Skip to content
2000
image of Role of Oxidative Stress in Human Neurodegenerative Pathologies: Lessons from the Drosophila Model

Abstract

Oxidative stress plays a critical role in many diseases, making it essential to study its impact on disease progression. However, clinical trials have many limitations and, in some cases, may not be possible at all. In this case, the development of models is highly anticipated. This is especially relevant for neurodegenerative diseases. models have a number of advantages over many other animal models, including the availability and cost-effectiveness of breeding, the accumulated knowledge of the genome, and the ability to manipulate a large number of individuals. The latter allows for rapid screening and in-depth studies of potential therapeutic agents, including natural compounds with antioxidant activity. This review describes genetic models of such pathologies as Parkinson’s disease, Huntington’s disease, Alzheimer’s disease and hereditary spastic paraplegia created on Studies conducted on such models are presented with an emphasis on the role of oxidative stress analysis. Oxidative stress is proven to be a link between neurodegenerative and metabolic diseases. In addition, studies on have been analyzed, in which the prospects of natural compounds as therapeutic agents for neurodegenerative and metabolic diseases have been demonstrated.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266356916250729040245
2025-10-29
2025-11-01
Loading full text...

Full text loading...

References

  1. Nittari G. Roy P. Martinelli I. Bellitto V. Tomassoni D. Traini E. Tayebati S. Amenta F. Rodent models of Huntington’s disease: An overview. Biomedicines 2023 11 12 3331 10.3390/biomedicines11123331 38137552
    [Google Scholar]
  2. Odnokoz O. Nakatsuka K. Wright C. Castellanos J. Klichko V.I. Kretzschmar D. Orr W.C. Radyuk S.N. Mitochondrial Redox Signaling Is Critical to the Normal Functioning of the Neuronal System. Front. Cell Dev. Biol. 2021 9 613036 10.3389/fcell.2021.613036 33585478
    [Google Scholar]
  3. Nithianandam V. Sarkar S. Feany M.B. Pathways controlling neurotoxicity and proteostasis in mitochondrial complex I deficiency. Hum. Mol. Genet. 2024 33 10 860 871 10.1093/hmg/ddae018 38324746
    [Google Scholar]
  4. Liguori I. Russo G. Curcio F. Bulli G. Aran L. Della-Morte D. Gargiulo G. Testa G. Cacciatore F. Bonaduce D. Abete P. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018 13 757 772 10.2147/CIA.S158513 29731617
    [Google Scholar]
  5. Goguel V. Belair A.L. Ayaz D. Lampin-Saint-Amaux A. Scaplehorn N. Hassan B.A. Preat T. Drosophila amyloid precursor protein-like is required for long-term memory. J. Neurosci. 2011 31 3 1032 1037 10.1523/JNEUROSCI.2896‑10.2011 21248128
    [Google Scholar]
  6. Fortini M.E. Bonini N.M. Modeling human neurodegenerative diseases in Drosophila: On a wing and a prayer. Trends Genet. 2000 16 4 161 167 10.1016/S0168‑9525(99)01939‑3 10729831
    [Google Scholar]
  7. Reiter L.T. Potocki L. Chien S. Gribskov M. Bier E. A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res. 2001 11 6 1114 1125 10.1101/gr.169101 11381037
    [Google Scholar]
  8. Brand A.H. Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 1993 118 2 401 415 10.1242/dev.118.2.401 8223268
    [Google Scholar]
  9. Millet-Boureima C. Ennis C.C. Jamison J. McSweeney S. Park A. Gamberi C. Empowering Melatonin Therapeutics with Drosophila Models. Diseases 2021 9 4 67 10.3390/diseases9040067 34698120
    [Google Scholar]
  10. Andretic R. Kim Y.C. Jones F.S. Han K.A. Greenspan R.J. Drosophila D1 dopamine receptor mediates caffeine-induced arousal. Proc. Natl. Acad. Sci. USA 2008 105 51 20392 20397 10.1073/pnas.0806776105 19074291
    [Google Scholar]
  11. Rothenfluh A. Heberlein U. Drugs, flies, and videotape: The effects of ethanol and cocaine on Drosophila locomotion. Curr. Opin. Neurobiol. 2002 12 6 639 645 10.1016/S0959‑4388(02)00380‑X 12490253
    [Google Scholar]
  12. Satta R. Dimitrijevic N. Manev H. Drosophila metabolize 1,4-butanediol into γ-hydroxybutyric acid in vivo. Eur. J. Pharmacol. 2003 473 2-3 149 152 10.1016/S0014‑2999(03)01993‑9 12892832
    [Google Scholar]
  13. Golomidov I. Bolshakova O. Komissarov A. Sharoyko V. Slepneva E. Slobodina A. Latypova E. Zherebyateva O. Tennikova T. Sarantseva S. The neuroprotective effect of fullerenols on a model of Parkinson’s disease in Drosophila melanogaster. Biochem. Biophys. Res. Commun. 2020 523 2 446 451 10.1016/j.bbrc.2019.12.075 31879013
    [Google Scholar]
  14. Slobodina A.D. Bolshakova O.I. Komissarov A.E. Surina N.V. Landa S.B. Melent’ev P.A. Sarantseva S.V. Study of the Neuroprotective Properties of Fullerenol C60(OH)30 with a Model of Alzheimer’s Disease. Nanotechnol. Russ. 2020 15 2 212 217 10.1134/S1995078020020184
    [Google Scholar]
  15. Bolshakova O.I. Borisenkova A.A. Golomidov I.M. Komissarov A.E. Slobodina A.D. Ryabova E.V. Ryabokon I.S. Latypova E.M. Slepneva E.E. Sarantseva S.V. Fullerenols prevent neuron death and reduce oxidative stress in Drosophila Huntington’s disease model. Cells 2022 12 1 170 10.3390/cells12010170 36611963
    [Google Scholar]
  16. Nukala K.M. Lilienthal A.J. Lye S.H. Bassuk A.G. Chtarbanova S. Manak J.R. Downregulation of oxidative stress-mediated glial innate immune response suppresses seizures in a fly epilepsy model. Cell Rep. 2023 42 1 112004 10.1016/j.celrep.2023.112004 36641750
    [Google Scholar]
  17. Rebelo A.P. Eidhof I. Cintra V.P. Guillot-Noel L. Pereira C.V. Timmann D. Traschütz A. Schöls L. Coarelli G. Durr A. Anheim M. Tranchant C. van de Warrenburg B. Guissart C. Koenig M. Howell J. Moraes C.T. Schenck A. Stevanin G. Züchner S. Synofzik M. Biallelic loss-of-function variations in PRDX3 cause cerebellar ataxia. Brain 2021 144 5 1467 1481 10.1093/brain/awab071 33889951
    [Google Scholar]
  18. Zhuravlev A.V. Vetrovoy O.V. Savvateeva-Popova E.V. Enzymatic and non-enzymatic pathways of kynurenines’ dimerization: The molecular factors for oxidative stress development. PLOS Comput. Biol. 2018 14 12 e1006672 10.1371/journal.pcbi.1006672 30532237
    [Google Scholar]
  19. Tzou F.Y. Su T.Y. Lin W.S. Kuo H.C. Yu Y.L. Yeh Y.H. Liu C.C. Kuo C.H. Huang S.Y. Chan C.C. Dihydroceramide desaturase regulates the compartmentalization of Rac1 for neuronal oxidative stress. Cell Rep. 2021 35 2 108972 10.1016/j.celrep.2021.108972 33852856
    [Google Scholar]
  20. Zhuravlev A.V. Vetrovoy O.V. Ivanova P.N. Savvateeva-Popova E.V. 3-Hydroxykynurenine in regulation of Drosophila Behavior: The novel mechanisms for Cardinal phenotype manifestations. Front. Physiol. 2020 11 971 10.3389/fphys.2020.00971 32848886
    [Google Scholar]
  21. Zhuravlev A.V. Ivanova P.N. Makaveeva K.A. Zakharov G.A. Nikitina E.A. Savvateeva-Popova E.V. cd1 mutation in Drosophila affects phenoxazinone synthase catalytic site and impairs long-term memory. Int. J. Mol. Sci. 2022 23 20 12356 10.3390/ijms232012356 36293213
    [Google Scholar]
  22. Abaquita T.A.L. Damulewicz M. Tylko G. Pyza E. The dual role of heme oxygenase in regulating apoptosis in the nervous system of Drosophila melanogaster. Front. Physiol. 2023 14 1060175 10.3389/fphys.2023.1060175 36860519
    [Google Scholar]
  23. Pohl F. Kong Thoo Lin P. The potential use of plant natural products and plant extracts with antioxidant properties for the prevention/treatment of neurodegenerative diseases: In vitro, in vivo and clinical trials. Molecules 2018 23 12 3283 10.3390/molecules23123283 30544977
    [Google Scholar]
  24. Golubev D. Platonova E. Zemskaya N. Shevchenko O. Shaposhnikov M. Nekrasova P. Patov S. Ibragimova U. Valuisky N. Borisov A. Zhukova X. Sorokina S. Litvinov R. Moskalev A. Berberis vulgaris L. extract supplementation exerts regulatory effects on the lifespan and healthspan of Drosophila through its antioxidant activity depending on the sex. Biogerontology 2024 25 3 507 528 10.1007/s10522‑023‑10083‑6 38150086
    [Google Scholar]
  25. Johnmark N. Kinyi H.W. Amaranth leaf extract protects against hydrogen peroxide induced oxidative stress in Drosophila melanogaster. BMC Res. Notes 2021 14 1 188 10.1186/s13104‑021‑05603‑x 34001252
    [Google Scholar]
  26. Yang K. Li Q. Zhang G. Ma C. Dai X. The protective effects of carrageenan oligosaccharides on intestinal oxidative stress damage of female Drosophila melanogaster. Antioxid 2021 10 12 1996 10.3390/antiox10121996 34943099
    [Google Scholar]
  27. Wang L. Zhang G. Li Q. Lu F. Yang K. Dai X. Carrageenan oligosaccharide alleviates intestinal damage via gut microflora through activating IMD/relish pathway in female Drosophila melanogaster. FASEB J. 2024 38 3 e23455 10.1096/fj.202301218R 38308636
    [Google Scholar]
  28. Ma C. Li Q. Dai X. Carrageenan oligosaccharides extend life span and health span in male Drosophila Melanogaster by modulating antioxidant activity, immunity, and gut microbiota. J. Med. Food 2021 24 1 101 109 10.1089/jmf.2019.4663 33449862
    [Google Scholar]
  29. Dai X. Zhang Q. Zhang G. Ma C. Zhang R. Protective effect of agar oligosaccharide on male Drosophila melanogaster suffering from oxidative stress via intestinal microflora activating the Keap1-Nrf2 signaling pathway. Carbohydr. Polym. 2023 313 120878 10.1016/j.carbpol.2023.120878 37182968
    [Google Scholar]
  30. Zhang G. Gu Y. Dai X. Protective effect of bilberry anthocyanin extracts on dextran sulfate sodium-induced intestinal damage in Drosophila melanogaster. Nutrients 2022 14 14 2875 10.3390/nu14142875 35889832
    [Google Scholar]
  31. Adebowale A. Oyaluna Z. Falobi A.A. Abolaji A.O. Olaiya C.O. Ojo O.O. Magainin-AM2 inhibits sucrose-induced hyperglycaemia, oxidative stress, and cognitive dysfunction in Drosophila melanogaster. Free Radic. Biol. Med. 2024 222 414 423 10.1016/j.freeradbiomed.2024.06.028 38964592
    [Google Scholar]
