Skip to content
2000
image of Harnessing the Potential of Natural Nutraceuticals Against Huntington’s Disease

Abstract

Neurodegenerative disorders (NDDs) are a major global health concern and the fifth leading cause of death worldwide. Huntington's disease (HD) is an NDD regarded as a rare, genetic, and advanced disease that occurs due to the duplication of cytosine, adenine, and guanine (CAG) trinucleotide repeats on chromosome 4p, located in the Huntingtin gene (HTT). There is no specific therapy available for HD. This review examines current evidence on various nutraceuticals as therapeutic or preventive agents in HD and their benefits in protecting against neuronal damage, oxidative stress, mitochondrial dysfunction, and combating excitotoxicity and neuroinflammation. Moreover, the beneficial role of nutraceuticals in HD involves averting defective energy metabolism, protein misfolding and aggregation, and epigenetic modulation, as well as strengthening cognitive and behavioral health. Nutraceuticals are naturally derived, bioactive components generally available in foods, dietary supplements, and herbal products, and they contribute to health promotion and disease prevention. These nutraceuticals possess potent antioxidant, anti-inflammatory, and neuroprotective properties, which help minimize the risk of HD. Moreover, antibacterial, antiviral, antimicrobial, anticancer, antiaging, antidiabetic, antihyperlipidemic, and immunobooster characteristics attract a large population worldwide. The wide availability of nutraceuticals in fruits, vegetables, and several naturally occurring foodstuffs supports their accessibility. These nutraceuticals function by stabilizing mitochondrial function, counteracting calcium overload, minimizing oxidative stress, and preventing inflammatory responses, among other mechanisms. The wide acceptance and demand for these nutraceuticals are due to their multifunctional role, economic benefits, and safety profile. The most promising nutraceuticals in the prevention and therapy of HD discussed are Curcumin, Resveratrol, Quercetin, Epigallocatechin Gallate, Hesperidin, Coenzyme Q10, Kaempferol, Silymarin, Astaxanthin, Lycopene, Rosmarinic acid.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266435937251206080106
2026-01-08
2026-01-31
Loading full text...

Full text loading...

References

  1. Paul R. Nath J. Paul S. Mazumder M.K. Phukan B.C. Roy R. Bhattacharya P. Borah A. Suggesting 7,8-dihydroxyflavone as a promising nutraceutical against CNS disorders. Neurochem. Int. 2021 148 May 105068 10.1016/j.neuint.2021.105068 34022252
    [Google Scholar]
  2. Varshney V. Kumar A. Parashar V. Kumar A. Goyal A. Garabadu D. Therapeutic potential of capsaicin in various neurodegenerative diseases with special focus on Nrf2 signaling. Curr. Pharm. Biotechnol. 2024 25 13 1693 1707 10.2174/0113892010277933231122111244 38173062
    [Google Scholar]
  3. Lamptey R.N.L. Chaulagain B. Trivedi R. Gothwal A. Layek B. Singh J. A review of the common neurodegenerative disorders: Current therapeutic approaches and the potential role of nanotherapeutics. Int. J. Mol. Sci. 2022 23 3 1851 10.3390/ijms23031851 35163773
    [Google Scholar]
  4. Wu B. Xiao Q. Zhu L. Tang H. Peng W. Icariin targets p53 to protect against ceramide-induced neuronal senescence: Implication in Alzheimer’s disease. Free Radic. Biol. Med. 2024 224 204 219 10.1016/j.freeradbiomed.2024.08.031 39197597
    [Google Scholar]
  5. Makkar R. Behl T. Bungau S. Zengin G. Mehta V. Kumar A. Uddin M.S. Ashraf G.M. Abdel-Daim M.M. Arora S. Oancea R. Nutraceuticals in neurological disorders. Int. J. Mol. Sci. 2020 21 12 4424 10.3390/ijms21124424 32580329
    [Google Scholar]
  6. Bhattacharyya K. The story of George Huntington and his disease. Ann. Indian Acad. Neurol. 2016 19 1 25 28 10.4103/0972‑2327.175425 27011624
    [Google Scholar]
  7. Liang E.C. Rejeski K. Fei T. Albittar A. Huang J.J. Portuguese A.J. Wu Q. Raj S. Subklewe M. Shouval R. Gauthier J. Development and validation of an automated computational approach to grade immune effector cell-associated hematotoxicity. Bone Marrow Transplant. 2024 59 7 910 917 10.1038/s41409‑024‑02278‑3 38627450
    [Google Scholar]
  8. Nopoulos P.C. Special issue: Juvenile onset Huntington’s disease. Brain Sci. 2020 10 9 652 10.3390/BRAINSCI10090652
    [Google Scholar]
  9. Huntington’s disease Available from: https://medlineplus.gov/genetics/condition/huntington-disease/#causes
  10. Huntington's disease symptoms. 2022 Available from: https://stanfordhealthcare.org/medical-conditions/brain-and-nerves/huntingtons-disease/symptoms.html
  11. Souyoul S.A. Saussy K.P. Lupo M.P. Nutraceuticals: A review. Dermatol. Ther. 2018 8 1 5 16 10.1007/s13555‑018‑0221‑x 29411317
    [Google Scholar]
  12. Santini A. Cammarata S.M. Capone G. Ianaro A. Tenore G.C. Pani L. Novellino E. Nutraceuticals: Opening the debate for a regulatory framework. Br. J. Clin. Pharmacol. 2018 84 4 659 672 10.1111/bcp.13496 29433155
    [Google Scholar]
  13. Mali S. Rathod S. Kale N. Shinde N. Overview of nutraceuticals. Asian J. Pharm. Res. 2022 12 1 61 70 10.52711/2231‑5691.2022.00010
    [Google Scholar]
  14. Singh R.P. Mishra A. Chandel S.S. Agarwal M. Chawra H.S. Singh M. Dubey G. Unlocking new approaches to urolithiasis management via nutraceuticals. Curr. Pharm. Biotechnol. 2024 25 9 1124 1131 10.2174/1389201024666230821122416 37608670
    [Google Scholar]
  15. Kulshrestha R. Singla N. Afzal O. Goyal A. Saini M. Altamimi A.S.A. Almalki W.H. Kazmi I. Al-Abbasi F. Alzarea S.I. Gupta G. Role of nutraceuticals in treating erectile dysfunction via inhibition Of-5 enzyme: A mini review. Curr. Pharm. Biotechnol. 2024 25 15 1905 1914 10.2174/0113892010256035231119071714 38310448
    [Google Scholar]
  16. Sachdeva V. Roy A. Bharadvaja N. Current prospects of nutraceuticals: A review. Curr. Pharm. Biotechnol. 2020 21 10 884 896 10.2174/1389201021666200130113441 32000642
    [Google Scholar]
  17. AlAli M. Alqubaisy M. Aljaafari M.N. AlAli A.O. Baqais L. Molouki A. Abushelaibi A. Lai K.S. Lim S.H.E. Nutraceuticals: Transformation of conventional foods into health promoters/disease preventers and safety considerations. Molecules 2021 26 9 2540 10.3390/molecules26092540 33925346
    [Google Scholar]
  18. Sheng Y. Wang J. Liu S. Jiang Y. IMN4NPD: An integrated molecular networking workflow for natural product dereplication. Anal. Chem. 2024 acs.analchem.3c04746 10.1021/acs.analchem.3c04746 38324659
    [Google Scholar]
  19. Nicolson G.L. Mitochondrial dysfunction and chronic disease: Treatment with natural supplements. Integr. Med. 2014 13 4 35 43 [PMID: 26770107
    [Google Scholar]
  20. Wesselink E. Koekkoek W.A.C. Grefte S. Witkamp R.F. van Zanten A.R.H. Feeding mitochondria: Potential role of nutritional components to improve critical illness convalescence. Clin. Nutr. 2019 38 3 982 995 10.1016/j.clnu.2018.08.032 30201141
    [Google Scholar]
  21. Nandagopal A. Siddiqui K. Role of nutraceuticals in neurodegenerative diseases. ACTA Pharmaceutica Sciencia 2019 57 4 117 131 10.23893/1307‑2080.APS.05728
    [Google Scholar]
  22. Duchen M.R. Mitochondria, calcium-dependent neuronal death and neurodegenerative disease. Pflugers Arch. 2012 464 1 111 121 10.1007/s00424‑012‑1112‑0 22615071
    [Google Scholar]
  23. Elifani F. Amico E. Pepe G. Capocci L. Castaldo S. Rosa P. Montano E. Pollice A. Madonna M. Filosa S. Calogero A. Maglione V. Crispi S. Di Pardo A. Curcumin dietary supplementation ameliorates disease phenotype in an animal model of Huntington’s disease. Hum. Mol. Genet. 2019 28 23 ddz247 10.1093/hmg/ddz247 31630202
    [Google Scholar]
  24. Hewlings S. Kalman D. Curcumin: A review of its effects on human health. Foods 2017 6 10 92 10.3390/foods6100092 29065496
    [Google Scholar]
  25. Chongtham A. Agrawal N. Curcumin modulates cell death and is protective in Huntington’s disease model. Sci. Rep. 2015 2016 6 1 10 10.1038/srep18736 26728250
    [Google Scholar]
  26. Reddy P.H. Manczak M. Yin X. Grady M.C. Mitchell A. Tonk S. Kuruva C.S. Bhatti J.S. Kandimalla R. Vijayan M. Kumar S. Wang R. Pradeepkiran J.A. Ogunmokun G. Thamarai K. Quesada K. Boles A. Reddy A.P. Protective effects of Indian spice curcumin against Amyloid-β in Alzheimer’s disease. J. Alzheimers Dis. 2018 61 3 843 866 10.3233/JAD‑170512 29332042
    [Google Scholar]
  27. Kandezi N. Mohammadi M. Ghaffari M. Gholami M. Motaghinejad M. Safari S. Novel insight to neuroprotective potential of curcumin: A mechanistic review of possible involvement of mitochondrial biogenesis and PI3/Akt/ GSK3 or PI3/Akt/CREB/BDNF signaling pathways. Int. J. Mol. Cell. Med. 2020 9 1 1 32 10.22088/IJMCM.BUMS.9.1.1 32832482
    [Google Scholar]
  28. Khayatan D. Razavi S.M. Arab Z.N. Niknejad A.H. Nouri K. Momtaz S. Gumpricht E. Jamialahmadi T. Abdolghaffari A.H. Barreto G.E. Sahebkar A. Protective effects of curcumin against traumatic brain injury. Biomed. Pharmacother. 2022 154 113621 10.1016/j.biopha.2022.113621 36055110
    [Google Scholar]
  29. Don T.M. Chang W.J. Jheng P.R. Huang Y.C. Chuang E.Y. Curcumin-laden dual-targeting fucoidan/chitosan nanocarriers for inhibiting brain inflammation via intranasal delivery. Int. J. Biol. Macromol. 2021 181 835 846 10.1016/j.ijbiomac.2021.04.045 33857519
    [Google Scholar]
  30. Rakotoarisoa M. Angelov B. Drechsler M. Nicolas V. Bizien T. Gorshkova Y.E. Deng Y. Angelova A. Liquid crystalline lipid nanoparticles for combined delivery of curcumin, fish oil and BDNF: In vitro neuroprotective potential in a cellular model of tunicamycin-induced endoplasmic reticulum stress. Smart Mater. Med. 2022 3 274 288 10.1016/j.smaim.2022.03.001
    [Google Scholar]
  31. Marques M.S. Cordeiro M.F. Marinho M.A.G. Vian C.O. Vaz G.R. Alves B.S. Jardim R.D. Hort M.A. Dora C.L. Horn A.P. Curcumin-loaded nanoemulsion improves haemorrhagic stroke recovery in wistar rats. Brain Res. 2020 1746 147007 10.1016/j.brainres.2020.147007 32645380
    [Google Scholar]
  32. Liao L. Shi J. Jiang C. Zhang L. Feng L. Liu J. Zhang J. Activation of anti-oxidant of curcumin pyrazole derivatives through preservation of mitochondria function and Nrf2 signaling pathway. Neurochem. Int. 2019 125 82 90 10.1016/j.neuint.2019.01.026 30771374
    [Google Scholar]
  33. Singh S. Kumar P. Neuroprotective activity of curcumin in combination with piperine against quinolinic acid induced neurodegeneration in rats. Pharmacology 2016 97 3-4 151 160 10.1159/000443896 26828892
    [Google Scholar]
  34. Mohammadi A. Hosseinzadeh Colagar A. Khorshidian A. Amini S.M. The functional roles of curcumin on astrocytes in neurodegenerative diseases. Neuroimmunomodulation 2022 29 1 4 14 10.1159/000517901 34496365
    [Google Scholar]
  35. Liang M. Li T. Qu Y. Qin J. Li Z. Huang X. Zhang Q. Zhang Y. Guo Q. Wang Q. Mitigation mechanism of resveratrol on thermally induced trans-α-linolenic acid of trilinolenin. Lebensm. Wiss. Technol. 2023 189 115508 10.1016/j.lwt.2023.115508
    [Google Scholar]
  36. Xiao Q. Zhu W. Feng W. Lee S.S. Leung A.W. Shen J. Gao L. Xu C. A review of resveratrol as a potent chemoprotective and synergistic agent in cancer chemotherapy. Front. Pharmacol. 2019 9 JAN 1534 10.3389/fphar.2018.01534 30687096
    [Google Scholar]
  37. Zhang L.X. Li C.X. Kakar M.U. Khan M.S. Wu P.F. Amir R.M. Dai D.F. Naveed M. Li Q.Y. Saeed M. Shen J.Q. Rajput S.A. Li J.H. Resveratrol (RV): A pharmacological review and call for further research. Biomed. Pharmacother. 2021 143 112164 10.1016/j.biopha.2021.112164 34649335
    [Google Scholar]
  38. Salehi B. Mishra A.P. Nigam M. Sener B. Kilic M. Sharifi-Rad M. Fokou P.V.T. Martins N. Sharifi-Rad J. Resveratrol: A double-edged sword in health benefits. Biomedicines 2018 6 3 91 10.3390/biomedicines6030091 30205595
    [Google Scholar]
  39. Meng T. Xiao D. Muhammed A. Deng J. Chen L. He J. Anti-inflammatory action and mechanisms of resveratrol. Molecules 2021 26 1 229 10.3390/molecules26010229 33466247
    [Google Scholar]
  40. Liang Y. Xu M.L. Gao X. Wang Y. Zhang L.N. Li Y.C. Guo Q. Resveratrol improves ovarian state by inhibiting apoptosis of granulosa cells. Gynecol. Endocrinol. 2023 39 1 2181652 10.1080/09513590.2023.2181652 36824010
    [Google Scholar]
  41. Belmonte-Reche E. Peñalver P. Caro-Moreno M. Mateos-Martín M.L. Adán N. Delgado M. González-Rey E. Morales J.C. Silyl resveratrol derivatives as potential therapeutic agents for neurodegenerative and neurological diseases. Eur. J. Med. Chem. 2021 223 113655 10.1016/j.ejmech.2021.113655 34175536
    [Google Scholar]
  42. Liu C. Zhang R. Yang L. Ji T. Zhu C. Liu B. Zhang H. Xu C. Zhang N. Huang S. Chen L. Neuroprotection of resveratrol against cadmium-poisoning acts through dual inhibition of mTORC1/2 signaling. Neuropharmacology 2022 219 109236 10.1016/j.neuropharm.2022.109236 36049535
    [Google Scholar]
  43. Peñalver P. Belmonte-Reche E. Adán N. Caro M. Mateos-Martín M.L. Delgado M. González-Rey E. Morales J.C. Alkylated resveratrol prodrugs and metabolites as potential therapeutics for neurodegenerative diseases. Eur. J. Med. Chem. 2018 146 123 138 10.1016/j.ejmech.2018.01.037 29407944
    [Google Scholar]
  44. Vidoni C. Secomandi E. Castiglioni A. Melone M.A.B. Isidoro C. Resveratrol protects neuronal-like cells expressing mutant Huntingtin from dopamine toxicity by rescuing ATG4-mediated autophagosome formation. Neurochem. Int. 2018 117 174 187 10.1016/j.neuint.2017.05.013 28532681
    [Google Scholar]
  45. Shen J. Xu L. Qu C. Sun H. Zhang J. Resveratrol prevents cognitive deficits induced by chronic unpredictable mild stress: Sirt1/miR-134 signalling pathway regulates CREB/BDNF expression in hippocampus in vivo and in vitro. Behav. Brain Res. 2018 349 1 7 10.1016/j.bbr.2018.04.050 29715537
    [Google Scholar]
  46. Cianciulli A. Dragone T. Calvello R. Porro C. Trotta T. Lofrumento D.D. Panaro M.A. IL-10 plays a pivotal role in anti-inflammatory effects of resveratrol in activated microglia cells. Int. Immunopharmacol. 2015 24 2 369 376 10.1016/j.intimp.2014.12.035 25576658
    [Google Scholar]
  47. Bellaver B. Bobermin L.D. Souza D.G. Rodrigues M.D.N. de Assis A.M. Wajner M. Gonçalves C.A. Souza D.O. Quincozes-Santos A. Signaling mechanisms underlying the glioprotective effects of resveratrol against mitochondrial dysfunction. Biochim. Biophys. Acta Mol. Basis Dis. 2016 1862 9 1827 1838 10.1016/j.bbadis.2016.06.018 27373419
    [Google Scholar]
  48. Ulusoy H.G. Sanlier N. A minireview of quercetin: From its metabolism to possible mechanisms of its biological activities. Crit. Rev. Food Sci. Nutr. 2020 60 19 3290 3303 10.1080/10408398.2019.1683810 31680558
    [Google Scholar]
  49. Gasmi A. Mujawdiya P.K. Lysiuk R. Shanaida M. Peana M. Gasmi Benahmed A. Beley N. Kovalska N. Bjørklund G. Quercetin in the prevention and treatment of coronavirus infections: A focus on SARS-CoV-2. Pharmaceuticals 2022 15 9 1049 10.3390/ph15091049 36145270
    [Google Scholar]
  50. Cheng X. Huang J. Li H. Zhao D. Liu Z. Zhu L. Zhang Z. Peng W. Quercetin: A promising therapy for diabetic encephalopathy through inhibition of hippocampal ferroptosis. Phytomedicine 2024 126 154887 10.1016/j.phymed.2023.154887 38377720
    [Google Scholar]
  51. Yi H. Peng H. Wu X. Xu X. Kuang T. Zhang J. Du L. Fan G. The therapeutic effects and mechanisms of quercetin on metabolic diseases: Pharmacological data and clinical evidence. Oxid. Med. Cell. Longev. 2021 2021 1 6678662 10.1155/2021/6678662 34257817
    [Google Scholar]
  52. Sandhir R. Mehrotra A. Quercetin supplementation is effective in improving mitochondrial dysfunctions induced by 3-nitropropionic acid: Implications in Huntington’s disease. Biochim. Biophys. Acta Mol. Basis Dis. 2013 1832 3 421 430 10.1016/j.bbadis.2012.11.018 23220257
    [Google Scholar]
  53. Chakraborty J. Singh R. Dutta D. Naskar A. Rajamma U. Mohanakumar K.P. Quercetin improves behavioral deficiencies, restores astrocytes and microglia, and reduces serotonin metabolism in 3-nitropropionic acid-induced rat model of Huntington’s Disease. CNS Neurosci. Ther. 2014 20 1 10 19 10.1111/cns.12189 24188794
    [Google Scholar]
  54. Rinwa P. Kumar A. Quercetin along with piperine prevents cognitive dysfunction, oxidative stress and neuro-inflammation associated with mouse model of chronic unpredictable stress. Arch. Pharm. Res. 2017 40 10 1166 1175 10.1007/s12272‑013‑0205‑4 23856969
    [Google Scholar]
  55. Jain D. Gangshettiwar A. Combination of lycopene, quercetin and poloxamer188 alleviates anxiety and depression in 3-nitropropionic acid-induced Huntingtons disease in rats. J. Intercult. Ethnopharmacol. 2014 3 4 186 191 10.5455/jice.20140903012921 26401371
    [Google Scholar]
  56. Bhimanwar A.A. Ghaisas M.M. Shete R.V. Silymarin, quercetin and hesperidin combination ameliorates learning and memory deficit in 3 nitro propionic acid induced rat model of Huntington’s disease. Int. J. Pharm. Investig. 2022 12 3 363 369 10.5530/ijpi.2022.3.61
    [Google Scholar]
  57. Debnath K. Jana N.R. Jana N.R. Quercetin encapsulated polymer nanoparticle for inhibiting intracellular polyglutamine aggregation. ACS Appl. Bio Mater. 2019 2 12 5298 5305 10.1021/acsabm.9b00518 35021530
    [Google Scholar]
  58. Zalpoor H. Nabi-Afjadi M. Forghaniesfidvajani R. Tavakol C. Farahighasreaboonasr F. Pakizeh F. Dana V.G. Seif F. Quercetin as a JAK-STAT inhibitor: A potential role in solid tumors and neurodegenerative diseases. Cell. Mol. Biol. Lett. 2022 27 1 60 10.1186/s11658‑022‑00355‑3 35883021
    [Google Scholar]
  59. Singh S. Ahuja A. Sharma H. Maheshwari P. An overview of dietary flavonoids as a nutraceutical nanoformulation approach to life-threatening diseases. Curr. Pharm. Biotechnol. 2023 24 14 1740 1773 10.2174/1389201024666230314101654 36918792
    [Google Scholar]
  60. Chiu H.F. Venkatakrishnan K. Wang C.K. The role of nutraceuticals as a complementary therapy against various neurodegenerative diseases: A mini-review. J. Tradit. Complement. Med. 2020 10 5 434 439 10.1016/j.jtcme.2020.03.008 32953558
    [Google Scholar]
  61. Cano A. Ettcheto M. Espina M. Auladell C. Folch J. Kühne B.A. Barenys M. Sánchez-López E. Souto E.B. García M.L. Turowski P. Camins A. Epigallocatechin-3-gallate PEGylated poly(lactic-co-glycolic) acid nanoparticles mitigate striatal pathology and motor deficits in 3-nitropropionic acid intoxicated mice. Nanomedicine 2021 16 1 19 35 10.2217/nnm‑2020‑0239 33410329
    [Google Scholar]
  62. Bae H.J. Kim J. Jeon S.J. Kim J. Goo N. Jeong Y. Cho K. Cai M. Jung S.Y. Kwon K.J. Ryu J.H. Green tea extract containing enhanced levels of epimerized catechins attenuates scopolamine-induced memory impairment in mice. J. Ethnopharmacol. 2020 258 112923 10.1016/j.jep.2020.112923 32360798
    [Google Scholar]
  63. Zhao X. Liu F. Jin H. Li R. Wang Y. Zhang W. Wang H. Chen W. Involvement of PKCα and ERK1/2 signaling pathways in EGCG’s protection against stress-induced neural injuries in Wistar rats. Neuroscience 2017 346 226 237 10.1016/j.neuroscience.2017.01.025 28131624
    [Google Scholar]
  64. Fernandes L. Cardim-Pires T.R. Foguel D. Palhano F.L. Green tea polyphenol epigallocatechin-gallate in amyloid aggregation and neurodegenerative diseases. Front. Neurosci. 2021 15 September 718188 10.3389/fnins.2021.718188 34594185
    [Google Scholar]
  65. Varga J. Dér N.P. Zsindely N. Bodai L. Green tea infusion alleviates neurodegeneration induced by mutant Huntingtin in Drosophila. Nutr. Neurosci. 2020 23 3 183 189 10.1080/1028415X.2018.1484021 29973113
    [Google Scholar]
  66. Sebastiani G. Almeida-Toledano L. Serra-Delgado M. Navarro-Tapia E. Sailer S. Valverde O. Garcia-Algar O. Andreu-Fernández V. Therapeutic effects of catechins in less common neurological and neurodegenerative disorders. Nutrients 2021 13 7 2232 10.3390/nu13072232 34209677
    [Google Scholar]
  67. Pyrzynska K. Hesperidin: A review on extraction methods, stability and biological activities. Nutrients 2022 14 12 2387 10.3390/nu14122387 35745117
    [Google Scholar]
  68. Pandey P. Khan F. A mechanistic review of the anticancer potential of hesperidin, a natural flavonoid from citrus fruits. Nutr. Res. 2021 92 21 31 10.1016/j.nutres.2021.05.011 34273640
    [Google Scholar]
  69. Agrawal P.K. Agrawal C. Blunden G. Pharmacological signifi cance of hesperidin and hesperetin, two citrus flavonoids, as promising antiviral compounds for prophylaxis against and combating COVID-19. Nat. Prod Commun 2021 16 10 1934578X211042540 10.1177/1934578X211042540
    [Google Scholar]
  70. Kim J. Wie M.B. Ahn M. Tanaka A. Matsuda H. Shin T. Benefits of hesperidin in central nervous system disorders: A review. Anat. Cell Biol. 2019 52 4 369 377 10.5115/acb.19.119 31949974
    [Google Scholar]
  71. a Chang C. Y. Lin T. Y. Lu C. W. Huang S. K. Wang Y. C. Chou S. S. P. Wang S. J. Hesperidin inhibits glutamate release and exerts neuroprotection against excitotoxicity induced by kainic acid in the hippocampus of rats. Neurotoxicol 2015 50 157 169 10.1016/j.neuro.2015.08.014
    [Google Scholar]
  72. b Aaseth J. Alexander J. Alehagen U. Coenzyme Q10 supplementation – In ageing and disease. Mech. Ageing Dev. 2021 197 111521 10.1016/j.mad.2021.111521 34129891
    [Google Scholar]
  73. Jiménez-Jiménez F.J. Alonso-Navarro H. García-Martín E. Agúndez J.A.G. Coenzyme Q10 and Parkinsonian syndromes: A systematic review. J. Pers. Med. 2022 12 6 975 10.3390/jpm12060975 35743757
    [Google Scholar]
  74. Zozina V.I. Covantev S. Goroshko O.A. Krasnykh L.M. Kukes V.G. Coenzyme Q10 in cardiovascular and metabolic diseases: Current state of the problem. Curr. Cardiol. Rev. 2018 14 3 164 174 10.2174/1573403X14666180416115428 29663894
    [Google Scholar]
  75. Gueguen N. Baris O. Lenaers G. Reynier P. Spinazzi M. Secondary coenzyme Q deficiency in neurological disorders. Free Radic. Biol. Med. 2021 165 203 218 10.1016/j.freeradbiomed.2021.01.017 33450382
    [Google Scholar]
  76. Smith K.M. Matson S. Matson W.R. Cormier K. Del Signore S.J. Hagerty S.W. Stack E.C. Ryu H. Ferrante R.J. Dose ranging and efficacy study of high-dose coenzyme Q10 formulations in Huntington’s disease mice. Biochim. Biophys. Acta Mol. Basis Dis. 2006 1762 6 616 626 10.1016/j.bbadis.2006.03.004 16647250
    [Google Scholar]
  77. Gitonga F. Biwott K. Gitau G.W. Wafula O.P. Amwayi P. Isaac A.O. Nyariki J.N. Coenzyme Q10 Ameliorates potassium cyanide-induced toxicosis in a mouse model. Sci. Afr. 2021 12 00815 10.1016/j.sciaf.2021.e00815
    [Google Scholar]
  78. Cheng Z. Kang C. Che S. Su J. Sun Q. Ge T. Guo Y. Lv J. Sun Z. Yang W. Li B. Li X. Cui R. Berberine: A promising treatment for neurodegenerative diseases. Front. Pharmacol. 2022 13 May 845591 10.3389/fphar.2022.845591 35668943
    [Google Scholar]
  79. Jiang W. Wei W. Gaertig M.A. Li S. Li X.J. Therapeutic effect of berberine on Huntington’s disease transgenic mouse model. PLoS One 2015 10 7 0134142 10.1371/journal.pone.0134142 26225560
    [Google Scholar]
  80. Liu P. Li Y. Qi X. Xu J. Liu D. Ji X. Chi T. Liu H. Zou L. Protein kinase C is involved in the neuroprotective effect of berberine against intrastriatal injection of quinolinic acid‐induced biochemical alteration in mice. J. Cell. Mol. Med. 2019 23 9 6343 6354 10.1111/jcmm.14522 31318159
    [Google Scholar]
  81. Gupta S. Khan A. Vishwas S. Gulati M. Gurjeet Singh T. Dua K. Kumar Singh S. Najda A. Sayed A.A. Almeer R. Abdel-Daim M.M. Demethyleneberberine: A possible treatment for Huntington’s disease. Med. Hypotheses 2021 153 June 110639 10.1016/j.mehy.2021.110639 34229236
