martin-Sanchez F. Kulikowski C. Rodriguez-Paton A. Fritts M. Nanoinformatics and DNA-based computing: Catalyzing nanomedicine. Pediatr. Res. 2010 67 5 481 489 10.1203/PDR.0b013e3181d6245e 20118825
    [Google Scholar]
  6. Altman R.B. Balling R. Brinkley J.F. Coiera E. Consorti F. Dhansay M.A. Geissbuhler A. Hersh W. Kwankam S.Y. Lorenzi N.M. Martin-Sanchez F. Mihalas G.I. Shahar Y. Takabayashi K. Wiederhold G. Commentaries on “Informatics and medicine: From molecules to populations”. Methods Inf. Med. 2008 47 4 296 317 10.1055/s‑0038‑1627413 18690363
    [Google Scholar]
  7. Tomitaka A. Vashist A. Kalisetti N. Nair M. Machine learning assisted-nanomedicine using magnetic nanoparticles for central nervous system diseases. Nanoscale Adv. 2023 5 17 4354 4367 10.1039/D3NA00180F
    [Google Scholar]
  8. Hoseini B. Jaafari M.R. Golabpour A. Rahmatinejad Z. Karimi M. Eslami S. Machine Learning-Driven Advancements in Liposomal Formulations for Targeted Drug Delivery: A Narrative Literature Review. Curr. Drug Deliv. 2024 21 1 19 38939987
    [Google Scholar]
  9. Pasrija P. Jha P. Upadhyaya P. Khan M.S. Chopra M. Machine learning and artificial intelligence: A paradigm shift in big data-driven drug design and discovery. Curr. Top. Med. Chem. 2022 22 20 1692 1727 10.2174/1568026622666220701091339 35786336
    [Google Scholar]
  10. Sharma N. Bhati A. Aggarwal S. Shah K. Dewangan H.K. PARP pioneers: Using BRCA1/2 mutation-targeted inhibition to revolutionize breast cancer treatment. Curr. Pharm. Des. 2025 31 9 663 673 10.2174/0113816128322894241004051814 39421986
    [Google Scholar]
  11. Wheeler D.L. Barrett T. Benson D.A. Bryant S.H. Canese K. Chetvernin V. Church D.M. Dicuccio M. Edgar R. Federhen S. Feolo M. Geer L.Y. Helmberg W. Kapustin Y. Khovayko O. Landsman D. Lipman D.J. Madden T.L. Maglott D.R. Miller V. Ostell J. Pruitt K.D. Schuler G.D. Shumway M. Sequeira E. Sherry S.T. Sirotkin K. Souvorov A. Starchenko G. Tatusov R.L. Tatusova T.A. Wagner L. Yaschenko E. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2008 36 Database issue D13 D21 18045790
    [Google Scholar]
  12. Deshmukh R. Mishra S. Singh R. Biosensors - A miraculous detecting tool in combating the war against COVID-19. Curr. Pharm. Biotechnol. 2023 24 11 1430 1448 10.2174/1389201024666230102121605 36593537
    [Google Scholar]
  13. Smith B. Ashburner M. Rosse C. Bard J. Bug W. Ceusters W. Goldberg L.J. Eilbeck K. Ireland A. Mungall C.J. Leontis N. Rocca-Serra P. Ruttenberg A. Sansone S.A. Scheuermann R.H. Shah N. Whetzel P.L. Lewis S. The OBO Foundry: Coordinated evolution of ontologies to support biomedical data integration. Nat. Biotechnol. 2007 25 11 1251 1255 10.1038/nbt1346 17989687
    [Google Scholar]
  14. de la Calle G. García-Remesal M. Chiesa S. de la Iglesia D. Maojo V. BIRI: a new approach for automatically discovering and indexing available public bioinformatics resources from the literature. BMC Bioinformatics 2009 10 1 320 332 10.1186/1471‑2105‑10‑320 19811635
    [Google Scholar]
  15. Deulofeu M. Peña-Méndez E.M. Vaňhara P. Havel J. Moráň L. Pečinka L. Bagó-Mas A. Verdú E. Salvadó V. Boadas-Vaello P. Artificial neural networks coupled with MALDI-TOF MS serum fingerprinting to classify and diagnose pathological pain subtypes in preclinical models. ACS Chem. Neurosci. 2023 14 2 300 311 10.1021/acschemneuro.2c00665 36584284
    [Google Scholar]
  16. Sana S. Salwa; Shirodkar, R.K.; Kumar, L.; Verma, R. Enhancement of solubility and dissolution rate using tailored rapidly dissolving oral films containing felodipine solid dispersion: In vitro characterization and ex vivo studies. J. Pharm. Innov. 2023 18 3 1241 1252 10.1007/s12247‑023‑09716‑7
    [Google Scholar]
  17. Viceconti M. Clapworthy G. Jan S.V.S. The Virtual Physiological Human - A European initiative for in silico human modelling -. J. Physiol. Sci. 2008 58 7 441 446 10.2170/physiolsci.RP009908 18928640
    [Google Scholar]
  18. Madhavan K. Zentner L. Farnsworth V. Shivarajapura S. Zentner M. Denny N. Klimeck G. nanoHUB.org: Cloud-based services for nanoscale modeling, simulation, and education. Nanotechnol. Rev. 2013 2 1 107 117 10.1515/ntrev‑2012‑0043
    [Google Scholar]
  19. Morris S.A. Gaheen S. Lijowski M. Heiskanen M. Klemm J. Experiences in supporting the structured collection of cancer nanotechnology data using caNanoLab. Beilstein J. Nanotechnol. 2015 6 1 1580 1593 10.3762/bjnano.6.161 26425409
    [Google Scholar]
  20. Gonzalez A. Gonzalez-Nilo F.D. Cachau R. Collaboratory for structural nanobiology (CSN), nanoparticles database. Biophys. J. 2009 96 3 48a 10.1016/j.bpj.2008.12.146
    [Google Scholar]
  21. Robert Munteanu C. Editorial: Convergence of bioinformatics with nanotechnology and artificial intelligence technologies. Curr. Bioinform. 2011 6 2 144 144 10.2174/1574893611106020144
    [Google Scholar]
  22. Zhou S.F. Zhong W.Z. Drug design and discovery: Principles and applications. Molecules 2017 22 2 279 10.3390/molecules22020279 28208821
    [Google Scholar]
  23. Jennings A. Tennant M. Discovery strategies in a pharmaceutical setting: The application of computational techniques. Expert Opin. Drug Discov. 2006 1 7 709 721 10.1517/17460441.1.7.709 23495995
    [Google Scholar]
  24. Huynh L. Neale C. Pomès R. Allen C. Computational approaches to the rational design of nanoemulsions, polymeric micelles, and dendrimers for drug delivery. Nanomedicine (Lond.) 2012 8 1 20 36 10.1016/j.nano.2011.05.006 21669300
    [Google Scholar]
  25. He S. Leanse L.G. Feng Y. Artificial intelligence and machine learning assisted drug delivery for effective treatment of infectious diseases. Adv. Drug Deliv. Rev. 2021 178 113922 10.1016/j.addr.2021.113922 34461198
    [Google Scholar]
  26. Bannigan P. Aldeghi M. Bao Z. Häse F. Aspuru-Guzik A. Allen C. Machine learning directed drug formulation development. Adv. Drug Deliv. Rev. 2021 175 113806 10.1016/j.addr.2021.05.016 34019959
    [Google Scholar]
  27. Ashwani T. Narayan R. Computational Modeling for the Design and Development of Nano Based Drug Delivery Systems. J. Mol. Liq. 2022 368 1 120596
    [Google Scholar]
  28. Gupta K. Mattingly S.J. Knipp R.J. Afonin K.A. Oxime ether lipids containing hydroxylated head groups are more superior siRNA delivery agents than their nonhydroxylated counterparts. In: Therapeutic RNA Nanotechnology. Immunomodulation and Dynamicity
    [Google Scholar]
  29. Singh A.V. Varma M. Laux P. Choudhary S. Datusalia A.K. Gupta N. Luch A. Gandhi A. Kulkarni P. Nath B. Artificial intelligence and machine learning disciplines with the potential to improve the nanotoxicology and nanomedicine fields: A comprehensive review. Arch. Toxicol. 2023 97 4 963 979 10.1007/s00204‑023‑03471‑x 36878992
    [Google Scholar]
  30. Wang Y. Santos A. Evdokiou A. Losic D. An overview of nanotoxicity and nanomedicine research: principles, progress and implications for cancer therapy. J. Mater. Chem. B Mater. Biol. Med. 2015 3 36 7153 7172 10.1039/C5TB00956A 32262822
    [Google Scholar]
  31. Ruckenstein E. Shulgin I. Solubility of drugs in aqueous solutions Part 1. Ideal mixed solvent approximation. Int. J. Pharm. 2003 258 1-2 193 201 10.1016/S0378‑5173(03)00199‑6 12753765
    [Google Scholar]
  32. Hoseini B. Jaafari M.R. Golabpour A. Momtazi-Borojeni A.A. Karimi M. Eslami S. Application of ensemble machine learning approach to assess the factors affecting size and polydispersity index of liposomal nanoparticles. Sci. Rep. 2023 13 1 18012 10.1038/s41598‑023‑43689‑4 37865639
    [Google Scholar]
  33. Wu F. Zhou Y. Li L. Shen X. Chen G. Wang X. Liang X. Tan M. Huang Z. Computational approaches in preclinical studies on drug discovery and development. Front Chem. 2020 8 726 10.3389/fchem.2020.00726 33062633
    [Google Scholar]
  34. Nandekar P.P. Khomane K. Chaudhary V. Rathod V.P. Borkar R.M. Bhandi M.M. Srinivas R. Sangamwar A.T. Guchhait S.K. Bansal A.K. Identification of leads for antiproliferative activity on MDA-MB-435 human breast cancer cells through pharmacophore and CYP1A1-mediated metabolism. Eur. J. Med. Chem. 2016 115 82 93 10.1016/j.ejmech.2016.02.061 26994845
    [Google Scholar]
  35. Putta S. Beroza P. Shapes of things: Computer modeling of molecular shape in drug discovery. Curr. Top. Med. Chem. 2007 7 15 1514 1524 10.2174/156802607782194770 17897038
    [Google Scholar]
  36. Pérez-Nueno V.I. Ritchie D.W. Using consensus-shape clustering to identify promiscuous ligands and protein targets and to choose the right query for shape-based virtual screening. J. Chem. Inf. Model. 2011 51 6 1233 1248 10.1021/ci100492r 21604699
    [Google Scholar]
  37. Reddy K.K. Singh S.K. Tripathi S.K. Selvaraj C. Suryanarayanan V. Shape and pharmacophore-based virtual screening to identify potential cytochrome P450 sterol 14α-demethylase inhibitors. J. Recept. Signal Transduct. Res. 2013 33 4 234 243 10.3109/10799893.2013.789912 23638723
    [Google Scholar]
  38. Prabhu S.V. Singh S.K. Identification of potential dual negative allosteric modulators of group I mGluR family: a shape based screening, ADME prediction, induced fit docking and molecular dynamics approach against neurodegenerative diseases. Curr. Top. Med. Chem. 2019 19 29 2687 2707 10.2174/1568026619666191105112800 31702505
    [Google Scholar]
  39. Henser-Brownhill T. Martin L. Samangouei P. Ladak A. Apostolidou M. Nagel B. Kwok A. In silico screening accelerates nanocarrier design for efficient mRNA delivery. Adv. Sci. 2024 11 30 2401935 10.1002/advs.202401935
    [Google Scholar]
  40. Chen Y. Liu Z. Fu T. Li W. Xu X. Sun H. Discovery of new acetylcholinesterase inhibitors with small core structures through shape-based virtual screening. Bioorg. Med. Chem. Lett. 2015 25 17 3442 3446 10.1016/j.bmcl.2015.07.026 26212777
    [Google Scholar]
  41. Andrade C. Silva D. Braga R. In silico prediction of drug metabolism by P450. Curr. Drug Metab. 2014 15 5 514 525 10.2174/1389200215666140908102530 25204822
    [Google Scholar]
  42. Davis A.M. Riley R.J. Predictive ADMET studies, the challenges and the opportunities. Curr. Opin. Chem. Biol. 2004 8 4 378 386 10.1016/j.cbpa.2004.06.005 15288247
    [Google Scholar]
  43. Mondal S. Mandal S.M. Mondal T.K. Sinha C. Spectroscopic characterization, antimicrobial activity, DFT computation and docking studies of sulfonamide Schiff bases. J. Mol. Struct. 2017 1127 557 567 10.1016/j.molstruc.2016.08.011
    [Google Scholar]
  44. Cheng F. Li W. Liu G. Tang Y. In silico ADMET prediction: recent advances, current challenges and future trends. Curr. Top. Med. Chem. 2013 13 11 1273 1289 10.2174/15680266113139990033 23675935
    [Google Scholar]
  45. Espié P. Tytgat D. Sargentini-Maier M.L. Poggesi I. Watelet J.B. Physiologically based pharmacokinetics (PBPK). Drug Metab. Rev. 2009 41 3 391 407 10.1080/10837450902891360 19601719
    [Google Scholar]
  46. Jones H.M. Chen Y. Gibson C. Heimbach T. Parrott N. Peters S.A. Snoeys J. Upreti V.V. Zheng M. Hall S.D. Physiologically based pharmacokinetic modeling in drug discovery and development: A pharmaceutical industry perspective. Clin. Pharmacol. Ther. 2015 97 3 247 262 10.1002/cpt.37 25670209
    [Google Scholar]
  47. Yan X. Sedykh A. Wang W. Yan B. Zhu H. Construction of a web-based nanomaterial database by big data curation and modeling friendly nanostructure annotations. Nat. Commun. 2020 11 1 2519 10.1038/s41467‑020‑16413‑3
    [Google Scholar]
  48. Chang J.T. Schütze H. Altman R.B. GAPSCORE: Finding gene and protein names one word at a time. Bioinformatics 2004 20 2 216 225 10.1093/bioinformatics/btg393 14734313
    [Google Scholar]
  49. Marwah H. Dewangan H.K. Pterostilbene as a potent ESR-1 in breast cancer therapy: Insights from network pharmacology, molecular docking, dynamics simulations, admet, and in vitro analysis. Mol. Divers. 2025 10.1007/s11030‑025‑11144‑3 39992538
    [Google Scholar]
  50. Zhao R. Li W. Lee J.H. Choi E.M. Liang Y. Zhang W. Tang R. Wang H. Jia Q. MacManus-Driscoll J.L. Yang H. Precise Tuning of (YBa 2 Cu 3 O 7‐δ) 1‐x:(BaZrO 3) x Thin Film Nanocomposite Structures. Adv. Funct. Mater. 2014 24 33 5240 5245 10.1002/adfm.201304302
    [Google Scholar]
  51. Singh L. Singh R. Zhang B. Kaushik B.K. Kumar S. Localized Surface Plasmon Resonance Based Hetero-Core Optical Fiber Sensor Structure for the Detection of L-Cysteine. IEEE Trans. Nanotechnol. 2020 19 201 208 10.1109/TNANO.2020.2975297
    [Google Scholar]
  52. Fernández-Cabada T. Ramos-Gómez M. A novel contrast agent based on magnetic nanoparticles for cholesterol detection as Alzheimer’s disease biomarker. Nanoscale Res. Lett. 2019 14 1 36 10.1186/s11671‑019‑2863‑8 30684043
    [Google Scholar]
  53. Ngowi E.E. Wang Y.Z. Qian L. Helmy Y.A.S.H. Anyomi B. Li T. Zheng M. Jiang E.S. Duan S.F. Wei J.S. Wu D.D. Ji X.Y. The application of nanotechnology for the diagnosis and treatment of brain diseases and disorders. Front. Bioeng. Biotechnol. 2021 9 629832 10.3389/fbioe.2021.629832 33738278
    [Google Scholar]
  54. Danhier P. Gallez B. Electron paramagnetic resonance: A powerful tool to support magnetic resonance imaging research. Contrast Media Mol. Imaging 2015 10 4 266 281 10.1002/cmmi.1630 25362845
    [Google Scholar]
  55. Singh V. Shah K. Garg A. Dewangan H.K. Computational fluid dynamics: Insights and applications in pharmaceutical field. Lett. Drug Des. Discov. 2022 20 1 11
    [Google Scholar]
  56. Rath P. Shi H. Maruniak J. Litofsky N. Maria B. Kirk M. Stem cells as vectors to deliver HSV/tk gene therapy for malignant gliomas. Curr. Stem Cell Res. Ther. 2009 4 1 44 49 10.2174/157488809787169138 19149629
    [Google Scholar]
  57. Dewan M.C. Rattani A. Gupta S. Baticulon R.E. Hung Y.C. Punchak M. Agrawal A. Adeleye A.O. Shrime M.G. Rubiano A.M. Rosenfeld J.V. Park K.B. Estimating the global incidence of traumatic brain injury. J. Neurosurg. 2019 130 4 1080 1097 10.3171/2017.10.JNS17352 29701556