  32. Wang L. Zhang C. Fan S. Wang J. Zhou W. Zhou Z. Liu Y. Wang Q. Liu W. Dai X. Chitosan oligosaccharide improves intestinal homeostasis to achieve the protection for the epithelial barrier of female Drosophila melanogastervia regulating intestinal microflora. Microbiol. Spectr. 2024 12 4 e03639 e23 10.1128/spectrum.03639‑23 38411050
    [Google Scholar]
  33. Güneş E. Nizamlıoğlu H.F. The antioxidant effect of chitosan on virgin and mated Drosophila females. Carbohydr Polym. Technol Appl. 2023 5 100297 10.1016/j.carpta.2023.100297
    [Google Scholar]
  34. Hardiyanti W. Djabir Y.Y. Fatiah D. Pratama M.R. Putri T.Z.A.D. Chaeratunnisa R. Latada N.P. Mudjahid M. Asri R.M. Nainu F. Evaluating the impact of vitamin D 3 on NF-κB and JAK/STAT signaling pathways in Drosophila melanogaster. ACS Omega 2024 9 18 20135 20141 10.1021/acsomega.4c00134 38737056
    [Google Scholar]
  35. Le T.D. Inoue Y.H. Sesamin activates Nrf2/Cnc-dependent transcription in the absence of oxidative stress in Drosophila adult brains. Antioxid 2021 10 6 924 10.3390/antiox10060924 34200419
    [Google Scholar]
  36. Karimi-Moghadam A. Charsouei S. Bell B. Jabalameli M.R. Parkinson disease from mendelian forms to genetic susceptibility: New molecular insights into the neurodegeneration process. Cell. Mol. Neurobiol. 2018 38 6 1153 1178 10.1007/s10571‑018‑0587‑4 29700661
    [Google Scholar]
  37. Loeb V. Yakunin E. Saada A. Sharon R. The transgenic overexpression of alpha-synuclein and not its related pathology associates with complex I inhibition. J. Biol. Chem. 2010 285 10 7334 7343 10.1074/jbc.M109.061051 20053987
    [Google Scholar]
  38. Nakamura K. Nemani V.M. Azarbal F. Skibinski G. Levy J.M. Egami K. Munishkina L. Zhang J. Gardner B. Wakabayashi J. Sesaki H. Cheng Y. Finkbeiner S. Nussbaum R.L. Masliah E. Edwards R.H. Direct membrane association drives mitochondrial fission by the Parkinson disease-associated protein alpha-synuclein. J. Biol. Chem. 2011 286 23 20710 20726 10.1074/jbc.M110.213538 21489994
    [Google Scholar]
  39. Grassi D. Howard S. Zhou M. Diaz-Perez N. Urban N.T. Guerrero-Given D. Kamasawa N. Volpicelli-Daley L.A. LoGrasso P. Lasmézas C.I. Identification of a highly neurotoxic α-synuclein species inducing mitochondrial damage and mitophagy in Parkinson’s disease. Proc. Natl. Acad. Sci. USA 2018 115 11 E2634 E2643 10.1073/pnas.1713849115 29487216
    [Google Scholar]
  40. Choubey V. Safiulina D. Vaarmann A. Cagalinec M. Wareski P. Kuum M. Zharkovsky A. Kaasik A. Mutant A53T alpha-synuclein induces neuronal death by increasing mitochondrial autophagy. J. Biol. Chem. 2011 286 12 10814 10824 10.1074/jbc.M110.132514 21252228
    [Google Scholar]
  41. Paillusson S. Gomez-Suaga P. Stoica R. Little D. Gissen P. Devine M.J. Noble W. Hanger D.P. Miller C.C.J. α-Synuclein binds to the ER–mitochondria tethering protein VAPB to disrupt Ca2+ homeostasis and mitochondrial ATP production. Acta Neuropathol. 2017 134 1 129 149 10.1007/s00401‑017‑1704‑z 28337542
    [Google Scholar]
  42. Hur E.M. Lee B.D. LRRK2 at the crossroad of aging and Parkinson’s disease. Genes 2021 12 4 505 10.3390/genes12040505 33805527
    [Google Scholar]
  43. Singh A. Zhi L. Zhang H. LRRK2 and mitochondria: Recent advances and current views. Brain Res. 2019 1702 96 104 10.1016/j.brainres.2018.06.010 29894679
    [Google Scholar]
  44. Ho P.W.L. Leung C.T. Liu H. Pang S.Y.Y. Lam C.S.C. Xian J. Li L. Kung M.H.W. Ramsden D.B. Ho S.L. Age-dependent accumulation of oligomeric SNCA/α-synuclein from impaired degradation in mutant LRRK2 knockin mouse model of Parkinson disease: Role for therapeutic activation of chaperone-mediated autophagy (CMA). Autophagy 2020 16 2 347 370 10.1080/15548627.2019.1603545 30983487
    [Google Scholar]
  45. Heo H.Y. Park J.M. Kim C.H. Han B.S. Kim K.S. Seol W. LRRK2 enhances oxidative stress-induced neurotoxicity via its kinase activity. Exp. Cell Res. 2010 316 4 649 656 10.1016/j.yexcr.2009.09.014 19769964
    [Google Scholar]
  46. Angeles D.C. Gan B.H. Onstead L. Zhao Y. Lim K.L. Dachsel J. Melrose H. Farrer M. Wszolek Z.K. Dickson D.W. Tan E.K. Mutations in LRRK2 increase phosphorylation of peroxiredoxin 3 exacerbating oxidative stress-induced neuronal death. Hum. Mutat. 2011 32 12 1390 1397 10.1002/humu.21582 21850687
    [Google Scholar]
  47. Qing H. Wong W. McGeer E.G. McGeer P.L. Lrrk2 phosphorylates alpha synuclein at serine 129: Parkinson disease implications. Biochem. Biophys. Res. Commun. 2009 387 1 149 152 10.1016/j.bbrc.2009.06.142 19576176
    [Google Scholar]
  48. Guerreiro P.S. Huang Y. Gysbers A. Cheng D. Gai W.P. Outeiro T.F. Halliday G.M. LRRK2 interactions with α-synuclein in Parkinson’s disease brains and in cell models. J. Mol. Med. (Berl.) 2013 91 4 513 522 10.1007/s00109‑012‑0984‑y 23183827
    [Google Scholar]
  49. O’Hara D.M. Pawar G. Kalia S.K. Kalia L.V. LRRK2 and α-Synuclein: Distinct or synergistic players in Parkinson’s disease? Front. Neurosci. 2020 14 577 10.3389/fnins.2020.00577 32625052
    [Google Scholar]
  50. Zimprich A. Benet-Pagès A. Struhal W. Graf E. Eck S.H. Offman M.N. Haubenberger D. Spielberger S. Schulte E.C. Lichtner P. Rossle S.C. Klopp N. Wolf E. Seppi K. Pirker W. Presslauer S. Mollenhauer B. Katzenschlager R. Foki T. Hotzy C. Reinthaler E. Harutyunyan A. Kralovics R. Peters A. Zimprich F. Brücke T. Poewe W. Auff E. Trenkwalder C. Rost B. Ransmayr G. Winkelmann J. Meitinger T. Strom T.M. A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. Am. J. Hum. Genet. 2011 89 1 168 175 10.1016/j.ajhg.2011.06.008 21763483
    [Google Scholar]
  51. Sassone J. Reale C. Dati G. Regoni M. Pellecchia M.T. Garavaglia B. The role of VPS35 in the pathobiology of Parkinson’s disease. Cell. Mol. Neurobiol. 2021 41 2 199 227 10.1007/s10571‑020‑00849‑8 32323152
    [Google Scholar]
  52. Lesage S. Lunati A. Houot M. Romdhan S.B. Clot F. Tesson C. Mangone G. Toullec B.L. Courtin T. Larcher K. Benmahdjoub M. Arezki M. Bouhouche A. Anheim M. Roze E. Viallet F. Tison F. Broussolle E. Emre M. Hanagasi H. Bilgic B. Tazir M. Djebara M.B. Gouider R. Tranchant C. Vidailhet M. Le Guern E. Corti O. Mhiri C. Lohmann E. Singleton A. Corvol J.C. Brice A. Characterization of recessive Parkinson disease in a large multicenter study. Ann. Neurol. 2020 88 4 843 850 10.1002/ana.25787 33045815
    [Google Scholar]
  53. Borsche M. Pereira S.L. Klein C. Grünewald A. Mitochondria and Parkinson’s disease: Clinical, molecular, and translational aspects. J. Parkinsons Dis. 2021 11 1 45 60 10.3233/JPD‑201981 33074190
    [Google Scholar]
  54. Pereira S.L. Grossmann D. Delcambre S. Hermann A. Grünewald A. Novel insights into Parkin-mediated mitochondrial dysfunction and neuroinflammation in Parkinson’s disease. Curr. Opin. Neurobiol. 2023 80 102720 10.1016/j.conb.2023.102720 37023495
    [Google Scholar]
  55. Han R. Liu Y. Li S. Li X.J. Yang W. PINK1-PRKN mediated mitophagy: Differences between in vitro and in vivo models. Autophagy 2023 19 5 1396 1405 10.1080/15548627.2022.2139080 36282767
    [Google Scholar]
  56. Gautier C.A. Kitada T. Shen J. Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress. Proc. Natl. Acad. Sci. USA 2008 105 32 11364 11369 10.1073/pnas.0802076105 18687901
    [Google Scholar]
  57. Huang E. Qu D. Huang T. Rizzi N. Boonying W. Krolak D. Ciana P. Woulfe J. Klein C. Slack R.S. Figeys D. Park D.S. PINK1-mediated phosphorylation of LETM1 regulates mitochondrial calcium transport and protects neurons against mitochondrial stress. Nat. Commun. 2017 8 1 1399 10.1038/s41467‑017‑01435‑1 29123128
    [Google Scholar]
  58. Burbulla L.F. Song P. Mazzulli J.R. Zampese E. Wong Y.C. Jeon S. Santos D.P. Blanz J. Obermaier C.D. Strojny C. Savas J.N. Kiskinis E. Zhuang X. Krüger R. Surmeier D.J. Krainc D. Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson’s disease. Science 2017 357 6357 1255 1261 10.1126/science.aam9080 28882997
    [Google Scholar]
  59. Liu L. Han Y. Zhang Z. Wang Y. Hu Y. Kaznacheyeva E. Ding J. Guo D. Wang G. Li B. Ren H. Loss of DJ-1 function contributes to Parkinson’s disease pathogenesis in mice via RACK1-mediated PKC activation and MAO-B upregulation. Acta Pharmacol. Sin. 2023 44 10 1948 1961 10.1038/s41401‑023‑01104‑8 37225849
    [Google Scholar]
  60. De Lazzari F. Bubacco L. Whitworth A.J. Bisaglia M. Superoxide radical dismutation as new therapeutic strategy in Parkinson’s disease. Aging Dis. 2018 9 4 716 728 10.14336/AD.2017.1018 30090659
    [Google Scholar]
  61. Chen C. Turnbull D.M. Reeve A.K. Mitochondrial dysfunction in Parkinson’s disease—cause or consequence? Biology 2019 8 2 38 10.3390/biology8020038 31083583
    [Google Scholar]
  62. Bose A. Beal M.F. Mitochondrial dysfunction in Parkinson’s disease. J. Neurochem, 2016139 S1 216 231 (Suppl. 1) 10.1111/jnc.13731 27546335
    [Google Scholar]
  63. Bisaglia M. Filograna R. Beltramini M. Bubacco L. Are dopamine derivatives implicated in the pathogenesis of Parkinson’s disease? Ageing Res. Rev. 2014 13 107 114 10.1016/j.arr.2013.12.009 24389159
    [Google Scholar]
  64. Perier C. Bové J. Wu D.C. Dehay B. Choi D.K. Jackson-Lewis V. Rathke-Hartlieb S. Bouillet P. Strasser A. Schulz J.B. Przedborski S. Vila M. Two molecular pathways initiate mitochondria-dependent dopaminergic neurodegeneration in experimental Parkinson’s disease. Proc. Natl. Acad. Sci. USA 2007 104 19 8161 8166 10.1073/pnas.0609874104 17483459
    [Google Scholar]
  65. Mao Z. Davis R.L. Eight different types of dopaminergic neurons innervate the Drosophila mushroom body neuropil: Anatomical and physiological heterogeneity. Front. Neural Circuits 2009 3 5 10.3389/neuro.04.005.2009 19597562
    [Google Scholar]
  66. Whitworth A.J. Drosophila models of Parkinson’s disease. Adv. Genet. 2011 73 1 50 10.1016/B978‑0‑12‑380860‑8.00001‑X 21310293
    [Google Scholar]
  67. Hewitt V.L. Whitworth A.J. Mechanisms of Parkinson’s disease. Curr. Top. Dev. Biol. 2017 121 173 200 10.1016/bs.ctdb.2016.07.005 28057299
    [Google Scholar]
  68. Ludtmann M.H.R. Angelova P.R. Horrocks M.H. Choi M.L. Rodrigues M. Baev A.Y. Berezhnov A.V. Yao Z. Little D. Banushi B. Al-Menhali A.S. Ranasinghe R.T. Whiten D.R. Yapom R. Dolt K.S. Devine M.J. Gissen P. Kunath T. Jaganjac M. Pavlov E.V. Klenerman D. Abramov A.Y. Gandhi S. α-synuclein oligomers interact with ATP synthase and open the permeability transition pore in Parkinson’s disease. Nat. Commun. 2018 9 1 2293 10.1038/s41467‑018‑04422‑2 29895861
    [Google Scholar]
  69. Liu H. Koros C. Strohäker T. Schulte C. Bozi M. Varvaresos S. Ibáñez de Opakua A. Simitsi A.M. Bougea A. Voumvourakis K. Maniati M. Papageorgiou S.G. Hauser A.K. Becker S. Zweckstetter M. Stefanis L. Gasser T. A novel SNCA A30G mutation causes familial Parkinsonʼs disease. Mov. Disord. 2021 36 7 1624 1633 10.1002/mds.28534 33617693
    [Google Scholar]
  70. Golomidov I.M. Latypova E.M. Ryabova E.V. Bolshakova O.I. Komissarov A.E. Sarantseva S.V. Reduction of the α-synuclein expression promotes slowing down early neuropathology development in the Drosophila model of Parkinson’s disease. J. Neurogenet. 2022 36 1 1 10 10.1080/01677063.2022.2064462 35467466
    [Google Scholar]
  71. Sakai R. Suzuki M. Ueyama M. Takeuchi T. Minakawa E.N. Hayakawa H. Baba K. Mochizuki H. Nagai Y. E46K mutant α-synuclein is more degradation resistant and exhibits greater toxic effects than wild-type α-synuclein in Drosophila models of Parkinson’s disease. PLoS One 2019 14 6 e0218261 10.1371/journal.pone.0218261 31242217
    [Google Scholar]
  72. Siddique Y.H. Naz F. Jyoti S. Ali F. Rahul, Effect of genistein on the transgenic Drosophila model of Parkinson’s disease. J. Diet. Suppl. 2019 16 5 550 563 10.1080/19390211.2018.1472706 29969325
    [Google Scholar]
  73. Siddique Y.H. Naz F. Jyoti S. Fatima A. Khanam S. Rahul F. Ali F. Mujtaba S.F. Faisal M. Effect of Centella asiatica leaf extract on the dietary supplementation in transgenic Drosophila model of Parkinson’s disease. Parkinsons Dis. 2014 2014 1 11 10.1155/2014/262058 25538856
    [Google Scholar]
  74. Jahromi S.R. Haddadi M. Shivanandappa T. Ramesh S.R. Attenuation of neuromotor deficits by natural antioxidants of Decalepis hamiltonii in transgenic Drosophila model of Parkinson’s disease. Neuroscience 2015 293 136 150 10.1016/j.neuroscience.2015.02.048 25754960
    [Google Scholar]
  75. Trinh K. Moore K. Wes P.D. Muchowski P.J. Dey J. Andrews L. Pallanck L.J. Induction of the phase II detoxification pathway suppresses neuron loss in Drosophila models of Parkinson’s disease. J. Neurosci. 2008 28 2 465 472 10.1523/JNEUROSCI.4778‑07.2008 18184789
    [Google Scholar]
  76. Wassef R. Haenold R. Hansel A. Brot N. Heinemann S.H. Hoshi T. Methionine sulfoxide reductase A and a dietary supplement S-methyl-L-cysteine prevent Parkinson’s-like symptoms. J. Neurosci. 2007 27 47 12808 12816 10.1523/JNEUROSCI.0322‑07.2007 18032652
    [Google Scholar]
  77. Challis C. Hori A. Sampson T.R. Yoo B.B. Challis R.C. Hamilton A.M. Mazmanian S.K. Volpicelli-Daley L.A. Gradinaru V. Gut-seeded α-synuclein fibrils promote gut dysfunction and brain pathology specifically in aged mice. Nat. Neurosci. 2020 23 3 327 336 10.1038/s41593‑020‑0589‑7 32066981
    [Google Scholar]
  78. Kim S. Kwon S.H. Kam T.I. Panicker N. Karuppagounder S.S. Lee S. Lee J.H. Kim W.R. Kook M. Foss C.A. Shen C. Lee H. Kulkarni S. Pasricha P.J. Lee G. Pomper M.G. Dawson V.L. Dawson T.M. Ko H.S. Transneuronal propagation of pathologic α-Synuclein from the gut to the brain models Parkinson’s disease. Neuron 2019 103 4 627 641.e7 10.1016/j.neuron.2019.05.035 31255487
    [Google Scholar]
  79. Liu W. Lim K.L. Tan E.K. Intestine-derived α-synuclein initiates and aggravates pathogenesis of Parkinson’s disease in Drosophila. Transl. Neurodegener. 2022 11 1 44 10.1186/s40035‑022‑00318‑w 36253844
    [Google Scholar]
  80. Botella J.A. Bayersdorfer F. Schneuwly S. Superoxide dismutase overexpression protects dopaminergic neurons in a Drosophila model of Parkinson’s disease. Neurobiol. Dis. 2008 30 1 65 73 10.1016/j.nbd.2007.11.013 18243716
    [Google Scholar]
  81. Wang D. Tang B. Zhao G. Pan Q. Xia K. Bodmer R. Zhang Z. Dispensable role of Drosophila ortholog of LRRK2 kinase activity in survival of dopaminergic neurons. Mol. Neurodegener. 2008 3 1 3 10.1186/1750‑1326‑3‑3 18257932
    [Google Scholar]
  82. Dodson M.W. Leung L.K. Lone M. Lizzio M.A. Guo M. Novel ethyl methanesulfonate (EMS)-induced null alleles of the Drosophila homolog of LRRK2 reveal a crucial role in endolysosomal functions and autophagy in vivo. Dis. Model. Mech. 2014 7 12 1351 1363 25288684
    [Google Scholar]
  83. Lee S.B. Kim W. Lee S. Chung J. Loss of LRRK2/PARK8 induces degeneration of dopaminergic neurons in Drosophila. Biochem. Biophys. Res. Commun. 2007 358 2 534 539 10.1016/j.bbrc.2007.04.156 17498648
    [Google Scholar]
  84. De Rose F. Marotta R. Poddighe S. Talani G. Catelani T. Setzu M.D. Solla P. Marrosu F. Sanna E. Kasture S. Acquas E. Liscia A. Functional and morphological correlates in the drosophila LRRK2 loss-of-function model of Parkinson’s disease: Drug effects of withania somnifera (Dunal) administration. PLoS One 2016 11 1 e0146140 10.1371/journal.pone.0146140 26727265
    [Google Scholar]
  85. Casu M.A. Mocci I. Isola R. Pisanu A. Boi L. Mulas G. Greig N.H. Setzu M.D. Carta A.R. Neuroprotection by the immunomodulatory drug pomalidomide in the Drosophila LRRK2WD40 genetic model of Parkinson’s disease. Front. Aging Neurosci. 2020 12 31 10.3389/fnagi.2020.00031 32116655
    [Google Scholar]
  86. Imai Y. Gehrke S. Wang H.Q. Takahashi R. Hasegawa K. Oota E. Lu B. Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila. EMBO J. 2008 27 18 2432 2443 10.1038/emboj.2008.163 18701920
    [Google Scholar]
  87. Lin C.H. Tsai P.I. Wu R.M. Chien C.T. LRRK2 G2019S mutation induces dendrite degeneration through mislocalization and phosphorylation of tau by recruiting autoactivated GSK3ß. J. Neurosci. 2010 30 39 13138 13149 10.1523/JNEUROSCI.1737‑10.2010 20881132
    [Google Scholar]
  88. Liu Z. Wang X. Yu Y. Li X. Wang T. Jiang H. Ren Q. Jiao Y. Sawa A. Moran T. Ross C.A. Montell C. Smith W.W. A Drosophila model for LRRK2 -linked parkinsonism. Proc. Natl. Acad. Sci. USA 2008 105 7 2693 2698 10.1073/pnas.0708452105 18258746
    [Google Scholar]
  89. Ng C.H. Mok S.Z.S. Koh C. Ouyang X. Fivaz M.L. Tan E.K. Dawson V.L. Dawson T.M. Yu F. Lim K.L. Parkin protects against LRRK2 G2019S mutant-induced dopaminergic neurodegeneration in Drosophila. J. Neurosci. 2009 29 36 11257 11262 10.1523/JNEUROSCI.2375‑09.2009 19741132
    [Google Scholar]
  90. Venderova K. Kabbach G. Abdel-Messih E. Zhang Y. Parks R.J. Imai Y. Gehrke S. Ngsee J. LaVoie M.J. Slack R.S. Rao Y. Zhang Z. Lu B. Haque M.E. Park D.S. Leucine-rich repeat kinase 2 interacts with Parkin, DJ-1 and PINK-1 in a Drosophila melanogaster model of Parkinson’s disease. Hum. Mol. Genet. 2009 18 22 4390 4404 10.1093/hmg/ddp394 19692353
    [Google Scholar]
  91. Godena V.K. Brookes-Hocking N. Moller A. Shaw G. Oswald M. Sancho R.M. Miller C.C.J. Whitworth A.J. De Vos K.J. Increasing microtubule acetylation rescues axonal transport and locomotor deficits caused by LRRK2 Roc-COR domain mutations. Nat. Commun. 2014 5 1 5245 10.1038/ncomms6245 25316291
    [Google Scholar]
  92. Li T. Yang D. Sushchky S. Liu Z. Smith W.W. Models for LRRK2-Linked Parkinsonism. Parkinsons Dis. 2011 2011 1 16 10.4061/2011/942412 21603132
    [Google Scholar]
  93. Follett J. Bugarcic A. Yang Z. Ariotti N. Norwood S.J. Collins B.M. Parton R.G. Teasdale R.D. Parkinson disease-linked Vps35 R524W mutation impairs the endosomal association of retromer and induces α-Synuclein aggregation. J. Biol. Chem. 2016 291 35 18283 18298 10.1074/jbc.M115.703157 27385586
    [Google Scholar]
  94. Wang H. Toh J. Ho P. Tio M. Zhao Y. Tan E.K. In vivo evidence of pathogenicity of VPS35 mutations in the Drosophila. Mol. Brain 2014 7 1 73 10.1186/s13041‑014‑0073‑y 25288323
    [Google Scholar]
  95. MacLeod D.A. Rhinn H. Kuwahara T. Zolin A. Di Paolo G. McCabe B.D. Marder K.S. Honig L.S. Clark L.N. Small S.A. Abeliovich A. RAB7L1 interacts with LRRK2 to modify intraneuronal protein sorting and Parkinson’s disease risk. Neuron 2013 77 3 425 439 10.1016/j.neuron.2012.11.033 23395371
    [Google Scholar]
  96. Inoshita T. Arano T. Hosaka Y. Meng H. Umezaki Y. Kosugi S. Morimoto T. Koike M. Chang H.Y. Imai Y. Hattori N. Vps35 in cooperation with LRRK2 regulates synaptic vesicle endocytosis through the endosomal pathway in Drosophila. Hum. Mol. Genet. 2017 26 15 2933 2948 10.1093/hmg/ddx179 28482024
    [Google Scholar]
  97. Greene J.C. Whitworth A.J. Kuo I. Andrews L.A. Feany M.B. Pallanck L.J. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc. Natl. Acad. Sci. USA 2003 100 7 4078 4083 10.1073/pnas.0737556100 12642658
    [Google Scholar]
  98. Park J. Lee S.B. Lee S. Kim Y. Song S. Kim S. Bae E. Kim J. Shong M. Kim J.M. Chung J. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 2006 441 7097 1157 1161 10.1038/nature04788 16672980
    [Google Scholar]
  99. Clark I.E. Dodson M.W. Jiang C. Cao J.H. Huh J.R. Seol J.H. Yoo S.J. Hay B.A. Guo M. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 2006 441 7097 1162 1166 10.1038/nature04779 16672981
    [Google Scholar]
  100. Deng H. Dodson M.W. Huang H. Guo M. The Parkinson’s disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila. Proc. Natl. Acad. Sci. USA 2008 105 38 14503 14508 10.1073/pnas.0803998105 18799731
    [Google Scholar]
  101. Pollock L. Jardine J. Urbé S. Clague M.J. The PINK1 repertoire: Not just a one trick pony. BioEssays 2021 43 11 2100168 10.1002/bies.202100168 34617288
    [Google Scholar]
  102. Burchell V.S. Nelson D.E. Sanchez-Martinez A. Delgado-Camprubi M. Ivatt R.M. Pogson J.H. Randle S.J. Wray S. Lewis P.A. Houlden H. Abramov A.Y. Hardy J. Wood N.W. Whitworth A.J. Laman H. Plun-Favreau H. The Parkinson’s disease–linked proteins Fbxo7 and Parkin interact to mediate mitophagy. Nat. Neurosci. 2013 16 9 1257 1265 10.1038/nn.3489 23933751
    [Google Scholar]
  103. Verstreken P. Ly C.V. Venken K.J.T. Koh T.W. Zhou Y. Bellen H.J. Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions. Neuron 2005 47 3 365 378 10.1016/j.neuron.2005.06.018 16055061
    [Google Scholar]
  104. Poole A.C. Thomas R.E. Andrews L.A. McBride H.M. Whitworth A.J. Pallanck L.J. The PINK1/Parkin pathway regulates mitochondrial morphology. Proc. Natl. Acad. Sci. USA 2008 105 5 1638 1643 10.1073/pnas.0709336105 18230723
    [Google Scholar]
  105. Ziviani E. Tao R.N. Whitworth A.J. Drosophila Parkin requires PINK1 for mitochondrial translocation and ubiquitinates Mitofusin. Proc. Natl. Acad. Sci. USA 2010 107 11 5018 5023 10.1073/pnas.0913485107 20194754
    [Google Scholar]
  106. Twig G. Elorza A. Molina A.J.A. Mohamed H. Wikstrom J.D. Walzer G. Stiles L. Haigh S.E. Katz S. Las G. Alroy J. Wu M. Py B.F. Yuan J. Deeney J.T. Corkey B.E. Shirihai O.S. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 2008 27 2 433 446 10.1038/sj.emboj.7601963 18200046
    [Google Scholar]
  107. Vilain S. Esposito G. Haddad D. Schaap O. Dobreva M.P. Vos M. Van Meensel S. Morais V.A. De Strooper B. Verstreken P. The yeast complex I equivalent NADH dehydrogenase rescues pink1 mutants. PLoS Genet. 2012 8 1 e1002456 10.1371/journal.pgen.1002456 22242018
    [Google Scholar]
  108. Greene J.C. Whitworth A.J. Andrews L.A. Parker T.J. Pallanck L.J. Genetic and genomic studies of Drosophila parkin mutants implicate oxidative stress and innate immune responses in pathogenesis. Hum. Mol. Genet. 2005 14 6 799 811 10.1093/hmg/ddi074 15689351
    [Google Scholar]
  109. Pesah Y. Pham T. Burgess H. Middlebrooks B. Verstreken P. Zhou Y. Harding M. Bellen H. Mardon G. Drosophila parkin mutants have decreased mass and cell size and increased sensitivity to oxygen radical stress. Development 2004 131 9 2183 2194 10.1242/dev.01095 15073152
    [Google Scholar]
  110. Biosa A. Sanchez-Martinez A. Filograna R. Terriente-Felix A. Alam S.M. Beltramini M. Bubacco L. Bisaglia M. Whitworth A.J. Superoxide dismutating molecules rescue the toxic effects of PINK1 and parkin loss. Hum. Mol. Genet. 2018 27 9 1618 1629 10.1093/hmg/ddy069 29529199
    [Google Scholar]
  111. Whitworth A.J. Theodore D.A. Greene J.C. Beneš H. Wes P.D. Pallanck L.J. Increased glutathione S -transferase activity rescues dopaminergic neuron loss in a Drosophila model of Parkinson’s disease. Proc. Natl. Acad. Sci. USA 2005 102 22 8024 8029 10.1073/pnas.0501078102 15911761
    [Google Scholar]
  112. Bonilla-Ramirez L. Jimenez-Del-Rio M. Velez-Pardo C. Low doses of paraquat and polyphenols prolong life span and locomotor activity in knock-down parkin Drosophila melanogaster exposed to oxidative stress stimuli: Implication in autosomal recessive juvenile Parkinsonism. Gene 2013 512 2 355 363 10.1016/j.gene.2012.09.120 23046578
    [Google Scholar]
  113. Wang D. Qian L. Xiong H. Liu J. Neckameyer W.S. Oldham S. Xia K. Wang J. Bodmer R. Zhang Z. Antioxidants protect PINK1 -Dependent dopaminergic neurons in Drosophila. Proc. Natl. Acad. Sci. USA 2006 103 36 13520 13525 10.1073/pnas.0604661103 16938835
    [Google Scholar]
  114. Raninga P.V. Di Trapani G. Tonissen K.F. The multifaceted roles of DJ-1 as an antioxidant. Adv. Exp. Med. Biol. 2017 1037 67 87 10.1007/978‑981‑10‑6583‑5_6 29147904
    [Google Scholar]
  115. Giaime E. Yamaguchi H. Gautier C.A. Kitada T. Shen J. Loss of DJ-1 does not affect mitochondrial respiration but increases ROS production and mitochondrial permeability transition pore opening. PLoS One 2012 7 7 e40501 10.1371/journal.pone.0040501 22792356
    [Google Scholar]
  116. Cho N. Joo J. Choi S. Kang B.G. Lee A.J. Youn S.Y. Park S.H. Kim E.M. Masliah E. Ko Y. Cha S.S. Jung I. Kim K.K. A novel splicing variant of DJ-1 in Parkinson’s disease induces mitochondrial dysfunction. Heliyon 2023 9 3 e14039 10.1016/j.heliyon.2023.e14039 36915530
    [Google Scholar]
  117. Meulener M. Whitworth A.J. Armstrong-Gold C.E. Rizzu P. Heutink P. Wes P.D. Pallanck L.J. Bonini N.M. Drosophila DJ-1 mutants are selectively sensitive to environmental toxins associated with Parkinson’s disease. Curr. Biol. 2005 15 17 1572 1577 10.1016/j.cub.2005.07.064 16139213
    [Google Scholar]
  118. Stefanatos R. Sriram A. Kiviranta E. Mohan A. Ayala V. Jacobs H.T. Pamplona R. Sanz A. dj-1β regulates oxidative stress, insulin-like signaling and development in Drosophila melanogaster. Cell Cycle 2012 11 20 3876 3886 10.4161/cc.22073 22983063
    [Google Scholar]
  119. Casani S. Gómez-Pastor R. Matallana E. Paricio N. Antioxidant compound supplementation prevents oxidative damage in a Drosophila model of Parkinson’s disease. Free Radic. Biol. Med. 2013 61 151 160 10.1016/j.freeradbiomed.2013.03.021 23548634
    [Google Scholar]
  120. Sanz F.J. Solana-Manrique C. Muñoz-Soriano V. Calap-Quintana P. Moltó M.D. Paricio N. Identification of potential therapeutic compounds for Parkinson’s disease using Drosophila and human cell models. Free Radic. Biol. Med. 2017 108 683 691 10.1016/j.freeradbiomed.2017.04.364 28455141
    [Google Scholar]
  121. Siddique Y.H. Naz F. Jyoti S. Effect of curcumin on lifespan, activity pattern, oxidative stress, and apoptosis in the brains of transgenic Drosophila model of Parkinson’s disease. BioMed Res. Int. 2014 2014 1 6 10.1155/2014/606928 24860828
    [Google Scholar]
  122. Siddique Y.H. Jyoti S. Naz F. Effect of epicatechin gallate dietary supplementation on transgenic Drosophila model of Parkinson’s disease. J. Diet. Suppl. 2014 11 2 121 130 10.3109/19390211.2013.859207 24670116
    [Google Scholar]
  123. Long J. Gao H. Sun L. Liu J. Zhao-Wilson X. Grape extract protects mitochondria from oxidative damage and improves locomotor dysfunction and extends lifespan in a Drosophila Parkinson’s disease model. Rejuvenation Res. 2009 12 5 321 331 10.1089/rej.2009.0877 19929256
    [Google Scholar]
  124. Siddique Y.H. Mujtaba S.F. Jyoti S. Naz F. GC-MS analysis of Eucalyptus citriodora leaf extract and its role on the dietary supplementation in transgenic Drosophila model of Parkinson’s disease. Food Chem. Toxicol. 2013 55 29 35 10.1016/j.fct.2012.12.028 23318758
    [Google Scholar]
  125. Fatima A. Khanam S. Rahul R. Jyoti S. Naz F. Ali F. Siddique Y.H. Protective effect of tangeritin in transgenic Drosophila model of Parkinson’s disease. Front. Biosci. 2017 9 1 44 53 10.2741/e784 27814588
    [Google Scholar]
  126. Setzu M.D. Mocci I. Fabbri D. Carta P. Muroni P. Diana A. Dettori M.A. Casu M.A. Neuroprotective effects of the nutraceutical dehydrozingerone and Its C2-Symmetric dimer in a drosophila model of Parkinson’s disease. Biomolecules 2024 14 3 273 10.3390/biom14030273 38540694
    [Google Scholar]
  127. Angeles D.C. Ho P. Dymock B.W. Lim K.L. Zhou Z.D. Tan E.K. Antioxidants inhibit neuronal toxicity in Parkinson’s disease‐linked LRRK 2. Ann. Clin. Transl. Neurol. 2016 3 4 288 294 10.1002/acn3.282 27081659
    [Google Scholar]
  128. Bai X.L. Luo Y.J. Fan W.Q. Zhang Y.M. Liao X. Neuroprotective effects of lycium barbarum fruit extract on Pink1B9Drosophila melanogaster genetic model of Parkinson’s disease. Plant Foods Hum. Nutr. 2023 78 1 68 75 10.1007/s11130‑022‑01016‑8 36322321
    [Google Scholar]
  129. Liu M. Yu S. Wang J. Qiao J. Liu Y. Wang S. Zhao Y. Ginseng protein protects against mitochondrial dysfunction and neurodegeneration by inducing mitochondrial unfolded protein response in Drosophila melanogaster PINK1 model of Parkinson’s disease. J. Ethnopharmacol. 2020 247 112213 10.1016/j.jep.2019.112213 31562951
    [Google Scholar]
  130. He J. Li X. Yang S. Li Y. Lin X. Xiu M. Li X. Liu Y. Gastrodin extends the lifespan and protects against neurodegeneration in the Drosophila PINK1 model of Parkinson’s disease. Food Funct. 2021 12 17 7816 7824 10.1039/D1FO00847A 34232246
    [Google Scholar]
  131. Sanz F.J. Solana-Manrique C. Paricio N. Disease-modifying effects of vincamine supplementation in Drosophila and human cell models of Parkinson’s disease based on DJ-1 deficiency. ACS Chem. Neurosci. 2023 14 12 2294 2301 10.1021/acschemneuro.3c00026 37289979
    [Google Scholar]
  132. Kumar A. Christian P.K. Panchal K. Guruprasad B.R. Tiwari A.K. Supplementation of spirulina (Arthrospira platensis) improves lifespan and locomotor activity in paraquat-sensitive DJ-1βΔ93 flies, a Parkinson’s disease model in Drosophila melanogaster. J. Diet. Suppl. 2017 14 5 573 588 10.1080/19390211.2016.1275917 28166438
    [Google Scholar]
  133. Faust K. Gehrke S. Yang Y. Yang L. Beal M.F. Lu B. Neuroprotective effects of compounds with antioxidant and anti-inflammatory properties in a Drosophila model of Parkinson’s disease. BMC Neurosci. 2009 10 1 109 10.1186/1471‑2202‑10‑109 19723328
    [Google Scholar]
  134. Bono-Yagüe J. Gómez-Escribano A.P. Millán J.M. Vázquez-Manrique R.P. Reactive species in Huntington disease: Are they really the radicals you want to catch? Antioxid 2020 9 7 577 10.3390/antiox9070577 32630706
    [Google Scholar]
  135. Bertapelle C. Carillo M.R. Cacciola N.A. Shidlovskii Y.V. Peluso G. Digilio F.A. The reversible carnitine palmitoyltransferase 1 inhibitor (Teglicar) ameliorates the neurodegenerative phenotype in a Drosophila Huntington’s disease model by acting on the expression of carnitine-related genes. Molecules 2022 27 10 3125 10.3390/molecules27103125 35630602
    [Google Scholar]
  136. Jackson G.R. Salecker I. Dong X. Yao X. Arnheim N. Faber P.W. MacDonald M.E. Zipursky S.L. Polyglutamine-expanded human huntingtin transgenes induce degeneration of Drosophila photoreceptor neurons. Neuron 1998 21 3 633 642 10.1016/S0896‑6273(00)80573‑5 9768849
    [Google Scholar]
  137. Warrick J.M. Paulson H.L. Gray-Board G.L. Bui Q.T. Fischbeck K.H. Pittman R.N. Bonini N.M. Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in Drosophila. Cell 1998 93 6 939 949 10.1016/S0092‑8674(00)81200‑3 9635424
    [Google Scholar]
  138. Lin Y.H. Maaroufi H.O. Ibrahim E. Kucerova L. Zurovec M. Expression of human mutant Huntingtin protein in Drosophila hemocytes impairs immune responses. Front. Immunol. 2019 10 2405 10.3389/fimmu.2019.02405 31681295
    [Google Scholar]
  139. Barwell T. Seroude L. Polyglutamine disease in peripheral tissues. Hum. Mol. Genet. 2023 32 24 3303 3311 10.1093/hmg/ddad138 37642359
    [Google Scholar]
  140. Maurya C.K. Tapadia M.G. Expanded polyQ aggregates interact with sarco-endoplasmic reticulum calcium ATPase and Drosophila inhibitor of apoptosis protein1 to regulate polyQ mediated neurodegeneration in Drosophila. Mol. Cell. Neurosci. 2023 126 103886 10.1016/j.mcn.2023.103886 37567489
    [Google Scholar]
  141. Farkas A. Zsindely N. Nagy G. Kovács L. Deák P. Bodai L. The ubiquitin thioesterase YOD1 ameliorates mutant Huntingtin induced pathology in Drosophila. Sci. Rep. 2023 13 1 21951 10.1038/s41598‑023‑49241‑8 38081944
    [Google Scholar]
  142. Tandon S. Sarkar S. The S6k/4E-BP mediated growth promoting sub-pathway of insulin signalling cascade is essential to restrict pathogenesis of poly(Q) disorders in Drosophila. Life Sci. 2021 275 119358 10.1016/j.lfs.2021.119358 33744321
    [Google Scholar]
  143. Tandon S. Sarkar S. Glutamine stimulates the S6K/4E-BP branch of insulin signalling pathway to mitigate human poly(Q) disorders in Drosophila disease models. Nutr. Neurosci. 2024 27 7 783 794 10.1080/1028415X.2023.2253028 37658796
    [Google Scholar]
  144. Na D. Lim D.H. Hong J.S. Lee H.M. Cho D. Yu M.S. Shaker B. Ren J. Lee B. Song J.G. Oh Y. Lee K. Oh K.S. Lee M.Y. Choi M.S. Choi H.S. Kim Y.H. Bui J.M. Lee K. Kim H.W. Lee Y.S. Gsponer J. A multi‐layered network model identifies Akt1 as a common modulator of neurodegeneration. Mol. Syst. Biol. 2023 19 12 e11801 10.15252/msb.202311801 37984409
    [Google Scholar]
  145. Zsindely N. Nagy G. Siági F. Farkas A. Bodai L. Dysregulated miRNA and mRNA expression affect overlapping pathways in a Huntington’s disease model. Int. J. Mol. Sci. 2023 24 15 11942 10.3390/ijms241511942 37569316
    [Google Scholar]
  146. Sharma A. Narasimha K. Manjithaya R. Sheeba V. Restoration of sleep and circadian behavior by autophagy modulation in Huntington’s disease. J. Neurosci. 2023 43 26 4907 4925 10.1523/JNEUROSCI.1894‑22.2023 37268416
    [Google Scholar]
  147. Hernandez S.J. Lim R.G. Onur T. Dane M.A. Smith R. Wang K. Jean G.E.H. Reyes-Ortiz A. Devlin K. Miramontes R. Wu J. Casale M. Kilburn D. Heiser L.M. Korkola J.E. Van Vactor D. Botas J. Thompson-Peer K.L. Thompson L.M. An altered extracellular matrix–integrin interface contributes to Huntington’s disease-associated CNS dysfunction in glial and vascular cells. Hum. Mol. Genet. 2023 32 9 1483 1496 10.1093/hmg/ddac303 36547263
    [Google Scholar]
  148. Bhatnagar A. Parmar V. Barbieri N. Bearoff F. Elefant F. Kortagere S. Novel EAAT2 activators improve motor and cognitive impairment in a transgenic model of Huntington’s disease. Front. Behav. Neurosci. 2023 17 1176777 10.3389/fnbeh.2023.1176777 37351153
    [Google Scholar]
  149. Swinter K. Salah D. Rathnayake R. Gunawardena S. PolyQ-expansion causes mitochondria fragmentation independent of Huntingtin and is distinct from traumatic brain injury (TBI)/mechanical stress-mediated fragmentation which results from cell death. Cells 2023 12 19 2406 10.3390/cells12192406 37830620
    [Google Scholar]
  150. Campesan S. del Popolo I. Marcou K. Straatman-Iwanowska A. Repici M. Boytcheva K.V. Cotton V.E. Allcock N. Rosato E. Kyriacou C.P. Giorgini F. Bypassing mitochondrial defects rescues Huntington’s phenotypes in Drosophila. Neurobiol. Dis. 2023 185 106236 10.1016/j.nbd.2023.106236 37495179
    [Google Scholar]
  151. Melkani G.C. Trujillo A.S. Ramos R. Bodmer R. Bernstein S.I. Ocorr K. Huntington’s disease induced cardiac amyloidosis is reversed by modulating protein folding and oxidative stress pathways in the Drosophila heart. PLoS Genet. 2013 9 12 e1004024 10.1371/journal.pgen.1004024 24367279
    [Google Scholar]
  152. Trujillo A.S. Ramos R. Bodmer R. Bernstein S.I. Ocorr K. Melkani G.C. Drosophila as a potential model to ameliorate mutant Huntington-mediated cardiac amyloidosis. Rare Dis. 2014 2 1 e968003 10.4161/2167549X.2014.968003 26942103
    [Google Scholar]
  153. Besson M.T. Dupont P. Fridell Y.W.C. Liévens J.C. Increased energy metabolism rescues glia-induced pathology in a Drosophila model of Huntington’s disease. Hum. Mol. Genet. 2010 19 17 3372 3382 10.1093/hmg/ddq249 20566711
    [Google Scholar]
  154. Besson M.T. Alegría K. Garrido-Gerter P. Barros L.F. Liévens J.C. Enhanced neuronal glucose transporter expression reveals metabolic choice in a HD Drosophila model. PLoS One 2015 10 3 e0118765 10.1371/journal.pone.0118765 25761110
    [Google Scholar]
  155. Wang C.T. Chen Y.C. Wang Y.Y. Huang M.H. Yen T.L. Li H. Liang C.J. Sang T.K. Ciou S.C. Yuh C.H. Wang C.Y. Brummel T.J. Wang H.D. Reduced neuronal expression of ribose‐5‐phosphate isomerase enhances tolerance to oxidative stress, extends lifespan, and attenuates polyglutamine toxicity in Drosophila. Aging Cell 2012 11 1 93 103 10.1111/j.1474‑9726.2011.00762.x 22040003
    [Google Scholar]
  156. Onkar A. Sheshadri D. Rai A. Gupta A.K. Gupta N. Ganesh S. Increase in brain glycogen levels ameliorates Huntington’s disease phenotype and rescues neurodegeneration in Drosophila. Dis. Model. Mech. 2023 16 10 dmm050238 10.1242/dmm.050238 37681238
    [Google Scholar]
  157. Tandon S. Sarkar S. Glipizide ameliorates human poly(Q) mediated neurotoxicity by upregulating insulin signalling in Drosophila disease models. Biochem. Biophys. Res. Commun. 2023 645 88 96 10.1016/j.bbrc.2023.01.022 36680941
    [Google Scholar]
  158. Kovács T. Billes V. Komlós M. Hotzi B. Manzéger A. Tarnóci A. Papp D. Szikszai F. Szinyákovics J. Rácz Á. Noszál B. Veszelka S. Walter F.R. Deli M.A. Hackler L. Alfoldi R. Huzian O. Puskas L.G. Liliom H. Tárnok K. Schlett K. Borsy A. Welker E. Kovács A.L. Pádár Z. Erdős A. Legradi A. Bjelik A. Gulya K. Gulyás B. Vellai T. The small molecule AUTEN-99 (autophagy enhancer-99) prevents the progression of neurodegenerative symptoms. Sci. Rep. 2017 7 1 42014 10.1038/srep42014 28205624
    [Google Scholar]
  159. Sajjad M.U. Green E.W. Miller-Fleming L. Hands S. Herrera F. Campesan S. Khoshnan A. Outeiro T.F. Giorgini F. Wyttenbach A. DJ-1 modulates aggregation and pathogenesis in models of Huntington’s disease. Hum. Mol. Genet. 2014 23 3 755 766 10.1093/hmg/ddt466 24070869
    [Google Scholar]
  160. Di Cristo F. Finicelli M. Digilio F.A. Paladino S. Valentino A. Scialò F. D’Apolito M. Saturnino C. Galderisi U. Giordano A. Melone M.A.B. Peluso G. Meldonium improves Huntington’s disease mitochondrial dysfunction by restoring peroxisome proliferator‐activated receptor γ coactivator 1α expression. J. Cell. Physiol. 2019 234 6 9233 9246 10.1002/jcp.27602 30362565
    [Google Scholar]
  161. Belcher S. Flores-Iga G. Natarajan P. Crummett G. Talavera-Caro A. Gracia-Rodriguez C. Lopez-Ortiz C. Das A. Adjeroh D.A. Nimmakayala P. Balagurusamy N. Reddy U.K. Dietary curcumin intake and its effects on the transcriptome and metabolome of Drosophila melanogaster. Int. J. Mol. Sci. 2024 25 12 6559 10.3390/ijms25126559 38928266
    [Google Scholar]
  162. Chongtham A. Agrawal N. Curcumin modulates cell death and is protective in Huntington’s disease model. Sci. Rep. 2016 6 1 18736 10.1038/srep18736 26728250
    [Google Scholar]
  163. Khyati I. Malik I. Agrawal N. Kumar V. Melatonin and curcumin reestablish disturbed circadian gene expressions and restore locomotion ability and eclosion behavior in Drosophila model of Huntington’s disease. Chronobiol. Int. 2021 38 1 61 78 10.1080/07420528.2020.1842752 33334207
    [Google Scholar]
  164. Rahul Y.H. Siddique Y.H. Neurodegenerative diseases and flavonoids: Special reference to kaempferol. CNS Neurol. Disord. Drug Targets 2021 20 4 327 342 10.2174/1871527320666210129122033 33511932
    [Google Scholar]
  165. Teseo S. Houot B. Yang K. Monnier V. Liu G. Tricoire H.G. sinense and P. notoginseng extracts improve healthspan of aging flies and provide protection in a Huntington disease model. Aging Dis. 2021 12 2 425 440 10.14336/AD.2020.0714‑1 33815875
    [Google Scholar]
  166. Arabit J.G.J. Elhaj R. Schriner S.E. Sevrioukov E.A. Jafari M. Rhodiola rosea improves lifespan, locomotion, and neurodegeneration in a Drosophila melanogaster model of Huntington’s disease. BioMed Res. Int. 2018 2018 1 8 10.1155/2018/6726874 29984244
    [Google Scholar]
  167. Zhang P. Zhao H. Xia X. Xiao H. Han C. You Z. Wang J. Cao F. Network pharmacology and molecular-docking-based strategy to explore the potential mechanism of salidroside-inhibited oxidative stress in retinal ganglion cell. PLoS One 2024 19 7 e0305343 10.1371/journal.pone.0305343 38968273
    [Google Scholar]
  168. Jiang L. Yang D. Zhang Z. Xu L. Jiang Q. Tong Y. Zheng L. Elucidating the role of Rhodiola rosea L. in sepsis-induced acute lung injury via network pharmacology: Emphasis on inflammatory response, oxidative stress, and the PI3K-AKT pathway. Pharm. Biol. 2024 62 1 272 284 10.1080/13880209.2024.2319117 38445620
    [Google Scholar]
  169. Crosby A.H. Proukakis C. Is the transportation highway the right road for hereditary spastic paraplegia? Am. J. Hum. Genet. 2002 71 5 1009 1016 10.1086/344206 12355399
    [Google Scholar]
  170. Blackstone C. Converging cellular themes for the hereditary spastic paraplegias. Curr. Opin. Neurobiol. 2018 51 139 146 10.1016/j.conb.2018.04.025 29753924
    [Google Scholar]
  171. Xu S. Stern M. McNew J.A. Beneficial effects of rapamycin in a Drosophila model for hereditary spastic paraplegia. J. Cell Sci. 2017 130 2 453 465 10.1242/jcs.196741 27909242
    [Google Scholar]
  172. Kretzschmar D. Hasan G. Sharma S. Heisenberg M. Benzer S. The swiss cheese mutant causes glial hyperwrapping and brain degeneration in Drosophila. J. Neurosci. 1997 17 19 7425 7432 10.1523/JNEUROSCI.17‑19‑07425.1997 9295388
    [Google Scholar]
  173. Dutta S. Rieche F. Eckl N. Duch C. Kretzschmar D. Glial expression of Swiss cheese (SWS), the Drosophila orthologue of neuropathy target esterase (NTE), is required for neuronal ensheathment and function. Dis. Model. Mech. 2016 9 3 283 294 26634819
    [Google Scholar]
  174. Ryabova E.V. Melentev P.A. Komissarov A.E. Surina N.V. Ivanova E.A. Matiytsiv N. Shcherbata H.R. Sarantseva S.V. Morpho-functional consequences of Swiss cheese knockdown in glia of Drosophila melanogaster. Cells 2021 10 3 529 10.3390/cells10030529 33801404
    [Google Scholar]
  175. Mühlig-Versen M. da Cruz A.B. Tschäpe J.A. Moser M. Büttner R. Athenstaedt K. Glynn P. Kretzschmar D. Loss of Swiss cheese/neuropathy target esterase activity causes disruption of phosphatidylcholine homeostasis and neuronal and glial death in adult Drosophila. J. Neurosci. 2005 25 11 2865 2873 10.1523/JNEUROSCI.5097‑04.2005 15772346
    [Google Scholar]
  176. McFerrin J. Patton B.L. Sunderhaus E.R. Kretzschmar D. NTE/PNPLA6 is expressed in mature Schwann cells and is required for glial ensheathment of Remak fibers. Glia 2017 65 5 804 816 10.1002/glia.23127 28206686
    [Google Scholar]
  177. Melentev P.A. Ryabova E.V. Surina N.V. Zhmujdina D.R. Komissarov A.E. Ivanova E.A. Boltneva N.P. Makhaeva G.F. Sliusarenko M.I. Yatsenko A.S. Mohylyak I.I. Matiytsiv N.P. Shcherbata H.R. Sarantseva S.V. Loss of swiss cheese in neurons contributes to neurodegeneration with mitochondria abnormalities, reactive oxygen species acceleration and accumulation of lipid droplets in Drosophila brain. Int. J. Mol. Sci. 2021 22 15 8275 10.3390/ijms22158275 34361042
    [Google Scholar]
  178. Al-Ayari E.A. Shehata M.G. EL-Hadidi, M.; Shaalan, M.G. In silico SNP prediction of selected protein orthologues in insect models for Alzheimer’s, Parkinson’s, and Huntington’s diseases. Sci. Rep. 2023 13 1 18986 10.1038/s41598‑023‑46250‑5 37923901
    [Google Scholar]
  179. Chakrabarty R. Yousuf S. Singh M.P. Contributive role of hyperglycemia and hypoglycemia towards the development of Alzheimer’s disease. Mol. Neurobiol. 2022 59 7 4274 4291 10.1007/s12035‑022‑02846‑y 35503159
    [Google Scholar]
  180. Wangler M.F. Reiter L.T. Zimm G. Trimble-Morgan J. Wu J. Bier E. Antioxidant proteins TSA and PAG interact synergistically with Presenilin to modulate Notch signaling in Drosophila. Protein Cell 2011 2 7 554 563 10.1007/s13238‑011‑1073‑7 21822800
    [Google Scholar]
  181. Rovelet-Lecrux A. Hannequin D. Raux G. Meur N.L. Laquerrière A. Vital A. Dumanchin C. Feuillette S. Brice A. Vercelletto M. Dubas F. Frebourg T. Campion D. APP locus duplication causes autosomal dominant early-onset alzheimer disease with cerebral amyloid angiopathy. Nat. Genet. 2006 38 1 24 26 10.1038/ng1718 16369530
    [Google Scholar]
  182. Gunawardena S. Goldstein L.S.B. Disruption of axonal transport and neuronal viability by amyloid precursor protein mutations in Drosophila. Neuron 2001 32 3 389 401 10.1016/S0896‑6273(01)00496‑2 11709151
    [Google Scholar]
  183. Rusu P. Jansen A. Soba P. Kirsch J. Löwer A. Merdes G. Kuan Y.H. Jung A. Beyreuther K. Kjaerulff O. Kins S. Axonal accumulation of synaptic markers in APP transgenic Drosophila depends on the NPTY motif and is paralleled by defects in synaptic plasticity. Eur. J. Neurosci. 2007 25 4 1079 1086 10.1111/j.1460‑9568.2007.05341.x 17331204
    [Google Scholar]
  184. Sarantseva S.V. Rodin D.I. Schwarzman A.L. Human APP gene expression in nerve cells of Drosophila melanogaster causes alteration of synaptoptagmin 1 mRNA level. Dokl. Biochem. Biophys. 2012 442 1 19 21 10.1134/S1607672912010061 22419087
    [Google Scholar]
  185. Rodin D.I. Schwarzman A.L. Sarantseva S.V. Expression of human amyloid precursor protein in Drosophila melanogaster nerve cells causes a decrease in presynaptic gene mRNA levels. Genet. Mol. Res. 2015 14 3 9225 9232 10.4238/2015.August.10.2 26345855
    [Google Scholar]
  186. Saburova E.A. Vasiliev A.N. Kravtsova V.V. Ryabova E.V. Zefirov A.L. Bolshakova O.I. Sarantseva S.V. Krivoi I.I. Human APP gene expression alters active zone distribution and spontaneous neurotransmitter release at the Drosophila larval neuromuscular junction. Neural Plast. 2017 2017 1 10 10.1155/2017/9202584 28770114
    [Google Scholar]
  187. Sarantseva S.V. Kislik G.A. Tkachenko N.A. Vasil’ev A.N. Shvartsman A.L. Morphological and functional abnormalities in neuromuscular junctions of Drosophila melanogaster induced by the expression of human APP gene. Tsitologiia 2012 54 5 421 429 22827040
    [Google Scholar]
  188. Pizzano S. Sterne G.R. Veling M.W. Xu L.A. Hergenreder T. Ye B. The Drosophila homolog of APP promotes Dscam expression to drive axon terminal growth, revealing interaction between Down syndrome genes. Dis. Model. Mech. 2023 16 9 dmm049725 10.1242/dmm.049725 37712356
    [Google Scholar]
  189. Bolshakova O.I. Zhuk A.A. Rodin D.I. Kislik G.A. Sarantseva S.V. Effect of human APP gene overexpression on Drosophila melanogaster cholinergic and dopaminergic brain neurons. Russ. J. Genet. Appl. Res. 2014 4 2 113 121 10.1134/S2079059714020026
    [Google Scholar]
  190. Fossgreen A. Brückner B. Czech C. Masters C.L. Beyreuther K. Paro R. Transgenic Drosophila expressing human amyloid precursor protein show γ-secretase activity and a blistered-wing phenotype. Proc. Natl. Acad. Sci. USA 1998 95 23 13703 13708 10.1073/pnas.95.23.13703 9811864
    [Google Scholar]
  191. Torroja L. Chu H. Kotovsky I. White K. Neuronal overexpression of APPL, the Drosophila homologue of the amyloid precursor protein (APP), disrupts axonal transport. Curr. Biol. 1999 9 9 489 493 10.1016/S0960‑9822(99)80215‑2 10322116
    [Google Scholar]
  192. Carmine-Simmen K. Proctor T. Tschäpe J. Poeck B. Triphan T. Strauss R. Kretzschmar D. Neurotoxic effects induced by the Drosophila amyloid-β peptide suggest a conserved toxic function. Neurobiol. Dis. 2009 33 2 274 281 10.1016/j.nbd.2008.10.014 19049874
    [Google Scholar]
  193. Greeve I. Kretzschmar D. Tschäpe J.A. Beyn A. Brellinger C. Schweizer M. Nitsch R.M. Reifegerste R. Age-dependent neurodegeneration and Alzheimer-amyloid plaque formation in transgenic Drosophila. J. Neurosci. 2004 24 16 3899 3906 10.1523/JNEUROSCI.0283‑04.2004 15102905
    [Google Scholar]
  194. Sarantseva S. Timoshenko S. Bolshakova O. Karaseva E. Rodin D. Schwarzman A.L. Vitek M.P. Apolipoprotein E-mimetics inhibit neurodegeneration and restore cognitive functions in a transgenic Drosophila model of Alzheimer’s disease. PLoS One 2009 4 12 e8191 10.1371/journal.pone.0008191 19997607
    [Google Scholar]
  195. Bergkvist L. Du Z. Elovsson G. Appelqvist H. Itzhaki L.S. Kumita J.R. Kågedal K. Brorsson A.C. Mapping pathogenic processes contributing to neurodegeneration in Drosophila models of Alzheimer’s disease. FEBS Open Bio 2020 10 3 338 350 10.1002/2211‑5463.12773 31823504
    [Google Scholar]
  196. Sarantseva S.V. Bol’shakova O.I. Timoshenko S.I. Rodin D.I. Vitek M.P. Shvartsman A.L. Studying pathogenesis of Alzheimer’s disease in a Drosophila melanogaster model: Human APP overexpression in the brain of transgenic flies leads to deficit of the synaptic protein synaptotagmin. Genetika 2009 45 1 119 126 19239106
    [Google Scholar]
  197. Iijima K. Liu H.P. Chiang A.S. Hearn S.A. Konsolaki M. Zhong Y. Dissecting the pathological effects of human Aβ40 and Aβ42 in Drosophila: A potential model for Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 2004 101 17 6623 6628 10.1073/pnas.0400895101 15069204
    [Google Scholar]
  198. Crowther D.C. Kinghorn K.J. Miranda E. Page R. Curry J.A. Duthie F.A.I. Gubb D.C. Lomas D.A. Intraneuronal Aβ, non-amyloid aggregates and neurodegeneration in a Drosophila model of Alzheimer’s disease. Neuroscience 2005 132 1 123 135 10.1016/j.neuroscience.2004.12.025 15780472
    [Google Scholar]
  199. Stapper Z.A. Jahn T.R. Changes in glutathione redox potential are linked to Aβ42-Induced neurotoxicity. Cell Rep. 2018 24 7 1696 1703 10.1016/j.celrep.2018.07.052 30110626
    [Google Scholar]
  200. Iijima-Ando K. Iijima K. Transgenic Drosophila models of Alzheimer’s disease and tauopathies. Brain Struct. Funct. 2010 214 2-3 245 262 10.1007/s00429‑009‑0234‑4 19967412
    [Google Scholar]
  201. Iijima-Ando K. Hearn S.A. Shenton C. Gatt A. Zhao L. Iijima K. Mitochondrial mislocalization underlies Abeta42-induced neuronal dysfunction in a Drosophila model of Alzheimer’s disease. PLoS One 2009 4 12 e8310 10.1371/journal.pone.0008310 20016833
    [Google Scholar]
  202. Wang X. Davis R.L. Early mitochondrial fragmentation and dysfunction in a drosophila model for Alzheimer’s disease. Mol. Neurobiol. 2021 58 1 143 155 10.1007/s12035‑020‑02107‑w 32909149
    [Google Scholar]
  203. Tare M. Modi R.M. Nainaparampil J.J. Puli O.R. Bedi S. Fernandez-Funez P. Kango-Singh M. Singh A. Activation of JNK signaling mediates amyloid-ß-dependent cell death. PLoS One 2011 6 9 e24361 10.1371/journal.pone.0024361 21949710
    [Google Scholar]
  204. Sarkar A. Gogia N. Glenn N. Singh A. Jones G. Powers N. Srivastava A. Kango-Singh M. Singh A. A soy protein Lunasin can ameliorate amyloid-beta 42 mediated neurodegeneration in Drosophila eye. Sci. Rep. 2018 8 1 13545 10.1038/s41598‑018‑31787‑7 30202077
    [Google Scholar]
  205. Ott S. Vishnivetskaya A. Malmendal A. Crowther D.C. Metabolic changes may precede proteostatic dysfunction in a Drosophila model of amyloid beta peptide toxicity. Neurobiol. Aging 2016 41 39 52 10.1016/j.neurobiolaging.2016.01.009 27103517
    [Google Scholar]
  206. Pragati S.I. Chanu S.I. Sarkar S. Reduced expression of dMyc mitigates TauV337M mediated neurotoxicity by preventing the Tau hyperphosphorylation and inducing autophagy in Drosophila. Neurosci. Lett. 2020 715 134622 10.1016/j.neulet.2019.134622 31715291
    [Google Scholar]
  207. Chee F.C. Mudher A. Cuttle M.F. Newman T.A. MacKay D. Lovestone S. Shepherd D. Over-expression of tau results in defective synaptic transmission in Drosophila neuromuscular junctions. Neurobiol. Dis. 2005 20 3 918 928 10.1016/j.nbd.2005.05.029 16023860
    [Google Scholar]
  208. Mershin A. Pavlopoulos E. Fitch O. Braden B.C. Nanopoulos D.V. Skoulakis E.M.C. Learning and memory deficits upon TAU accumulation in Drosophila mushroom body neurons. Learn. Mem. 2004 11 3 277 287 10.1101/lm.70804 15169857
    [Google Scholar]
  209. Iijima K. Gatt A. Iijima-Ando K. Tau Ser262 phosphorylation is critical for A 42-induced tau toxicity in a transgenic Drosophila model of Alzheimer’s disease. Hum. Mol. Genet. 2010 19 15 2947 2957 10.1093/hmg/ddq200 20466736
    [Google Scholar]
  210. Nisha S. Sarkar S. Downregulation of glob1 suppresses pathogenesis of human neuronal tauopathies in Drosophila by regulating tau phosphorylation and ROS generation. Neurochem. Int. 2021 146 105040 10.1016/j.neuint.2021.105040 33865914
    [Google Scholar]
  211. Nisha S. Sarkar S. Downregulation of glob1 mitigates human tau mediated neurotoxicity by restricting heterochromatin loss and elevating the autophagic response in drosophila. Mol. Biol. Rep. 2022 49 7 6581 6590 10.1007/s11033‑022‑07498‑8 35633418
    [Google Scholar]
  212. Varte V. Munkelwitz J.W. Rincon-Limas D.E. Insights from Drosophila on Aβ- and tau-induced mitochondrial dysfunction: Mechanisms and tools. Front. Neurosci. 2023 17 1184080 10.3389/fnins.2023.1184080 37139514
    [Google Scholar]
  213. Haddadi M. Haghi M. Rezaei N. Kiani Z. Akkülah T. Celik A. APOE and Alzheimer’s disease: Pathologic clues from transgenic Drosophila melanogaster. Arch. Gerontol. Geriatr. 2024 123 105420 10.1016/j.archger.2024.105420 38537387
    [Google Scholar]
  214. Yang M. Zinkgraf M. Fitzgerald-Cook C. Harrison B.R. Putzier A. Promislow D.E.L. Wang A.M. Using Drosophila to identify naturally occurring genetic modifiers of amyloid beta 42- and tau-induced toxicity. G3 (Bethesda) 2023 13 9 jkad132 10.1093/g3journal/jkad132 37311212
    [Google Scholar]
  215. Liu L. MacKenzie K.R. Putluri N. Maletić-Savatić M. Bellen H.J. The glia-neuron lactate shuttle and elevated ROS promote lipid synthesis in neurons and lipid droplet accumulation in glia via APOE/D. Cell Metab. 2017 26 5 719 737.e6 10.1016/j.cmet.2017.08.024 28965825
    [Google Scholar]
  216. Goodman L.D. Bellen H.J. Recent insights into the role of glia and oxidative stress in Alzheimer’s disease gained from Drosophila. Curr. Opin. Neurobiol. 2022 72 32 38 10.1016/j.conb.2021.07.012 34418791
    [Google Scholar]
  217. Barati A. Masoudi R. Yousefi R. Monsefi M. Mirshafiey A. Tau and amyloid beta differentially affect the innate immune genes expression in Drosophila models of Alzheimer’s disease and β- D Mannuronic acid (M2000) modulates the dysregulation. Gene 2022 808 145972 10.1016/j.gene.2021.145972 34600048
    [Google Scholar]
  218. Bolshakova O.I. Rodin D.I. Timoshenko S.I. Latypova E.M. Sarantseva S.V. Effect of nicotinic acid on the survival rate and neurodegeneration of transgenic Drosophila melanogaster with overexpression of human APP gene, Uchenye Zapiski SPbGMU im. akad. IP Pavlova 2013 20 14 16
    [Google Scholar]
  219. Deng M. Yan W. Gu Z. Li Y. Chen L. He B. Anti-neuroinflammatory potential of natural products in the treatment of Alzheimer’s disease. Molecules 2023 28 3 1486 10.3390/molecules28031486 36771152
    [Google Scholar]
  220. Lee S. Bang S.M. Lee J.W. Cho K.S. Evaluation of traditional medicines for neurodegenerative diseases using Drosophila models. Evid. Based Complement. Alternat. Med. 2014 2014 967462 10.1155/2014/967462 24790636
    [Google Scholar]
  221. Wu M. Li Y. Miao Y. Qiao H. Wang Y. Exploring the efficient natural products for Alzheimer’s disease therapy viaDrosophila melanogaster (fruit fly) models. J. Drug Target. 2023 31 8 817 831 10.1080/1061186X.2023.2245582 37545435
    [Google Scholar]
  222. Andrade S. Ramalho M.J. Loureiro J.A. Pereira M.C. Natural compounds for Alzheimer’s disease Therapy: A systematic review of preclinical and clinical studies. Int. J. Mol. Sci. 2019 20 9 2313 10.3390/ijms20092313 31083327
    [Google Scholar]
  223. Dai Y. Wang Y. Kang Q. Wu Y. Liu Y. Su Y. Wang X. Xiu M. He J. The protective effect and bioactive compounds of Astragalus membranaceus against neurodegenerative disorders via alleviating oxidative stress in Drosophila. FASEB J. 2024 38 13 e23727 10.1096/fj.202400390R 38877845
    [Google Scholar]
  224. dos Santos N.C.L. Malta S.M. Franco R.R. Silva H.C.G. Silva M.H. Rodrigues T.S. de Oliveira R.M. Araújo T.N. Augusto S.C. Espindola F.S. Ueira-Vieira C. Antioxidant and anti-Alzheimer’s potential of Tetragonisca angustula (Jataí) stingless bee pollen. Sci. Rep. 2024 14 1 308 10.1038/s41598‑023‑51091‑3 38172290
    [Google Scholar]
  225. Yuan C. Shin M. Park Y. Choi B. Jang S. Lim C. Yun H.S. Lee I.S. Won S.Y. Cho K.S. Linalool alleviates A β 42‐Induced neurodegeneration via suppressing ROS production and inflammation in fly and rat models of Alzheimer’s disease. Oxid. Med. Cell. Longev. 2021 2021 1 8887716 10.1155/2021/8887716 33777322
    [Google Scholar]
  226. Nevzglyadova O.V. Mikhailova E.V. Amen T.R. Zenin V.V. Artemov A.V. Kostyleva E.I. Mezhenskaya D.A. Rodin D.I. Saifitdinova A.F. Khodorkovskii M.A. Sarantseva S.V. Soidla T.R. Yeast red pigment modifies amyloid beta growth in Alzheimer disease models in both Saccharomyces cerevisiae and Drosophila melanogaster. Amyloid 2015 22 2 100 111 10.3109/13506129.2015.1010038 26053105
    [Google Scholar]
  227. Bongiorni S. Catalani E. Arisi I. Lazzarini F. Del Quondam S. Brunetti K. Cervia D. Prantera G. Pathological defects in a drosophila model of Alzheimer’s disease and beneficial effects of the natural product Lisosan G. Biomolecules 2024 14 7 855 10.3390/biom14070855 39062569
    [Google Scholar]
  228. Ogunsuyi O.B. Olasehinde T.A. Oboh G. Neuroprotective properties of solanum leaves in transgenic Drosophila melanogaster model of Alzheimer’s disease. Biomarkers 2022 27 6 587 598 10.1080/1354750X.2022.2077446 35546534
    [Google Scholar]
  229. Siddique Y.H. Rahul G. Ara G. Afzal M. Varshney H. Gaur K. Subhan I. Mantasha I. Shahid M. Beneficial effects of apigenin on the transgenic Drosophila model of Alzheimer’s disease. Chem. Biol. Interact. 2022 366 110120 10.1016/j.cbi.2022.110120 36027948
    [Google Scholar]
  230. Oboh G. Adedayo B.C. Adetola M.B. Oyeleye I.S. Ogunsuyi O.B. Characterization and neuroprotective properties of alkaloid extract of Vernonia amygdalina Delile in experimental models of Alzheimer’s disease. Drug Chem. Toxicol. 2022 45 2 731 740 10.1080/01480545.2020.1773845 32543989
    [Google Scholar]
  231. Tan F.H.P. Ting A.C.J. Leow B.G. Najimudin N. Watanabe N. Azzam G. Alleviatory effects of Danshen, Salvianolic acid A and Salvianolic acid B on PC12 neuronal cells and Drosophila melanogaster model of Alzheimer’s disease. J. Ethnopharmacol. 2021 279 114389 10.1016/j.jep.2021.114389 34217797
    [Google Scholar]
  232. Temviriyanukul P. Kittibunchakul S. Trisonthi P. Kunkeaw T. Inthachat W. Siriwan D. Suttisansanee U. Mangifera indica ‘namdokmai’ prevents neuronal cells from amyloid peptide toxicity and inhibits BACE-1 activities in a Drosophila model of Alzheimer’s amyloidosis. Pharmaceuticals 2022 15 5 591 10.3390/ph15050591 35631418
    [Google Scholar]
  233. Kunkeaw T. Suttisansanee U. Trachootham D. Karinchai J. Chantong B. Potikanond S. Inthachat W. Pitchakarn P. Temviriyanukul P. Diplazium esculentum (Retz.) Sw. reduces BACE-1 activities and amyloid peptides accumulation in Drosophila models of Alzheimer’s disease. Sci. Rep. 2021 11 1 23796 10.1038/s41598‑021‑03142‑w 34893659
    [Google Scholar]
  234. Lakshmi S. Varija Raghu S. Elumalai P. Sivan S. Alkoxy glycerol enhanced activity of Oxyresveratrol in Alzheimer’s disease by rescuing Tau protein. Neurosci. Lett. 2021 759 135981 10.1016/j.neulet.2021.135981 34023407
    [Google Scholar]
  235. Kizhakke P. A.; Olakkaran, S.; Antony, A.; Tilagul K, S.; Hunasanahally P, G. Convolvulus pluricaulis (Shankhapushpi) ameliorates human microtubule-associated protein tau (hMAPτ) induced neurotoxicity in Alzheimer’s disease Drosophila model. J. Chem. Neuroanat. 2019 95 115 122 10.1016/j.jchemneu.2017.10.002 29051039
    [Google Scholar]
  236. Oyeleye S.I. Ogunsuyi O.B. Adedeji V. Olatunde D. Oboh G. Citrus spp. essential oils improve behavioral pattern, repressed cholinesterases and monoamine oxidase activities, and production of reactive species in fruit fly (Drosophila melanogaster) model of Alzheimer’s Disease. J. Food Biochem. 2021 45 3 e13558 10.1111/jfbc.13558 33179303
    [Google Scholar]
  237. Ma W.W. Tao Y. Wang Y.Y. Peng I.F. Effects of Gardenia jasminoides extracts on cognition and innate immune response in an adult Drosophila model of Alzheimer’s disease. Chin. J. Nat. Med. 2017 15 12 899 904 10.1016/S1875‑5364(18)30005‑0 29329646
    [Google Scholar]
  238. Nevzglyadova O.V. Mikhailova E.V. Soidla T.R. Yeast red pigment, protein aggregates, and amyloidoses: A review. Cell Tissue Res. 2022 388 2 211 223 10.1007/s00441‑022‑03609‑w 35258715
    [Google Scholar]
  239. Bolshakova O.I. Slobodina A.D. Slepneva E.E. Sarantseva S.V. Acetyl-L-carnitine aids in preservation of cholinergic neurons and memory in the Drosophila melanogaster model of Alzheimer’s disease. Curr. Alzheimer Res. 2025 21 8 557 565 10.2174/0115672050347906241203075930 39716786
    [Google Scholar]
  240. Zhang J. Qiao Y. Li D. Hao S. Zhang F. Zhang X. Li A. Qin X. Aqueous extract from Astragalus membranaceus can improve the function degradation and delay aging on Drosophila melanogaster through antioxidant mechanism. Rejuvenation Res. 2022 25 4 181 190 10.1089/rej.2021.0081 35726384
    [Google Scholar]
  241. Yang F. Xiu M. Yang S. Li X. Tuo W. Su Y. He J. Liu Y. Extension of Drosophila lifespan by Astragalus polysaccharide through a mechanism dependent on antioxidant and insulin/IGF-1 signaling. Evid. Based Complement. Alternat. Med. 2021 2021 6686748 10.1155/2021/6686748 33680062
    [Google Scholar]
  242. Dong Q. Li Z. Zhang Q. Hu Y. Liang H. Xiong L. Astragalus mongholicus Bunge (Fabaceae): Bioactive compounds and potential therapeutic mechanisms against Alzheimer’s disease. Front. Pharmacol. 2022 13 924429 10.3389/fphar.2022.924429 35837291
    [Google Scholar]
  243. Murthy M.N. Shyamala B.V. Ashwagandha- Withania somnifera (L.) Dunal as a multipotent neuroprotective remedy for genetically induced motor dysfunction and cellular toxicity in human neurodegenerative disease models of Drosophila. J. Ethnopharmacol. 2024 318 P1 116897 10.1016/j.jep.2023.116897 37442493
    [Google Scholar]
  244. Procaccini C. Santopaolo M. Faicchia D. Colamatteo A. Formisano L. de Candia P. Galgani M. De Rosa V. Matarese G. Role of metabolism in neurodegenerative disorders. Metabolism 2016 65 9 1376 1390 10.1016/j.metabol.2016.05.018 27506744
    [Google Scholar]
  245. Motamedi S. Karimi I. Jafari F. The interrelationship of metabolic syndrome and neurodegenerative diseases with focus on brain-derived neurotrophic factor (BDNF): Kill two birds with one stone. Metab. Brain Dis. 2017 32 3 651 665 10.1007/s11011‑017‑9997‑0 28361262
    [Google Scholar]
  246. Bhatti G.K. Gupta A. Pahwa P. Khullar N. Singh S. Navik U. Kumar S. Mastana S.S. Reddy A.P. Reddy P.H. Bhatti J.S. Targeting mitochondrial bioenergetics as a promising therapeutic strategy in metabolic and neurodegenerative diseases. Biomed. J. 2022 45 5 733 748 10.1016/j.bj.2022.05.002 35568318
    [Google Scholar]
  247. Akhtar A. Sah S.P. Insulin signaling pathway and related molecules: Role in neurodegeneration and Alzheimer’s disease. Neurochem. Int. 2020 135 104707 10.1016/j.neuint.2020.104707 32092326
    [Google Scholar]
  248. Burillo J. Marqués P. Jiménez B. González-Blanco C. Benito M. Guillén C. Insulin resistance and diabetes mellitus in Alzheimer’s disease. Cells 2021 10 5 1236 10.3390/cells10051236 34069890
    [Google Scholar]
  249. Cardoso S. Moreira P.I. Antidiabetic drugs for Alzheimer’s and Parkinson’s diseases: Repurposing insulin, metformin, and thiazolidinediones. Int. Rev. Neurobiol. 2020 155 37 64 10.1016/bs.irn.2020.02.010 32854858
    [Google Scholar]
  250. Cheong J.L.Y. de Pablo-Fernandez E. Foltynie T. Noyce A.J. The association between type 2 diabetes mellitus and Parkinson’s disease. J. Parkinsons Dis. 2020 10 3 775 789 10.3233/JPD‑191900 32333549
    [Google Scholar]
  251. Colosimo C. De Iuliis A. Montinaro E. Fatati G. Plebani M. Diabetes mellitus and Parkinson’s disease: Dangerous liaisons between insulin and dopamine. Neural Regen. Res. 2022 17 3 523 533 10.4103/1673‑5374.320965 34380882
    [Google Scholar]
  252. Mai A.S. Tan B.J.W. Sun Q.Y. Tan E.K. Association between type 1 diabetes mellitus and Parkinson’s disease: A mendelian randomization study. J. Clin. Med. 2024 13 2 561 10.3390/jcm13020561 38256693
    [Google Scholar]
  253. Baker K.D. Thummel C.S. Diabetic larvae and obese flies-emerging studies of metabolism in Drosophila. Cell Metab. 2007 6 4 257 266 10.1016/j.cmet.2007.09.002 17908555
    [Google Scholar]
  254. Alfa R.W. Kim S.K. Using Drosophila to discover mechanisms underlying type 2 diabetes. Dis. Model. Mech. 2016 9 4 365 376 10.1242/dmm.023887 27053133
    [Google Scholar]
  255. Bharucha K.N. The epicurean fly: Using Drosophila melanogaster to study metabolism. Pediatr. Res. 2009 65 2 132 137 10.1203/PDR.0b013e318191fc68 18978647
    [Google Scholar]
  256. Gáliková M. Klepsatel P. Obesity and aging in the Drosophila model. Int. J. Mol. Sci. 2018 19 7 1896 10.3390/ijms19071896 29954158
    [Google Scholar]
  257. Palanker Musselman L. Fink J.L. Narzinski K. Ramachandran P.V. Sukumar Hathiramani S. Cagan R.L. Baranski T.J. A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila. Dis. Model. Mech. 2011 4 6 842 849 10.1242/dmm.007948 21719444
    [Google Scholar]
  258. Rulifson E.J. Kim S.K. Nusse R. Ablation of insulin-producing neurons in flies: Growth and diabetic phenotypes. Science 2002 296 5570 1118 1120 10.1126/science.1070058 12004130
    [Google Scholar]
  259. Broughton S.J. Piper M.D.W. Ikeya T. Bass T.M. Jacobson J. Driege Y. Martinez P. Hafen E. Withers D.J. Leevers S.J. Partridge L. Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proc. Natl. Acad. Sci. USA 2005 102 8 3105 3110 10.1073/pnas.0405775102 15708981
    [Google Scholar]
  260. Zhang H. Liu J. Li C.R. Momen B. Kohanski R.A. Pick L. Deletion of Drosophila insulin-like peptides causes growth defects and metabolic abnormalities. Proc. Natl. Acad. Sci. USA 2009 106 46 19617 19622 10.1073/pnas.0905083106 19887630
    [Google Scholar]
  261. Veselov I.M. Vinogradova D.V. Maltsev A.V. Shevtsov P.N. Spirkova E.A. Bachurin S.O. Shevtsova E.F. Mitochondria and oxidative stress as a link between Alzheimer’s disease and diabetes mellitus. Int. J. Mol. Sci. 2023 24 19 14450 10.3390/ijms241914450 37833898
    [Google Scholar]
  262. Yi M. Cruz Cisneros L. Cho E.J. Alexander M. Kimelman F.A. Swentek L. Ferrey A. Tantisattamo E. Ichii H. Nrf2 pathway and oxidative stress as a common target for treatment of diabetes and its comorbidities. Int. J. Mol. Sci. 2024 25 2 821 10.3390/ijms25020821 38255895
    [Google Scholar]
  263. Caturano A. D’Angelo M. Mormone A. Russo V. Mollica M.P. Salvatore T. Galiero R. Rinaldi L. Vetrano E. Marfella R. Monda M. Giordano A. Sasso F.C. Oxidative stress in type 2 diabetes: Impacts from pathogenesis to lifestyle modifications. Curr. Issues Mol. Biol. 2023 45 8 6651 6666 10.3390/cimb45080420 37623239
    [Google Scholar]
  264. Sanz F.J. Martínez-Carrión G. Solana-Manrique C. Paricio N. Evaluation of type 1 diabetes mellitus as a risk factor of Parkinson’s disease in a Drosophila model. J. Exp. Zool. A Ecol. Integr. Physiol. 2023 339 8 697 705 10.1002/jez.2726 37381093
    [Google Scholar]
  265. Sanz F.J. Solana-Manrique C. Lilao-Garzón J. Brito-Casillas Y. Muñoz-Descalzo S. Paricio N. Exploring the link between Parkinson’s disease and type 2 diabetes mellitus in Drosophila. FASEB J. 2022 36 8 e22432 10.1096/fj.202200286R 35766235
    [Google Scholar]
  266. Sharma K. Rai P. Tapadia M.G. Impaired insulin signaling and diet-induced type 3 diabetes pathophysiology increase amyloid β expression in the Drosophila model of Alzheimer’s disease. Biochim. Biophys. Acta Mol. Cell Res. 2025 1872 1 119875 10.1016/j.bbamcr.2024.119875 39515664
    [Google Scholar]
  267. Catalani E. Fanelli G. Silvestri F. Cherubini A. Del Quondam S. Bongiorni S. Taddei A.R. Ceci M. De Palma C. Perrotta C. Rinalducci S. Prantera G. Cervia D. Nutraceutical strategy to counteract eye neurodegeneration and oxidative stress in Drosophila melanogaster fed with high-sugar diet. Antioxid 2021 10 8 1197 10.3390/antiox10081197 34439445
    [Google Scholar]
  268. Catalani E. Del Quondam S. Brunetti K. Cherubini A. Bongiorni S. Taddei A.R. Zecchini S. Giovarelli M. De Palma C. Perrotta C. Clementi E. Prantera G. Cervia D. Neuroprotective role of plumbagin on eye damage induced by high-sucrose diet in adult fruit fly Drosophila melanogaster. Biomed. Pharmacother. 2023 166 115298 10.1016/j.biopha.2023.115298 37597318
    [Google Scholar]
  269. de Aquino Silva D. Silva M.R.P. Guerra G.P. do Sacramento M. Alves D. Prigol M. 7-chloro-4-(phenylselanyl) quinoline co-treatment prevent oxidative stress in diabetic-like phenotype induced by hyperglycidic diet in Drosophila melanogaster. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2021 239 108892 10.1016/j.cbpc.2020.108892 32931926
    [Google Scholar]
  270. Gupta H.P. Pandey R. Ravi Ram K. Altered sperm fate in the reproductive tract milieu due to oxidative stress leads to sub-fertility in type 1 diabetes females: A Drosophila-based study. Life Sci. 2023 313 121306 10.1016/j.lfs.2022.121306 36543282
    [Google Scholar]
  271. Xiu M. Wang Y. Yang D. Zhang X. Dai Y. Liu Y. Lin X. Li B. He J. Using Drosophila melanogaster as a suitable platform for drug discovery from natural products in inflammatory bowel disease. Front. Pharmacol. 2022 13 1072715 10.3389/fphar.2022.1072715 36545307
    [Google Scholar]
  272. Yi Y. Xu W. Fan Y. Wang H.X. Drosophila as an emerging model organism for studies of food-derived antioxidants. Food Res. Int. 2021 143 110307 10.1016/j.foodres.2021.110307 33992327
    [Google Scholar]
  273. Lee J. Jo D.G. Park D. Chung H.Y. Mattson M.P. Adaptive cellular stress pathways as therapeutic targets of dietary phytochemicals: Focus on the nervous system. Pharmacol. Rev. 2014 66 3 815 868 10.1124/pr.113.007757 24958636
    [Google Scholar]
  274. Khan S. Ahmad K. Alshammari E.M.A. Adnan M. Baig M.H. Lohani M. Somvanshi P. Haque S. Implication of Caspase-3 as a common therapeutic target for multineurodegenerative disorders and its inhibition using nonpeptidyl natural compounds. BioMed Res. Int. 2015 2015 1 9 10.1155/2015/379817 26064904
    [Google Scholar]
  275. Rahul F. Naz F. Jyoti S. Siddique Y.H. Effect of kaempferol on the transgenic Drosophila model of Parkinson’s disease. Sci. Rep. 2020 10 1 13793 10.1038/s41598‑020‑70236‑2 32796885
    [Google Scholar]
  276. Beg T. Jyoti S. Naz F. Rahul F. Ali F. