Skip to content
2000
image of Cornstarch-Derived ZnO Nanoparticles: A Promising Antimicrobial Agent Against Pseudomonas aeruginosa

Abstract

Introduction

This study evaluates the antibacterial activity of zinc oxide nanoparticles dispersed in a polyvinylpyrrolidone solution (ZnO-NPs-PVP) synthesized using a green method based on corn starch.

Methods

The ZnO-NPs are characterized using Fourier Transform Infrared Spectroscopy (FT-IR), Transmission Electron Microscopy (TEM), Ultraviolet-Visible Spectroscopy (UV-vis), and Dynamic Light Scattering (DLS). The antibacterial efficacy of ZnO-NPs-PVP is assessed against the Gram-negative bacterium by evaluating reductions in cell viability.

Results

FT-IR analysis reveals peaks typical of ZnO around 500 cm−1, UV-vis spectroscopy shows a characteristic absorption band at 372 nm. TEM analysis indicates an average particle diameter of 23 nm, DLS reporting larger sizes (35 nm) due to the use of PVP as a dispersant. ZnO-NPs-PVP reduces bacterial viability by 3.75 log10 CFU/mL compared to the control. The antibacterial activity is concentration-dependent, with a 50% reduction in metabolic activity observed at 15 µg/mL. The SEM analysis shows the formation of pores in the bacterial cell wall, leading to intracellular component leakage and cell death.

Discussion

ZnO-NPs-PVP could serve as an effective alternative to conventional antibiotics, particularly in the context of increasing antimicrobial resistance.

Conclusion

The findings demonstrate that ZnO-NPs-PVP exhibits significant antibacterial activity and potential for use in antimicrobial treatments. Its ability to disrupt bacterial membranes and reduce metabolic activity suggests its utility as a promising candidate for future biomedical applications.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266392141251008072947
2026-01-26
2026-01-31
Loading full text...

Full text loading...

References

  1. Bayat F. Didar T.F. Hosseinidoust Z. Emerging investigator series: Bacteriophages as nano engineering tools for quality monitoring and pathogen detection in water and wastewater. Environ. Sci. Nano 2021 8 2 367 389 10.1039/D0EN00962H
    [Google Scholar]
  2. Chae S.Y. Jeon S. Han D.W. Hong S.W. Improved antibacterial activity of 3D wrinkled graphene oxide films implemented with irreversibly shrinkable shape-memory polymer substrates. Environ. Sci. Nano 2023 10 3 732 746 10.1039/D2EN01075E
    [Google Scholar]
  3. Qi L. Ge Y. Xia T. He J-Z. Shen C. Wang J. Liu Y-J. Rare earth oxide nanoparticles promote soil microbial antibiotic resistance by selectively enriching antibiotic resistance genes. Environ. Sci. Nano 2019 6 2 456 466 10.1039/C8EN01129J
    [Google Scholar]
  4. Banerjee S. Vishakha K. Das S. Dutta M. Mukherjee D. Mondal J. Mondal S. Ganguli A. Antibacterial, anti-biofilm activity and mechanism of action of pancreatin doped zinc oxide nanoparticles against methicillin resistant Staphylococcus aureus. Colloids Surf. B Biointerfaces 2020 190 110921 10.1016/j.colsurfb.2020.110921 32172163
    [Google Scholar]
  5. Coque T.M. Cantón R. Pérez-Cobas A.E. Fernández-de-Bobadilla M.D. Baquero F. Antimicrobial resistance in the global health network: Known unknowns and challenges for efficient responses in the 21st century. Microorganisms 2023 11 4 1050 10.3390/microorganisms11041050 37110473
    [Google Scholar]
  6. Herrera G. Paudel S. Lupini S. Astete C. Sabliov C. Rodrigues D. Biodegradable nanoparticles aid the gut microbial community in delaying antibiotic resistance emergence. Environ. Sci. Nano 2024 11 11 4501 4512 10.1039/D4EN00382A
    [Google Scholar]
  7. Bruno A. Tripodi F. Armanni A. Barbieri L. Colombo A. Fumagalli S. Moukham H. Tomaino G. Kukushkina E. Lorenzi R. Marchesi L. Monguzzi A. Paleari A. Ronchi A. Secchi V. Sironi L. Colombo M. Advancements in nanosensors for detecting pathogens in healthcare environments. Environ. Sci. Nano 2024 11 11 4449 4474 10.1039/D4EN00381K
    [Google Scholar]
  8. Kerr K.G. Snelling A.M. Pseudomonas aeruginosa: A formidable and ever-present adversary. J. Hosp. Infect. 2009 73 4 338 344 10.1016/j.jhin.2009.04.020 19699552
    [Google Scholar]
  9. Gheorghita A.A. Wozniak D.J. Parsek M.R. Howell P.L. Pseudomonas aeruginosa biofilm exopolysaccharides: Assembly, function, and degradation. FEMS Microbiol. Rev. 2023 47 6 fuad060 10.1093/femsre/fuad060 37884397
    [Google Scholar]
  10. Fang X. Miao S. Zhang Y. Chen Z. Lai Y. Yang Y. Cheng S. Fan S. Yang J. Zhang Y. Chen Z. Liu S. Green synthesis and characterization of an orally bioactive artemisinin-zinc nanoparticle with enhanced bactericidal activity. Colloids Surf. B Biointerfaces 2024 234 113660 10.1016/j.colsurfb.2023.113660 38042107
    [Google Scholar]
  11. Xuan J. Feng W. Wang J. Wang R. Zhang B. Bo L. Chen Z.S. Yang H. Sun L. Antimicrobial peptides for combating drug-resistant bacterial infections. Drug Resist. Updat. 2023 68 100954 10.1016/j.drup.2023.100954 36905712
    [Google Scholar]
  12. Ali S.G. Ansari M.A. Alzohairy M.A. Alomary M.N. AlYahya S. Jalal M. Khan H.M. Asiri S.M.M. Ahmad W. Mahdi A.A. El-Sherbeeny A.M. El-Meligy M.A. Biogenic gold nanoparticles as potent antibacterial and antibiofilm nano-antibiotics against Pseudomonas aeruginosa. Antibiotics 2020 9 3 100 10.3390/antibiotics9030100 32120845
    [Google Scholar]