    [Google Scholar]
  82. Shou J.W. Li X.X. Tang Y.S. Lim-Ho Kong B. Wu H.Y. Xiao M.J. Cheung C.K. Shaw P.C. Novel mechanistic insight on the neuroprotective effect of berberine: The role of PPARδ for antioxidant action. Free Radic. Biol. Med. 2022 181 62 71 10.1016/j.freeradbiomed.2022.01.022 35093536
    [Google Scholar]
  83. Salehi B. Fokou P.V.T. Sharifi-Rad M. Zucca P. Pezzani R. Martins N. Sharifi-Rad J. The therapeutic potential of naringenin: A review of clinical trials. Pharmaceuticals 2019 12 1 11 10.3390/ph12010011 30634637
    [Google Scholar]
  84. Heidary Moghaddam R. Samimi Z. Moradi S.Z. Little P.J. Xu S. Farzaei M.H. Naringenin and naringin in cardiovascular disease prevention: A preclinical review. Eur. J. Pharmacol. 2020 887 August 173535 10.1016/j.ejphar.2020.173535 32910944
    [Google Scholar]
  85. Sharma A. Bhardwaj P. Arya S.K. Naringin: A potential natural product in the field of biomedical applications. Carbohydr. Polym. Technol. Appl. 2021 2 March 100068 10.1016/j.carpta.2021.100068
    [Google Scholar]
  86. Memariani Z. Abbas S.Q. ul Hassan, S.S.; Ahmadi, A.; Chabra, A. Naringin and naringenin as anticancer agents and adjuvants in cancer combination therapy: Efficacy and molecular mechanisms of action, a comprehensive narrative review. Pharmacol. Res. 2021 171 105264 10.1016/j.phrs.2020.105264 33166734
    [Google Scholar]
  87. Akintunde J.K. Akintola T.E. Adenuga G.O. Odugbemi Z.A. Adetoye R.O. Akintunde O.G. Naringin attenuates Bisphenol-A mediated neurotoxicity in hypertensive rats by abrogation of cerebral nucleotide depletion, oxidative damage and neuroinflammation. Neurotoxicology 2020 81 18 33 10.1016/j.neuro.2020.08.001 32810514
    [Google Scholar]
  88. Cui J. Wang G. Kandhare A.D. Mukherjee-Kandhare A.A. Bodhankar S.L. Neuroprotective effect of naringin, a flavone glycoside in quinolinic acid-induced neurotoxicity: Possible role of PPAR-γ, Bax/Bcl-2, and caspase-3. Food Chem. Toxicol. 2018 121 95 108 10.1016/j.fct.2018.08.028 30130594
    [Google Scholar]
  89. Kulasekaran G. Ganapasam S. Neuroprotective efficacy of naringin on 3-nitropropionic acid-induced mitochondrial dysfunction through the modulation of Nrf2 signaling pathway in PC12 cells. Mol. Cell. Biochem. 2015 409 1-2 199 211 10.1007/s11010‑015‑2525‑9 26280522
    [Google Scholar]
  90. Ren J. Lu Y. Qian Y. Chen B. Wu T. Ji G. Recent progress regarding kaempferol for the treatment of various diseases (Review). Exp. Ther. Med. 2019 18 4 2759 2776 10.3892/etm.2019.7886 31572524
    [Google Scholar]
  91. Silva dos Santos J. Gonçalves Cirino J.P. de Oliveira Carvalho P. Ortega M.M. The pharmacological action of kaempferol in central nervous system diseases: A review. Front. Pharmacol. 2021 11 January 565700 10.3389/fphar.2020.565700 33519431
    [Google Scholar]
  92. Imran M. Salehi B. Sharifi-Rad J. Aslam Gondal T. Saeed F. Imran A. Shahbaz M. Tsouh Fokou P.V. Umair Arshad M. Khan H. Guerreiro S.G. Martins N. Estevinho L.M. Kaempferol: A key emphasis to its anticancer potential. Molecules 2019 24 12 2277 10.3390/molecules24122277 31248102
    [Google Scholar]
  93. Alam W. Khan H. Shah M.A. Cauli O. Saso L. Kaempferol as a dietary anti-inflammatory agent: Current therapeutic standing. Molecules 2020 25 18 4073 10.3390/molecules25184073 32906577
    [Google Scholar]
  94. Lopez-Sanchez C. Poejo J. Garcia-Lopez V. Salazar J. Garcia-Martinez V. Gutierrez-Merino C. Kaempferol prevents the activation of complement C3 protein and the generation of reactive A1 astrocytes that mediate rat brain degeneration induced by 3-nitropropionic acid. Food Chem. Toxicol. 2022 164 113017 10.1016/j.fct.2022.113017 35452770
    [Google Scholar]
  95. El-kott A.F. Abd-Lateif A.E.K.M. Khalifa H.S. Morsy K. Ibrahim E.H. Bin-Jumah M. Abdel-Daim M.M. Aleya L. Kaempferol protects against cadmium chloride-induced hippocampal damage and memory deficits by activation of silent information regulator 1 and inhibition of poly (ADP-Ribose) polymerase-1. Sci. Total Environ. 2020 728 138832 10.1016/j.scitotenv.2020.138832 32353801
    [Google Scholar]
  96. Hussein R.M. Mohamed W.R. Omar H.A. A neuroprotective role of kaempferol against chlorpyrifos-induced oxidative stress and memory deficits in rats via GSK3β-Nrf2 signaling pathway. Pestic. Biochem. Physiol. 2018 152 29 37 10.1016/j.pestbp.2018.08.008 30497708
    [Google Scholar]
  97. Huang X. Li N. Pu Y. Zhang T. Wang B. Neuroprotective effects of ginseng phytochemicals: Recent perspectives. Molecules 2019 24 16 2939 10.3390/molecules24162939 31416121
    [Google Scholar]
  98. Hua K.F. Chao A.C. Lin T.Y. Chen W.T. Lee Y.C. Hsu W.H. Lee S.L. Wang H.M. Yang D.I. Ju T.C. Ginsenoside compound K reduces the progression of Huntington’s disease via the inhibition of oxidative stress and overactivation of the ATM/AMPK pathway. J. Ginseng Res. 2022 46 4 572 584 10.1016/j.jgr.2021.11.003 35818427
    [Google Scholar]
  99. Lee M. Ban J.J. Won B.H. Im W. Kim M. Therapeutic potential of ginsenoside Rg3 and Rf for Huntington’s disease. In Vitro Cell. Dev. Biol. Anim. 2021 57 6 641 648 10.1007/s11626‑021‑00595‑1 34128157
    [Google Scholar]
  100. Gao Y. Chu S. Li J. Zhang Z. Yan J. Wen Z. Xia C. Mou Z. Wang Z. He W. Guo X. Wei G. Chen N. Protopanaxtriol protects against 3-nitropropionic acid-induced oxidative stress in a rat model of Huntington’s disease. Acta Pharmacol. Sin. 2015 36 3 311 322 10.1038/aps.2014.107 25640478
    [Google Scholar]
  101. Ghosh S. Kumar V. Mukherjee H. Lahiri D. Roy P. Nutraceutical regulation of miRNAs involved in neurodegenerative diseases and brain cancers. Heliyon 2021 7 6 07262 10.1016/j.heliyon.2021.e07262 34195404
    [Google Scholar]