    [Google Scholar]
  58. Woodcock T. Morganti-Kossmann M.C. The role of markers of inflammation in traumatic brain injury. Front. Neurol. 2013 4 18 10.3389/fneur.2013.00018 23459929
    [Google Scholar]
  59. Rzigalinski B.A. Carfagna C.S. Ehrich M. Cerium oxide nanoparticles in neuroprotection and considerations for efficacy and safety. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2017 9 4 e1444 10.1002/wnan.1444 27860449
    [Google Scholar]
  60. Langer K.G. Early history of amnesia. Front Neurol. Neurosci. 2019 44 64 74 10.1159/000494953 31220849
    [Google Scholar]
  61. Gao Z. Ruan J. Computational modeling of in vivo and in vitro protein-DNA interactions by multiple instance learning. Bioinformatics 2017 33 14 2097 2105 10.1093/bioinformatics/btx115 28334224
    [Google Scholar]
  62. Titze-de-Almeida S.S. Soto-Sánchez C. Fernandez E. Koprich J.B. Brotchie J.M. Titze-de-Almeida R. The promise and challenges of developing mirna-based therapeutics for parkinson’s disease. Cells 2020 9 4 841 10.3390/cells9040841 32244357
    [Google Scholar]
  63. Li A. Tyson J. Patel S. Patel M. Katakam S. Mao X. He W. Emerging nanotechnology for treatment of Alzheimer’s and Parkinson’s disease. Front. Bioeng. Biotechnol. 2021 9 672594 10.3389/fbioe.2021.672594 34113606
    [Google Scholar]
  64. Kaur H. Patro I. Tikoo K. Sandhir R. Curcumin attenuates inflammatory response and cognitive deficits in experimental model of chronic epilepsy. Neurochem. Int. 2015 89 40 50 10.1016/j.neuint.2015.07.009 26190183
    [Google Scholar]
  65. Anissian D. Ghasemi-Kasman M. Khalili-Fomeshi M. Akbari A. Hashemian M. Kazemi S. Moghadamnia A.A. Piperineloaded chitosan-STPP nanoparticles reduce neuronal loss and astrocytes activation in chemical kindling model of epilepsy. Int. J. Biol. Macromol, 2018 107 Pt A 973 983 10.1016/j.ijbiomac.2017.09.073
    [Google Scholar]
  66. Bhushan B. Singh N.K. Singh R. Traditional Chinese medicine: Its growing potential in treating neurological disorders. Pharmacol. Res. Modern Chin. Med. 2024 11 100422 10.1016/j.prmcm.2024.100422
    [Google Scholar]
  67. Yadav D. Semwal B.C. Dewangan H.K. Grafting, characterization and enhancement of therapeutic activity of berberine loaded PEGylated PAMAM dendrimer for cancerous cell. J. Biomater. Sci. Polym. Ed. 2023 34 8 1053 1066 10.1080/09205063.2022.2155782 36469754
    [Google Scholar]
  68. Jain S. Bhushan B. Mishra A.K. Singh R. Unlocking therapeutic potential of siRNA-based drug delivery system for treatment of Alzheimer’s disease. J. Drug Deliv. Sci. Technol. 2024 102 106413 10.1016/j.jddst.2024.106413
    [Google Scholar]
  69. Abiodun Solanke I.M.F. Ajayi D.M. Arigbede A.O. Nanotechnology and its application in dentistry. Ann. Med. Health Sci. Res. 2014 4 Suppl. 3 171 10.4103/2141‑9248.141951 25364585
    [Google Scholar]
  70. Soto F. Chrostowski R. Frontiers of medical micro/nanorobotics: In vivo applications and commercialization perspectives toward clinical uses. Front. Bioeng. Biotechnol. 2018 6 6 170 10.3389/fbioe.2018.00170 30488033
    [Google Scholar]
  71. Tasciotti E. Liu X. Bhavane R. Plant K. Leonard A.D. Price B.K. Cheng M.M.C. Decuzzi P. Tour J.M. Robertson F. Ferrari M. Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat. Nanotechnol. 2008 3 3 151 157 10.1038/nnano.2008.34 18654487
    [Google Scholar]
  72. Nikalje A. Nanotechnology and its applications in medicine. Med. Chem. 2015 5 2 81 89 10.4172/2161‑0444.1000247
    [Google Scholar]
  73. Yadav D.K. Kumar S. Teli M.K. Kim M.H. Ligand‐based pharmacophore modeling and docking studies on vitamin D receptor inhibitors. J. Cell. Biochem. 2020 121 7 3570 3583 10.1002/jcb.29640 31904142
    [Google Scholar]
  74. Maojo V. Fritts M. Martin-Sanchez F. De la Iglesia D. Cachau R.E. Garcia-Remesal M. Crespo J. Mitchell J.A. Anguita A. Baker N. Barreiro J.M. Benitez S.E. De la Calle G. Facelli J.C. Ghazal P. Geissbuhler A. Gonzalez-Nilo F. Graf N. Grangeat P. Hermosilla I. Hussein R. Kern J. Koch S. Legre Y. Lopez-Alonso V. Lopez-Campos G. Milanesi L. Moustakis V. Munteanu C. Otero P. Pazos A. Perez-Rey D. Potamias G. Sanz F. Kulikowski C. Nanoinformatics: Developing new computing applications for nanomedicine. Comput. Sci. Eng. 2012 94 6 521 539 22942787
    [Google Scholar]
  75. Al Baraghtheh T. Hermann A. Shojaei A. Willumeit-Römer R. Cyron C.J. Zeller-Plumhoff B. Utilizing computational modelling to bridge the gap between in vivo and in vitro degradation rates for Mg-xGd implants. Corros Mater. Degrad 2023 4 2 274 283 10.3390/cmd4020014
    [Google Scholar]