  13. A, A.; X, J.; v, A.; P v, M. L-Cysteine capped zinc oxide nanoparticles induced cellular response on adenocarcinomic human alveolar basal epithelial cells using a conventional and organ-on-a-chip approach. Colloids Surf. B Biointerfaces 2022 211 112300 10.1016/j.colsurfb.2021.112300 34974288
    [Google Scholar]
  14. Setien E. Ponzio L. Acevedo D.F. Moyano F. Synthesis of gold nanoparticles using soybean byproducts: Applications in catalysis. Biofuels Bioprod. Biorefin. 2025 19 1 55 67 10.1002/bbb.2692
    [Google Scholar]
  15. Aisvarya S. Kalyanasundaram M. Kannan M. Arunkumar P. Preetha S. Elango K. Govindaraju K. Comparative analysis of the insecticidal activity against Sitophilus oryzae (L.) and agro-morphological characteristics of maize using non-biogenic and biogenic ZnO nanoparticles. Environ. Sci. Nano 2024 11 5 2173 2187 10.1039/D3EN00839H
    [Google Scholar]
  16. Ding Y. Zhou Y.Y. Chen H. Geng D.D. Wu D.Y. Hong J. Shen W.B. Hang T.J. Zhang C. The performance of thiol-terminated PEG-paclitaxel-conjugated gold nanoparticles. Biomaterials 2013 34 38 10217 10227 10.1016/j.biomaterials.2013.09.008 24055524
    [Google Scholar]
  17. Upadhyay P.K. Jain V.K. Sharma K. Sharma R. Synthesis and applications of ZnO nanoparticles in biomedicine. Res. J. Pharm. Tech. 2020 13 4 1636 1644 10.5958/0974‑360X.2020.00297.8
    [Google Scholar]
  18. Pereyra J.Y.D.C. Barbero C.A. Acevedo D.F. Yslas E.I. Antibacterial effects of in situ zinc oxide nanoparticles generated inside the poly (acrylamide-co-hydroxyethylmethacrylate) nanocomposite. Nanotechnology 2023 34 4 045101 10.1088/1361‑6528/ac98cf
    [Google Scholar]
  19. Abdelghafar A. Yousef N. Askoura M. Zinc oxide nanoparticles reduce biofilm formation, synergize antibiotics action and attenuate Staphylococcus aureus virulence in host; an important message to clinicians. BMC Microbiol. 2022 22 1 244 10.1186/s12866‑022‑02658‑z 36221053
    [Google Scholar]
  20. Babayevska N. Przysiecka Ł. Iatsunskyi I. Nowaczyk G. Jarek M. Janiszewska E. Jurga S. ZnO size and shape effect on antibacterial activity and cytotoxicity profile. Sci. Rep. 2022 12 1 8148 10.1038/s41598‑022‑12134‑3 35581357
    [Google Scholar]
  21. Aleaghil S.A. Fattahy E. Baei B. Antibacterial activity of Zinc oxide nanoparticles on Staphylococcus aureus. Int. J. Adv. Biotechnol. Res. 2016 7 1569 1575
    [Google Scholar]
  22. Ali S.G. Ansari M.A. Alzohairy M.A. Alomary M.N. Jalal M. AlYahya S. Asiri S.M.M. Khan H.M. Effect of biosynthesized zno nanoparticles on multi-drug resistant Pseudomonas aeruginosa. Antibiotics 2020 9 5 260 10.3390/antibiotics9050260 32429514
    [Google Scholar]
  23. Roy S. Rhim J.W. Preparation of pectin/agar-based functional films integrated with zinc sulfide nano petals for active packaging applications. Colloids Surf. B Biointerfaces 2021 207 111999 10.1016/j.colsurfb.2021.111999 34325297
    [Google Scholar]
  24. Ramani M. Ponnusamy S. Muthamizhchelvan C. Marsili E. Amino acid-mediated synthesis of zinc oxide nanostructures and evaluation of their facet-dependent antimicrobial activity. Colloids Surf. B Biointerfaces 2014 117 233 239 10.1016/j.colsurfb.2014.02.017 24657608
    [Google Scholar]
  25. Soliman M. Lee B. Ozcan A. Rawal T.B. Young M. Mendis H.C. Rajasekaran P. Washington T. Pingali S.V. O’Neill H. Gesquiere A. De La Fuente L. Petridis L. Johnson E. Graham J. Santra S. Tetard L. Engineered zinc oxide-based nanotherapeutics boost systemic antibacterial efficacy against phloem-restricted diseases. Environ. Sci. Nano 2022 9 8 2869 2886 10.1039/D2EN00263A