  102. Slika H. Mansour H. Wehbe N. Nasser S.A. Iratni R. Nasrallah G. Shaito A. Ghaddar T. Kobeissy F. Eid A.H. Therapeutic potential of flavonoids in cancer: ROS-mediated mechanisms. Biomed. Pharmacother. 2022 146 112442 10.1016/j.biopha.2021.112442 35062053
    [Google Scholar]
  103. Aziz N. Kim M.Y. Cho J.Y. Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies. J. Ethnopharmacol. 2018 225 May 342 358 10.1016/j.jep.2018.05.019 29801717
    [Google Scholar]
  104. Nabavi S.F. Braidy N. Gortzi O. Sobarzo-Sanchez E. Daglia M. Skalicka-Woźniak K. Nabavi S.M. Luteolin as an anti-inflammatory and neuroprotective agent: A brief review. Brain Res. Bull 2015 119 Pt A 1 11 10.1016/j.brainresbull.2015.09.002 26361743 2015
    [Google Scholar]
  105. Hasan Siddique Y. Rahul; Varshney, H.; Mantasha, I.; Shahid, M. Effect of luteolin on the transgenic Drosophila model of Huntington’s disease. Comput. Toxicol. 2021 17 100148 10.1016/j.comtox.2020.100148
    [Google Scholar]
  106. Oliveira A.M. Cardoso S.M. Ribeiro M. Seixas R.S.G.R. Silva A.M.S. Rego A.C. Protective effects of 3-alkyl luteolin derivatives are mediated by Nrf2 transcriptional activity and decreased oxidative stress in Huntington’s disease mouse striatal cells. Neurochem. Int. 2015 91 1 12 10.1016/j.neuint.2015.10.004 26476055
    [Google Scholar]
  107. Chen H.I. Hu W.S. Hung M.Y. Ou H.C. Huang S.H. Hsu P.T. Day C.H. Lin K.H. Viswanadha V.P. Kuo W.W. Huang C.Y. Protective effects of luteolin against oxidative stress and mitochondrial dysfunction in endothelial cells. Nutr. Metab. Cardiovasc. Dis. 2020 30 6 1032 1043 10.1016/j.numecd.2020.02.014 32402583
    [Google Scholar]
  108. Kashyap D. Sharma A. Tuli H.S. Sak K. Garg V.K. Buttar H.S. Setzer W.N. Sethi G. Apigenin: A natural bioactive flavone-type molecule with promising therapeutic function. J. Funct. Foods 2018 48 April 457 471 10.1016/j.jff.2018.07.037
    [Google Scholar]
  109. Nabavi S.F. Khan H. D’onofrio G. Šamec D. Shirooie S. Dehpour A.R. Argüelles S. Habtemariam S. Sobarzo-Sanchez E. Apigenin as neuroprotective agent: Of mice and men. Pharmacol. Res. 2018 128 359 365 10.1016/j.phrs.2017.10.008 29055745
    [Google Scholar]
  110. Brimson J.M. Onlamoon N. Tencomnao T. Thitilertdecha P. Clerodendrum petasites S. Moore: The therapeutic potential of phytochemicals, hispidulin, vanillic acid, verbascoside, and apigenin. Biomed. Pharmacother. 2019 118 109319 10.1016/j.biopha.2019.109319 31404773
    [Google Scholar]
  111. Singh A. Upadhayay S. Mehan S. Inhibition of c-JNK/p38MAPK signaling pathway by Apigenin prevents neurobehavioral and neurochemical defects in ethidium bromide-induced experimental model of multiple sclerosis in rats: Evidence from CSF, blood plasma and brain samples. Phytomed. Plus 2021 1 4 100139 10.1016/j.phyplu.2021.100139
    [Google Scholar]
  112. Liu H. Huo X. Wang S. Yin Z. The inhibitory effects of natural antioxidants on protein glycation as well as aggregation induced by methylglyoxal and underlying mechanisms. Colloids Surf. B Biointerfaces 2022 212 112360 10.1016/j.colsurfb.2022.112360 35131714
    [Google Scholar]
  113. Delmas D. Silymarin and derivatives: From biosynthesis to health benefits. Molecules 2020 25 10 2415 10.3390/molecules25102415 32455869
    [Google Scholar]
  114. Neha A.S.J. Jaggi A.S. Singh N. Silymarin and its role in chronic diseases. Adv. Exp. Med. Biol. 2016 929 25 44 10.1007/978‑3‑319‑41342‑6_2 27771919
    [Google Scholar]
  115. Zhang Z. Li X. Sang S. McClements D.J. Chen L. Long J. Jiao A. Wang J. Jin Z. Qiu C. A review of nanostructured delivery systems for the encapsulation, protection, and delivery of silymarin: An emerging nutraceutical. Food Res. Int. 2022 156 111314 10.1016/j.foodres.2022.111314 35651070
    [Google Scholar]
  116. Charalabidis A. Sfouni M. Bergström C. Macheras P. The Biopharmaceutics Classification System (BCS) and the Biopharmaceutics Drug Disposition Classification System (BDDCS): Beyond guidelines. Int. J. Pharm. 2019 566 264 281 10.1016/j.ijpharm.2019.05.041 31108154
    [Google Scholar]
  117. Borah A. Paul R. Choudhury S. Choudhury A. Bhuyan B. Das Talukdar A. Dutta Choudhury M. Mohanakumar K.P. Neuroprotective potential of silymarin against CNS disorders: Insight into the pathways and molecular mechanisms of action. CNS Neurosci. Ther. 2013 19 11 847 853 10.1111/cns.12175 24118806
    [Google Scholar]
  118. Chandolia P. Rahi V. Kumar P. Neuroprotective effect of silymarin against 3-Nitropropionic acid-induced neurotoxicity in rats. Curr. Res. Pharmacol. Drug Discov. 2022 3 100130 10.1016/j.crphar.2022.100130 36568269
    [Google Scholar]
  119. Haddadi R. Shahidi Z. Eyvari-Brooshghalan S. Silymarin and neurodegenerative diseases: Therapeutic potential and basic molecular mechanisms. Phytomedicine 2020 79 153320 10.1016/j.phymed.2020.153320 32920285
    [Google Scholar]
  120. de Oliveira D.R. Schaffer L.F. Busanello A. Barbosa C.P. Peroza L.R. de Freitas C.M. Krum B.N. Bressan G.N. Boligon A.A. Athayde M.L. de Menezes I.R.A. Fachinetto R. Silymarin has antioxidant potential and changes the activity of Na+/K+-ATPase and monoamine oxidase in vitro. Ind. Crops Prod. 2015 70 347 355 10.1016/j.indcrop.2015.03.060
    [Google Scholar]
  121. Kashyap D. Garg V.K. Tuli H.S. Yerer M.B. Sak K. Sharma A.K. Kumar M. Aggarwal V. Sandhu S.S. Fisetin and quercetin: Promising flavonoids with chemopreventive potential. Biomolecules 2019 9 5 174 10.3390/biom9050174 31064104
    [Google Scholar]
  122. Khan N. Syed D.N. Ahmad N. Mukhtar H. Fisetin: A dietary antioxidant for health promotion. Antioxid. Redox Signal. 2013 19 2 151 162 10.1089/ars.2012.4901 23121441
    [Google Scholar]
  123. Yang W. Tian Z.K. Yang H.X. Feng Z.J. Sun J.M. Jiang H. Cheng C. Ming Q.L. Liu C.M. Fisetin improves lead-induced neuroinflammation, apoptosis and synaptic dysfunction in mice associated with the AMPK/SIRT1 and autophagy pathway. Food Chem. Toxicol. 2019 134 110824 10.1016/j.fct.2019.110824 31539617