  76. Hoseini B. Jaafari M.R. Golabpour A. Momtazi-Borojeni A.A. Eslami S. Optimizing nanoliposomal formulations: Assessing factors affecting entrapment efficiency of curcumin-loaded liposomes using machine learning. Int. J. Pharm. 2023 646 123414 10.1016/j.ijpharm.2023.123414 37714314
    [Google Scholar]
  77. Thomas D.G. Gaheen S. Harper S.L. Fritts M. Klaessig F. Hahn-Dantona E. Paik D. Pan S. Stafford G.A. Freund E.T. Klemm J.D. Baker N.A. ISA-TAB-Nano: A specification for sharing nanomaterial research data in spreadsheet-based format. BMC Biotechnol. 2013 13 1 2 25 10.1186/1472‑6750‑13‑2 23311978
    [Google Scholar]
  78. Thomas D.G. Klaessig F. Harper S.L. Fritts M. Hoover M.D. Gaheen S. Stokes T.H. Reznik-Zellen R. Freund E.T. Klemm J.D. Paik D.S. Baker N.A. Informatics and standards for nanomedicine technology. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2011 3 5 511 532 10.1002/wnan.152 21721140
    [Google Scholar]
  79. Sansone S.A. Rocca-Serra P. Brandizi M. Brazma A. Field D. Fostel J. Garrow A.G. Gilbert J. Goodsaid F. Hardy N. Jones P. Lister A. Miller M. Morrison N. Rayner T. Sklyar N. Taylor C. Tong W. Warner G. Wiemann S. The first RSBI (ISA-TAB) workshop: “Can a simple format work for complex studies?”. OMICS 2008 12 2 143 149 10.1089/omi.2008.0019 18447634
    [Google Scholar]
  80. Singh R. Mishra A.K. Bhushan B. Rawat H. Kumar V. A glance on gold nanoparticle: An emerging theranostic tool for oncology. J. Drug Deliv. Sci. Technol. 2024 97 105766 10.1016/j.jddst.2024.105766
    [Google Scholar]
  81. Jafarzadeh S. Chen Z. Bobaru F. Computational modeling of pitting corrosion. Corros. Rev. 2019 37 5 419 439 10.1515/corrrev‑2019‑0049
    [Google Scholar]
  82. Hinkal G. Farrell D. Hook S. Panaro N. Ptak K. Grodzinski P. Cancer therapy through nanomedicine. IEEE Nanotechnol. Mag. 2011 5 2 6 12 10.1109/MNANO.2011.940948
    [Google Scholar]
  83. Rawat H. Bhat S.A. Dhanjal D.S. Singh R. Gandhi Y. Mishra S.K. Kumar V. Shakya S.K. Narasimhaji C.V. Singh A. Singh R. Acharya R. Emerging techniques for the trace elemental analysis of plants and food-based extracts: A comprehensive review. Talanta Open 2024 10 100341 10.1016/j.talo.2024.100341
    [Google Scholar]
  84. Hackley V.A. Fritts M. Kelly J.F. Patri A.K. Rawle A.F. Enabling standards for nanomaterial characterization. InfoSIM Bulletin 2009 24 29
    [Google Scholar]
  85. Jeliazkova N. Chomenidis C. Doganis P. Fadeel B. Grafström R. Hardy B. Hastings J. Hegi M. Jeliazkov V. Kochev N. Kohonen P. Munteanu C.R. Sarimveis H. Smeets B. Sopasakis P. Tsiliki G. Vorgrimmler D. Willighagen E. The eNanoMapper database for nanomaterial safety information. Beilstein J. Nanotechnol. 2015 6 6 1609 1634 10.3762/bjnano.6.165 26425413
    [Google Scholar]
  86. Settles B. ABNER: An open source tool for automatically tagging genes, proteins and other entity names in text. Bioinformatics 2005 21 14 3191 3192 10.1093/bioinformatics/bti475 15860559
    [Google Scholar]
  87. Remesal M.G. García-Ruiz M.A. Pérez-Rey D. De-La-Iglesia D. Maojo V. Using nanoinformatics methods for automatically ident ifying relevant nanotoxicology entities from the literature. BioMed Res. Int. 2013 1 410294
    [Google Scholar]
  88. Panneerselvam S. Choi S. Nanoinformatics: emerging databases and available tools. Int. J. Mol. Sci. 2014 15 5 7158 7182 10.3390/ijms15057158 24776761
    [Google Scholar]
  89. Maojo V. Kulikowski C.A. Bioinformatics and medical informatics: Collaborations on the road to genomic medicine? J. Am. Med. Inform. Assoc. 2003 10 6 515 522 10.1197/jamia.M1305 12925552
    [Google Scholar]
  90. Hernández M. Quijada N.M. Rodríguez-Lázaro D. Eiros J.M. Bioinformatics of next generation sequencing in clinical microbiology diagnosis. Rev. Argent. Microbiol. 2020 52 2 150 161 31784184
    [Google Scholar]
  91. Deshmukh R. Singh R. Sharma S. Mishra A.K. Harwansh R.K. A Snapshot of Selenium-enclosed Nanoparticles for the Management of Cancer. Curr. Pharm. Des. 2024 30 11 841 858 10.2174/0113816128297329240305071103 38462835
    [Google Scholar]
  92. Soltani M. Moradi Kashkooli F. Souri M. Zare Harofte S. Harati T. Khadem A. Haeri Pour M. Raahemifar K. Enhancing clinical translation of cancer using nanoinformatics. Cancers 2021 13 10 2481 10.3390/cancers13102481
    [Google Scholar]
  93. Liu J. Guo M. Chen C. Nano-bio interactions: A major principle in the dynamic biological processes of nano-assemblies. Adv. Drug Deliv. Rev. 2022 186 114318 10.1016/j.addr.2022.114318 35533787
    [Google Scholar]
  94. Mohan H.M. Anitha S. Chai R. Ling S.H. Edge Artificial Intelligence: Real-Time Noninvasive Technique for Vital Signs of Myocardial Infarction Recognition Using Jetson Nano. Adv. Hum. Comput. Interact. 2021 2021 1 1 19 10.1155/2021/6483003