    [Google Scholar]
  26. Leareng S.K. Ubomba-Jaswa E. Musee N. Toxicity of zinc oxide and iron oxide engineered nanoparticles to Bacillus subtilis in river water systems. Environ. Sci. Nano 2020 7 1 172 185 10.1039/C9EN00585D
    [Google Scholar]
  27. Yslas E.I. Ibarra L.E. Peralta D.O. Barbero C.A. Rivarola V.A. Bertuzzi M.L. Polyaniline nanofibers: Acute toxicity and teratogenic effect on Rhinella arenarum embryos. Chemosphere 2012 87 11 1374 1380 10.1016/j.chemosphere.2012.02.033 22386461
    [Google Scholar]
  28. Yslas E.I. Ibarra L.E. Molina M.A. Rivarola C. Barbero C.A. Bertuzzi M.L. Rivarola V.A. Polyaniline nanoparticles for near-infrared photothermal destruction of cancer cells. J. Nanopart. Res. 2015 17 10 389 10.1007/s11051‑015‑3187‑y
    [Google Scholar]
  29. Almeida W.L. Rodembusch F.S. Ferreira N.S. Caldas de Sousa V. Eco-friendly and cost-effective synthesis of ZnO nanopowders by Tapioca-assisted sol-gel route. Ceram. Int. 2020 46 8 10835 10842 10.1016/j.ceramint.2020.01.095
    [Google Scholar]
  30. Kaningini A.G. Azizi S. Sintwa N. Mokalane K. Mohale K.C. Mudau F.N. Maaza M. Effect of optimized precursor concentration, temperature, and doping on optical properties of zno nanoparticles synthesized via a green route using bush tea (Athrixia phylicoides DC.) leaf extracts. ACS Omega 2022 7 36 31658 31666 10.1021/acsomega.2c00530 36120056
    [Google Scholar]
  31. Motelica L. Vasile B.S. Ficai A. Surdu A.V. Ficai D. Oprea O.C. Andronescu E. Mustățea G. Ungureanu E.L. Dobre A.A. Antibacterial activity of zinc oxide nanoparticles loaded with essential oils. Pharmaceutics 2023 15 10 2470 10.3390/pharmaceutics15102470 37896230
    [Google Scholar]
  32. Jiménez-Rosado M. Gomez-Zavaglia A. Guerrero A. Romero A. Green synthesis of ZnO nanoparticles using polyphenol extracts from pepper waste (Capsicum annuum). J. Clean. Prod. 2022 350 131541 10.1016/j.jclepro.2022.131541
    [Google Scholar]
  33. Naiel B. Fawzy M. Mahmoud A.E.D. Halmy M.W.A. Sustainable fabrication of dimorphic plant derived ZnO nanoparticles and exploration of their biomedical and environmental potentialities. Sci. Rep. 2024 14 1 13459 10.1038/s41598‑024‑63459‑0 38862646
    [Google Scholar]
  34. Brishti R.S. Ahsan Habib M. Ara M.H. Rezaul Karim K.M. Khairul Islam M. Naime J. Hasan Rumon M.M. Rayhan Khan M.A. Green synthesis of ZnO NPs using aqueous extract of Epipremnum aureum leave: Photocatalytic degradation of Congo red. Results Chem. 2024 7 101441 10.1016/j.rechem.2024.101441
    [Google Scholar]
  35. Agarwal S. Jangir L.K. Rathore K.S. Kumar M. Awasthi K. Morphology-dependent structural and optical properties of ZnO nanostructures. Appl. Phys., A Mater. Sci. Process. 2019 125 8 553 10.1007/s00339‑019‑2852‑x
    [Google Scholar]
  36. Khorsand Zak A Starch-stabilized synthesis of ZnO nanopowders at low temperature and optical properties study. Adv. Powder Technol. 2013 24 618 624 10.1016/j.apt.2012.11.008
    [Google Scholar]
  37. Djafarou R. Brahmia O. Haya S. Sahmetlioglu E. Kılıç Dokan F. Hidouri T. Starch-assisted eco-friendly synthesis of zno nanoparticles: Enhanced photocatalytic, supercapacitive, and uv-driven antioxidant properties with low cytotoxic effects. Int. J. Mol. Sci. 2025 26 2 859 10.3390/ijms26020859 39859573
    [Google Scholar]