    [Google Scholar]
  124. Wang T.H. Wang S.Y. Wang X.D. Jiang H.Q. Yang Y.Q. Wang Y. Cheng J.L. Zhang C.T. Liang W.W. Feng H.L. Fisetin exerts antioxidant and neuroprotective effects in multiple mutant hSOD1 models of amyotrophic lateral sclerosis by activating ERK. Neuroscience 2018 379 152 166 10.1016/j.neuroscience.2018.03.008 29559385
    [Google Scholar]
  125. Astaxanthin: A review of the literature. 2022 Available from: https://www.naturalmedicinejournal.com/journal/astaxanthin-review-literature
  126. Fakhri S. Abbaszadeh F. Dargahi L. Jorjani M. Astaxanthin: A mechanistic review on its biological activities and health benefits. Pharmacol. Res. 2018 136 1 20 10.1016/j.phrs.2018.08.012 30121358
    [Google Scholar]
  127. Donoso A. González-Durán J. Muñoz A.A. González P.A. Agurto-Muñoz C. Therapeutic uses of natural astaxanthin: An evidence-based review focused on human clinical trials. Pharmacol. Res. 2021 166 105479 10.1016/j.phrs.2021.105479 33549728
    [Google Scholar]
  128. Chang Y. Lu C.W. Chen Y.J. Lin T.Y. Huang S.K. Wang S.J. Astaxanthin protects against kainic acid-induced seizures and pathological consequences. Neurochem. Int. 2018 116 85 94 10.1016/j.neuint.2018.02.008 29475038
    [Google Scholar]
  129. Loganathan C. Sakayanathan P. Thayumanavan P. Astaxanthin-s-allyl cysteine diester against high glucose-induced neuronal toxicity in vitro and diabetes-associated cognitive decline in vivo: Effect on p53, oxidative stress and mitochondrial function. Neurotoxicology 2021 86 114 124 10.1016/j.neuro.2021.07.007 34339762
    [Google Scholar]
  130. Imran M. Ghorat F. Ul-Haq I. Ur-Rehman H. Aslam F. Heydari M. Shariati M.A. Okuskhanova E. Yessimbekov Z. Thiruvengadam M. Hashempur M.H. Rebezov M. Lycopene as a natural antioxidant used to prevent human health disorders. Antioxidants 2020 9 8 706 10.3390/antiox9080706 32759751
    [Google Scholar]
  131. Paul R. Mazumder M.K. Nath J. Deb S. Paul S. Bhattacharya P. Borah A. Lycopene - A pleiotropic neuroprotective nutraceutical: Deciphering its therapeutic potentials in broad spectrum neurological disorders. Neurochem. Int. 2020 140 May 104823 10.1016/j.neuint.2020.104823 32827559
    [Google Scholar]
  132. Chang C.W. Wang C.Y. Wu Y.T. Hsu M.C. Enhanced solubility, dissolution, and absorption of lycopene by a solid dispersion technique: The dripping pill delivery system. Powder Technol. 2016 301 641 648 10.1016/j.powtec.2016.07.013
    [Google Scholar]
  133. Ashraf W. Latif A. Lianfu Z. Jian Z. Chenqiang W. Rehman A. Hussain A. Siddiquy M. Karim A. Technological advancement in the processing of lycopene: A review. Food Rev. Int. 2022 38 5 857 883 10.1080/87559129.2020.1749653
    [Google Scholar]
  134. Mirahmadi M. Azimi-Hashemi S. Saburi E. Kamali H. Pishbin M. Hadizadeh F. Potential inhibitory effect of lycopene on prostate cancer. Biomed. Pharmacother. 2020 129 110459 10.1016/j.biopha.2020.110459 32768949
    [Google Scholar]
  135. Kumar P. Kumar A. Effect of lycopene and epigallocatechin-3-gallate against 3-nitropropionic acid induced cognitive dysfunction and glutathione depletion in rat: A novel nitric oxide mechanism. Food Chem. Toxicol. 2009 47 10 2522 2530 10.1016/j.fct.2009.07.011 19616597
    [Google Scholar]
  136. Qu M. Ni Y. Guo B. Feng X. Jiang Z. Lycopene antagonizes lead toxicity by reducing mitochondrial oxidative damage and mitochondria‐mediated apoptosis in cultured hippocampal neurons. MedComm 2020 1 2 228 239 10.1002/mco2.17 34766121
    [Google Scholar]
  137. Li F. Xiang H. Lu J. Chen Z. Huang C. Yuan X. Lycopene ameliorates PTSD-like behaviors in mice and rebalances the neuroinflammatory response and oxidative stress in the brain. Physiol. Behav. 2020 224 113026 10.1016/j.physbeh.2020.113026 32592701
    [Google Scholar]
  138. Zhang H. Wei M. Sun Q. Yang T. Lu X. Feng X. Song M. Cui L. Fan H. Lycopene ameliorates chronic stress-induced hippocampal injury and subsequent learning and memory dysfunction through inhibiting ROS/JNK signaling pathway in rats. Food Chem. Toxicol. 2020 145 111688 10.1016/j.fct.2020.111688 32810585
    [Google Scholar]
  139. Shi J. Li J. Xu Z. Chen L. Luo R. Zhang C. Gao F. Zhang J. Fu C. Celastrol: A review of useful strategies overcoming its limitation in anticancer application. Front. Pharmacol. 2020 11 November 558741 10.3389/fphar.2020.558741 33364939
    [Google Scholar]
  140. Xu S. Feng Y. He W. Xu W. Xu W. Yang H. Li X. Celastrol in metabolic diseases: Progress and application prospects. Pharmacol. Res. 2021 167 March 105572 10.1016/j.phrs.2021.105572 33753246
    [Google Scholar]
  141. Schiavone S. Morgese M.G. Tucci P. Trabace L. The therapeutic potential of celastrol in central nervous system disorders: Highlights from in vitro and in vivo approaches. Molecules 2021 26 15 4700 10.3390/molecules26154700 34361850
    [Google Scholar]
  142. Zhang C. Wang R. Liu Z. Bunker E. Lee S. Giuntini M. Chapnick D. Liu X. The plant triterpenoid celastrol blocks PINK1-dependent mitophagy by disrupting PINK1's association with the mitochondrial protein TOM20. J. Biol. Chem. 2019 294 18 7472 7487 10.1074/jbc.RA118.006506 30885942
    [Google Scholar]
  143. Zhang Y.Q. Sarge K.D. Celastrol inhibits polyglutamine aggregation and toxicity though induction of the heat shock response. J. Mol. Med. 2007 85 12 1421 1428 10.1007/s00109‑007‑0251‑9 17943263
    [Google Scholar]
  144. Cleren C. Calingasan N.Y. Chen J. Beal M.F. Celastrol protects against MPTP‐ and 3‐nitropropionic acid‐induced neurotoxicity. J. Neurochem. 2005 94 4 995 1004 10.1111/j.1471‑4159.2005.03253.x 16092942
    [Google Scholar]
  145. Johri A. Beal M.F. Antioxidants in Huntington’s disease. Biochim. Biophys. Acta 2012 1822 5 664 674 10.1016/j.bbadis.2011.11.014 22138129
    [Google Scholar]