    [Google Scholar]
  95. Mukherjee A. Madamsetty V.S. Paul M.K. Mukherjee S. Recent advancements of nanomedicine towards antiangiogenic therapy in cancer. Int. J. Mol. Sci. 2020 21 2 455 10.3390/ijms21020455 31936832
    [Google Scholar]
  96. Nakamura Y. Mochida A. Choyke P.L. Kobayashi H. Nanodrug delivery: Is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjug. Chem. 2016 27 10 2225 2238 10.1021/acs.bioconjchem.6b00437 27547843
    [Google Scholar]
  97. Lee H. Shields A.F. Siegel B.A. Miller K.D. Krop I. Ma C.X. LoRusso P.M. Munster P.N. Campbell K. Gaddy D.F. Leonard S.C. Geretti E. Blocker S.J. Kirpotin D.B. Moyo V. Wickham T.J. Hendriks B.S. 64Cu-MM-302 positron emission tomography quantifies variability of enhanced permeability and retention of nanoparticles in relation to treatment response in patients with metastatic breast cancer. Clin. Cancer Res. 2017 23 15 4190 4202 10.1158/1078‑0432.CCR‑16‑3193 28298546
    [Google Scholar]
  98. Pérez-Medina C. Abdel-Atti D. Tang J. Zhao Y. Fayad Z.A. Lewis J.S. Mulder W.J.M. Reiner T. Nanoreporter PET predicts the efficacy of anti-cancer nanotherapy. Nat. Commun. 2016 7 1 11838 10.1038/ncomms11838 27319780
    [Google Scholar]
  99. Cong W. Bai R. Li Y.F. Wang L. Chen C. Selenium nanoparticles as an efficient nanomedicine for the therapy of Huntington’s disease. ACS Appl. Mater. Interfaces 2019 11 38 34725 34735 10.1021/acsami.9b12319 31479233
    [Google Scholar]
  100. Ojha S. Kumar B. Chadha H. Neuroprotective potential of dimethyl fumarate-loaded polymeric nanoparticles against multiple sclerosis. Indian J. Pharm. Sci. 2019 81 3 496 502
    [Google Scholar]
  101. Deshmukh R. Singh R. DNA nanobots-emerging customized nanomedicine in oncology. Curr. Drug Deliv. 2023 20 2 111 126 10.2174/1567201819666220331094812 35362383
    [Google Scholar]
  102. Sharma A.N. Dewangan H.K. Upadhyay P.K. Comprehensive review on herbal medicine: Emphasis on current therapy and role of phytoconstituents for cancer treatment. Chem. Biodivers. 2024 21 3 e202301468 10.1002/cbdv.202301468 38206170
    [Google Scholar]
  103. Mishra A.K. Singh R. Rawat H. Kumar V. Jagtap C. Jain A. The influence of food matrix on the stability and bioavailability of phytochemicals: A comprehensive review. Food. Human 2024 2 100202 10.1016/j.foohum.2023.12.010
    [Google Scholar]
  104. Wang W. Yu Y. Wang Y. Application of artificial neural networks in the development of oral controlled release formulations: current status and future perspectives. Eur. J. Pharm. Sci. 2024 191 106467
    [Google Scholar]
  105. Khalid M. Ahmad M.Z. Alhowail A.H. Artificial neural networks in drug delivery: Fundamental concepts, applications, and future perspectives. Drug Discov. Today 2023 28 5 103576
    [Google Scholar]
  106. Goyal R. Goyal RK. Mehta SC. Optimizing curcumin release from mesoporous silica nanoparticles using hybrid ANN-QSAR models. Int. J. Nanomedicine 2024 19 1553 1570
    [Google Scholar]
  107. Mahajan N.S. Kurmi B.D. Singh P. Application of machine learning and ANN in nanocarrier design and in vitro in vivo correlation modeling. J. Control. Release 2024 364 41 52
    [Google Scholar]
  108. Fang H. Song Y. Liu X. Physiologically-based pharmacokinetic (PBPK) modeling for nanoparticles: current applications and challenges. Acta Pharm. Sin. B 2024 14 1 1 20 38239238
    [Google Scholar]
  109. Minnema J. Bolt H.M.L. Strikwold M. Quantifying biodistribution of nano-biomaterials using PBPK and Bayesian modeling: new frontiers in nanotoxicology. Front. Pharmacol. 2023 14 1189452
    [Google Scholar]
  110. Qiu R. Zhao J. Li L. Modeling the pharmacokinetics and biodistribution of liposomal doxorubicin (Doxil®): A PBPK approach. Eur. J. Pharm. Biopharm. 2023 193 48 57
    [Google Scholar]
  111. Abduljalil K. Cain T. Mason S. Nano-informatics: a tool for brain-targeted drug delivery and diagnostics. J. Nanobiotechnology 2023 21 1 209 37408010
    [Google Scholar]
  112. Marwah H. Dewangan H.K. Synergistic targeting of EGFR, ESR1, BCL2, and TP53 pathways: A multi-pronged approach for advanced breast cancer therapy. Curr. Cancer Drug Targets 2025 25 10.2174/0115680096366956250314043513 40277116
    [Google Scholar]
  113. Zhou Y. Wu Y. Lin Z. Nanoparticles for crossing the bloodbrain barrier: Recent progress and future directions. Acta Pharm. Sin. B 2023 13 3 1000 1019
    [Google Scholar]
  114. Sharma R. Sahoo S.K. Mohapatra S. Poly(butylcyanoacrylate) nanoparticles for brain delivery: Modulation using PS-80 and surface functionalization. Int. J. Pharm. 2024 638 122651
    [Google Scholar]
  115. Ghosh S. Ghosh D. Surface plasmon resonance-based gold nanoparticles for TBI biomarker detection: a diagnostic leap. Biosens. Bioelectron. 2024 247 115050
    [Google Scholar]
  116. Zhang W. Liu J. Wang Y. Mathematical modeling of IL-21-mediated antitumor response: Application in immunotherapy. Cancer Immunol. Immunother. 2024 73 2 321 336
    [Google Scholar]
  117. Chen L. Yu Y. Song J. Computational model of vascular permeability and its role in nanoparticle drug delivery. J. Theor. Biol. 2023 570 111552
    [Google Scholar]
  118. Al-Dhubhani N. Mahajan N.S. Verma N. Pharmacokinetic simulation of antibody-drug conjugates using hybrid PBPK models: Linking tumor exposure to efficacy. Eur. J. Pharm. Sci. 2024 190 106466
    [Google Scholar]
  119. Lee J. Ahn S.H. Jung H. Metronomic chemotherapy modeling: Optimization of dosing regimens through simulations. Comput. Biol. Med. 2023 156 106774
    [Google Scholar]
  120. Banerjee A. Suresh M. Gupta D. Kinetic modeling of magnetic nanoparticle targeting in pulsatile blood flow: A simulation approach. Biomed. Phys. Eng. Express 2024 10 2 025009
    [Google Scholar]
  121. Singh A. Kumar R. Verma S. Gold nanoparticle-based surface plasmon resonance biosensor for ultra-sensitive detection of UCH-L1 biomarker in traumatic brain injury. Biosens. Bioelectron. 2024 232 115492
    [Google Scholar]
  122. Chen Y. Xie Y. Zhang Y. Nanoparticle-mediated radiosensitization for brain tumor therapy: Mechanisms and recent advances. Acta Pharm. Sin. B 2023 13 5 2331 2345
    [Google Scholar]
  123. Luo M. Feng Y. Wang T. Guan J. Micro‐/nanorobots at work in active drug delivery. Adv. Funct. Mater. 2018 28 25 1706100 10.1002/adfm.201706100
    [Google Scholar]
  124. Petrović J. Ibrić S. Betz G. Parojčić J. Đurić Z. Application of dynamic neural networks in the modeling of drug release from polyethylene oxide matrix tablets. Eur. J. Pharm. Sci. 2009 38 2 172 180 10.1016/j.ejps.2009.07.007 19632323
    [Google Scholar]
  125. Mishra A.K. Rani L. Singh R. Dewangan H.K. Sahoo P.K. Kumar V. Nanoinformatics and nanotechnology in antiinflammatory therapy: A review. J. Drug Deliv. Sci. Technol. 2024 93 105446 10.1016/j.jddst.2024.105446
    [Google Scholar]
  126. Hassanzadeh P. Atyabi F. Dinarvand R. The significance of artificial intelligence in drug delivery system design. Adv. Drug Deliv. Rev. 2019 151-152 169 190 10.1016/j.addr.2019.05.001 31071378
    [Google Scholar]
  127. Rai A. Shah K. Dewangan H.K. Review on the artificial intelligence-based nanorobotics targeted drug delivery system for brain specific targeting. Curr. Pharm. Des. 2023 29 44 3519 3531 10.2174/0113816128279248231210172053
    [Google Scholar]
  128. Rawat H. Singh R. Dane G. Gandhi Y. Kumar V. Mishra S.K. Charde V. Sharma P. Narasimhaji C.V. Singh A. Acharya R. Exploring the geographical variability of Asphaltum punjabianum (Shilajit) from India in elements and phytochemicals variations using GC-MS/MS, LC, ICP OES, and in-silico studies. Results Chem. 2024 10 101691 10.1016/j.rechem.2024.101691
    [Google Scholar]
  129. Dewangan H.K. Sharma R. Shah K. Vadaga A.K. Veer M. Alam P. Optimisation and evaluation of long circulating Ru-SLNs carrier for targeting melanoma cells. J. Microencapsul. 2024 01 1 13 39718466
    [Google Scholar]
  130. Dell’Orco D. Lundqvist M. Oslakovic C. Cedervall T. Linse S. Modeling the time evolution of the nanoparticle-protein corona in a body fluid. PLoS One 2010 5 6 e10949 10.1371/journal.pone.0010949 20532175
    [Google Scholar]
  131. He W. Frueh J. Hu N. Liu L. Gai M. He Q. Guidable thermophoretic janus micromotors containing gold nanocolorifiers for infrared laser assisted tissue welding. Adv. Sci. 2016 3 12 1600206 10.1002/advs.201600206 27981009
    [Google Scholar]
  132. Wu Z. Wu Y. He W. Lin X. Sun J. He Q. Self-propelled polymer-based multilayer nanorockets for transportation and drug release. Angew. Chem. Int. Ed. 2013 52 27 7000 7003 10.1002/anie.201301643 23703837
    [Google Scholar]
  133. Karshalev E. Esteban-Fernández de Ávila B. Beltrán-Gastélum M. Angsantikul P. Tang S. Mundaca-Uribe R. Zhang F. Zhao J. Zhang L. Wang J. Micromotor pills as a dynamic oral delivery platform. ACS Nano 2018 12 8 8397 8405 10.1021/acsnano.8b03760 30059616
    [Google Scholar]
  134. Mou F. Chen C. Zhong Q. Yin Y. Ma H. Guan J. Autonomous motion and temperature-controlled drug delivery of Mg/Pt-poly(N-isopropylacrylamide) Janus micromotors driven by simulated body fluid and blood plasma. ACS Appl. Mater. Interfaces 2014 6 12 9897 9903 10.1021/am502729y 24869766
    [Google Scholar]
  135. Sharma A.N. Upadhyay P.K. Dewangan H.K. Dual combination of resveratrol and pterostilbene aqueous core nanocapsules for integrated prostate cancer targeting. Ther. Deliv. 2024 15 9 685 698 10.1080/20415990.2024.2380239 39129676
    [Google Scholar]
  136. Gao W. Kagan D. Pak O.S. Clawson C. Campuzano S. Chuluun-Erdene E. Shipton E. Fullerton E.E. Zhang L. Lauga E. Wang J. Cargo-towing fuel-free magnetic nanoswimmers for targeted drug delivery. Small 2012 8 3 460 467 10.1002/smll.201101909 22174121
    [Google Scholar]
  137. Li J. Angsantikul P. Liu W. Esteban-Fernández de Ávila B. Thamphiwatana S. Xu M. Sandraz E. Wang X. Delezuk J. Gao W. Zhang L. Wang J. Micromotors spontaneously neutralize gastric acid for pH‐responsive payload release. Angew. Chem. Int. Ed. 2017 56 8 2156 2161 10.1002/anie.201611774 28105785
    [Google Scholar]
  138. Qiu F. Mhanna R. Zhang L. Ding Y. Fujita S. Nelson B.J. Artificial bacterial flagella functionalized with temperature-sensitive liposomes for controlled release. Sens. Actuators B Chem. 2014 196 676 681 10.1016/j.snb.2014.01.099
    [Google Scholar]
  139. Solovev A.A. Sanchez S. Pumera M. Mei Y.F. Schmidt O.G. Magnetic control of tubular catalytic microbots for the transport, assembly, and delivery of micro‐objects. Adv. Funct. Mater. 2010 20 15 2430 2435 10.1002/adfm.200902376
    [Google Scholar]
  140. Garcia-Gradilla V. Sattayasamitsathit S. Soto F. Kuralay F. Yardımcı C. Wiitala D. Galarnyk M. Wang J. Ultrasound-propelled nanoporous gold wire for efficient drug loading and release. Small 2014 10 20 4154 4159 10.1002/smll.201401013 24995778
    [Google Scholar]
  141. Batool N. Yoon S. Imdad S. Kong M. Kim H. Ryu S. Lee J.H. Chaurasia A.K. Kim K.K. An antibacterial nanorobotic approach for the specific targeting and removal of multiple drug‐resistant Staphylococcus aureus. Small 2021 17 20 2100257 10.1002/smll.202100257 33838013
    [Google Scholar]
  142. Andhari S.S. Wavhale R.D. Dhobale K.D. Tawade B.V. Chate G.P. Patil Y.N. Khandare J.J. Banerjee S.S. Self-propelling targeted magneto-nanobots for deep tumor penetration and pH-responsive intracellular drug delivery. Sci. Rep. 2020 10 1 4703 10.1038/s41598‑020‑61586‑y 32170128
    [Google Scholar]
  143. da Silva Luz G.V. Barros K.V.G. de Araújo F.V.C. da Silva G.B. da Silva P.A.F. Condori R.C.I. Mattos L. Nanorobotics in drug delivery systems for treatment of cancer: A review. J. Mater. Sci. Eng. A 2016 6 167 180
    [Google Scholar]
  144. Marwah H. Pant J. Yadav J. Shah K. Dewangan H.K. Biosensor detection of COVID-19 in lung cancer: Hedgehog and mucin signaling insights. Curr. Pharm. Des. 2023 29 43 3442 3457 10.2174/0113816128276948231204111531 38270161
    [Google Scholar]
  145. Yao Q. Li J. Chen R. Yao Y. Xue J. Chen W. Lu W. Zhou T. Preclinical PK/PD model for the combinatorial use of dexamethasone and sulpiride in the treatment of breast cancer. Acta Pharmacol. Sin. 2019 40 12 1596 1602 10.1038/s41401‑019‑0251‑7 31165782
    [Google Scholar]
  146. Gentile F. Ferrari M. Decuzzi P. The transport of nanoparticles in blood vessels: The effect of vessel permeability and blood rheology. Ann. Biomed. Eng. 2008 36 2 254 261 10.1007/s10439‑007‑9423‑6 18172768
    [Google Scholar]
  147. Roa-Barrantes L.M. Rodriguez Patarroyo D.J. Magnetic field effect on the magnetic nanoparticles trajectories in pulsating blood flow: A Computational model. Bionanoscience 2022 12 2 571 581 10.1007/s12668‑022‑00949‑3
    [Google Scholar]
  148. Gaohua L. Abduljalil K. Jamei M. Johnson T.N. Rostami-Hodjegan A. A pregnancy physiologically based pharmacokinetic (p-PBPK) model for disposition of drugs metabolized by CYP1A2, CYP2D6 and CYP3A4. Br. J. Clin. Pharmacol. 2012 74 5 873 885 10.1111/j.1365‑2125.2012.04363.x 22725721
    [Google Scholar]
  149. Shiven A. Alam A. Dewangan H.K. Shah K. Alam P. Kapoor D.N. Optimisation and in-vivo evaluation of extracted Karanjin loaded liposomal topical formulation for treatment of psoriasis in tape-stripped mouse model. J. Microencapsul. 2024 41 5 345 359 10.1080/02652048.2024.2354249 38780157
    [Google Scholar]
  150. Netterberg I. Li C.C. Molinero L. Budha N. Sukumaran S. Stroh M. Jonsson E.N. Friberg L.E. A PK/PD analysis of circulating biomarkers and their relationship to tumor response in atezolizumab‐treated non‐small cell lung cancer patients. Clin. Pharmacol. Ther. 2019 105 2 486 495 10.1002/cpt.1198 30058723
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266359804251111113649
Loading
/content/journals/ctmc/10.2174/0115680266359804251111113649
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test