  38. Al-Momani H. Aolymat I. Ibrahim L. Albalawi H. Al Balawi D. Albiss B.A. Almasri M. Alghweiri S. Low-dose zinc oxide nanoparticles trigger the growth and biofilm formation of Pseudomonas aeruginosa: A hormetic response. BMC Microbiol. 2024 24 1 290 10.1186/s12866‑024‑03441‑y 39095741
    [Google Scholar]
  39. Ebadi M. Zolfaghari M.R. Aghaei S.S. Zargar M. Noghabi K.A. Desertifilum sp. EAZ03 cell extract as a novel natural source for the biosynthesis of zinc oxide nanoparticles and antibacterial, anticancer and antibiofilm characteristics of synthesized zinc oxide nanoparticles. J. Appl. Microbiol. 2022 132 1 221 236 10.1111/jam.15177 34101961
    [Google Scholar]
  40. Khan F. Kang M.G. Jo D.M. Chandika P. Jung W.K. Kang H.W. Kim Y.M. Phloroglucinol-gold and-zinc oxide nanoparticles: Antibiofilm and antivirulence activities towards Pseudomonas aeruginosa pao1. Mar. Drugs 2021 19 11 601 10.3390/md19110601 34822472
    [Google Scholar]
  41. Siddiqi K.S. ur Rahman, A.; Tajuddin; Husen, A. Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res. Lett. 2018 13 1 141 10.1186/s11671‑018‑2532‑3 29740719
    [Google Scholar]
  42. Sirelkhatim A. Mahmud S. Seeni A. Kaus N.H.M. Ann L.C. Bakhori S.K.M. Hasan H. Mohamad D. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett. 2015 7 3 219 242 10.1007/s40820‑015‑0040‑x 30464967
    [Google Scholar]
  43. Alotaibi B. Negm W.A. Elekhnawy E. El-Masry T.A. Elharty M.E. Saleh A. Abdelkader D.H. Mokhtar F.A. Antibacterial activity of nano zinc oxide green-synthesised from Gardenia thailandica triveng. Leaves against Pseudomonas aeruginosa clinical isolates: in vitro and in vivo study. Artif. Cells Nanomed. Biotechnol. 2022 50 1 96 106 10.1080/21691401.2022.2056191 35361019
    [Google Scholar]
  44. Khosla S. Singh P. Malik M. Synthesis of zinc oxide nanoparticles, its characterization and anti-microbial activity assessment. Indian J. Biochem. Biophys. 2022 59 1106 1112
    [Google Scholar]
  45. Buchman J.T. Rahnamoun A. Landy K.M. Zhang X. Vartanian A.M. Jacob L.M. Murphy C.J. Hernandez R. Haynes C.L. Using an environmentally-relevant panel of Gram-negative bacteria to assess the toxicity of polyallylamine hydrochloride-wrapped gold nanoparticles. Environ. Sci. Nano 2018 5 2 279 288 10.1039/C7EN00832E 29805793
    [Google Scholar]
  46. Gallarato L.A. Mulko L.E. Dardanelli M.S. Barbero C.A. Acevedo D.F. Yslas E.I. Synergistic effect of polyaniline coverage and surface microstructure on the inhibition of Pseudomonas aeruginosa biofilm formation. Colloids Surf. B Biointerfaces 2017 150 1 7 10.1016/j.colsurfb.2016.11.014 27863264
    [Google Scholar]
  47. Diggle S.P. Whiteley M. Microbe profile: Pseudomonas aeruginosa: Opportunistic pathogen and lab rat. Microbiology 2020 166 1 30 33 10.1099/mic.0.000860 31597590
    [Google Scholar]
  48. Lallo da Silva B. Caetano B.L. Chiari-Andréo B.G. Pietro R.C.L.R. Chiavacci L.A. Increased antibacterial activity of ZnO nanoparticles: Influence of size and surface modification. Colloids Surf. B Biointerfaces 2019 177 440 447 10.1016/j.colsurfb.2019.02.013 30798065
    [Google Scholar]
  49. Rauf M.A. Owais M. Rajpoot R. Ahmad F. Khan N. Zubair S. Biomimetically synthesized ZnO nanoparticles attain potent antibacterial activity against less susceptible S. aureus skin infection in experimental animals. RSC Advances 2017 7 58 36361 36373 10.1039/C7RA05040B
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266392141251008072947
Loading
/content/journals/ctmc/10.2174/0115680266392141251008072947
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test