  146. Molz P. Schröder N. Potential therapeutic effects of lipoic acid on memory deficits related to aging and neurodegeneration. Front. Pharmacol. 2017 8 DEC 849 10.3389/fphar.2017.00849 29311912
    [Google Scholar]
  147. Farhat D. Lincet H. Lipoic acid a multi-level molecular inhibitor of tumorigenesis. Biochim. Biophys. Acta Rev. Cancer 2020 1873 1 188317 10.1016/j.bbcan.2019.188317 31669587
    [Google Scholar]
  148. Salehi B. Berkay Yılmaz Y. Antika G. Boyunegmez Tumer T. Fawzi Mahomoodally M. Lobine D. Akram M. Riaz M. Capanoglu E. Sharopov F. Martins N. Cho W.C. Sharifi-Rad J. Insights on the use of α-Lipoic acid for therapeutic purposes. Biomolecules 2019 9 8 356 10.3390/biom9080356 31405030
    [Google Scholar]
  149. Mehrotra A. Kanwal A. Banerjee S.K. Sandhir R. Mitochondrial modulators in experimental Huntington’s disease: Reversal of mitochondrial dysfunctions and cognitive deficits. Neurobiol. Aging 2015 36 6 2186 2200 10.1016/j.neurobiolaging.2015.02.004 25976011
    [Google Scholar]
  150. Olson K.R. Briggs A. Devireddy M. Xian M. Gao Y. Are the beneficial effects of ‘antioxidant’ lipoic acid mediated through metabolism of reactive sulfur species? Free Radic. Biol. Med. 2020 146 139 149 10.1016/j.freeradbiomed.2019.10.410 31676393
    [Google Scholar]
  151. Azhar M.K. Anwar S. Hasan G.M. Shamsi A. Islam A. Parvez S. Hassan M.I. Comprehensive insights into biological roles of rosmarinic acid: Implications in diabetes, cancer and neurodegenerative diseases. Nutrients 2023 15 19 4297 10.3390/nu15194297 37836581
    [Google Scholar]
  152. Kosmopoulou D. Lafara M.P. Adamantidi T. Ofrydopoulou A. Grabrucker A.M. Tsoupras A. Neuroprotective benefits of Rosmarinus officinalis and its bioactives against Alzheimer’s and Parkinson’s diseases. Appl. Sci. 2024 4 15 6417 10.3390/app14156417
    [Google Scholar]
  153. Gadade D.D. Sareen R. Jain N. Shah K. Kumar V. Modi A. Chauhan N.S. Pharmacology of natural bioactive compounds used for management of Huntington diseases: An overview. Brain Behavior and Immunity Integrative 2024 8 100091 10.1016/j.bbii.2024.100091
    [Google Scholar]
  154. Chen Y. Xu R. Liu Q. Zeng Y. Chen W. Liu Y. Cao Y. Liu G. Chen Y. Rosmarinic acid ameliorated oxidative stress, neuronal injuries, and mitochondrial dysfunctions mediated by polyglutamine and ɑ-synuclein in Caenorhabditis elegans models. Mol. Neurobiol. 2024 61 12 10138 10158 10.1007/s12035‑024‑04206‑4 38703342
    [Google Scholar]
  155. Kola A. Vigni G. Lamponi S. Valensin D. Protective contribution of rosmarinic acid in rosemary extract against copper-induced oxidative stress. Antioxidants 2024 13 11 1419 10.3390/antiox13111419 39594560
    [Google Scholar]
  156. Pupyshev A.B. Klyushnik T.P. Akopyan A.A. Singh S.K. Tikhonova M.A. Disaccharide trehalose in experimental therapies for neurodegenerative disorders: Molecular targets and translational potential. Pharmacol. Res. 2022 183 106373 10.1016/j.phrs.2022.106373 35907433
    [Google Scholar]
  157. Salman A. Eid A.H. Khalaf S.S. El-Dessouki A.M. El-Shiekh R.A. Aly S.H. Natural products proposed for the management of Huntington’s disease (HD): A comprehensive review. Naunyn Schmiedebergs Arch. Pharmacol. 2025 10.1007/s00210‑025‑04444‑w 40676294
    [Google Scholar]
  158. González-Guevara E. Martínez-Gopar P.E. Sánchez-Mendoza A. Angeles-López Q.D. López-Orozco D. Tristán-López L. El-Hafidi M. Becerril-Cavazos M.D. Peña-Segura C. Silva-Islas C.A. Pérez-Severiano F. Avocado oil prevents neurological and behavioral alterations in a quinolinic acid-induced model of Huntington’s disease. Neurochem. Res. 2025 50 4 249 10.1007/s11064‑025‑04496‑7 40705210
    [Google Scholar]
  159. Chatterjee A. Kumar S. Roy Sarkar S. Halder R. Kumari R. Banerjee S. Sarkar B. Dietary polyphenols represent a phytotherapeutic alternative for gut dysbiosis associated neurodegeneration: A systematic review. J. Nutr. Biochem. 2024 129 109622 10.1016/j.jnutbio.2024.109622 38490348
    [Google Scholar]
  160. Fotoohi A. Moloudi M.R. Hosseini S. Hassanzadeh K. Feligioni M. Izadpanah E. A novel pharmacological protective role for safranal in an animal model of Huntington’s disease. Neurochem. Res. 2021 46 6 1372 1379 10.1007/s11064‑021‑03271‑8 33611726
    [Google Scholar]
  161. Zhou Y. Zhu L. Li H. Xie W. Liu J. Zhang Y. Li Y. Wang C. In vivo and in vitro neuroprotective effects of maca polysaccharide. Front. Biosci. 2022 27 1 8 10.31083/j.fbl2701008 35090313
    [Google Scholar]
  162. He R. He F. Hu Z. He Y. Zeng X. Liu Y. Tang L. Xiang J. Li J. He B. Xiang Q. Analysis of potential mechanism of herbal formula Taohong Siwu decoction against vascular dementia based on network pharmacology and molecular docking. BioMed Res. Int. 2023 2023 1 1235552 10.1155/2023/1235552 36726841
    [Google Scholar]
  163. Shtilbans A. Combination supplement therapy: A new frontier in treatment of neurodegenerative diseases. J. Nutr. 2025 155 9 2811 2824 10.1016/j.tjnut.2025.07.004 40675338
    [Google Scholar]
  164. Goyal R. Mittal P. Gautam R.K. Kamal M.A. Perveen A. Garg V. Alexiou A. Saboor M. Haque S. Farhana A. Papadakis M. Ashraf G.M. Natural products in the management of neurodegenerative diseases. Nutr. Metab. 2024 21 1 26 10.1186/s12986‑024‑00800‑4 38755627
    [Google Scholar]
  165. Araldi R.P. Dias Pinto J.R. Kerkis I. AI-enhanced transcriptomic discovery of druggable targets and repurposed therapies for Huntington’s disease. Brain Sci. 2025 15 8 865 10.3390/brainsci15080865 40867198
    [Google Scholar]
  166. Ferguson M.W. Kennedy C.J. Palpagama T.H. Waldvogel H.J. Faull R.L.M. Kwakowsky A. Current and possible future therapeutic options for Huntington’s disease. J. Cent. Nerv. Syst. Dis. 2022 14 11795735221092517 10.1177/11795735221092517 35615642
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266435937251206080106
Loading
/content/journals/ctmc/10.2174/0115680266435937251206080106
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test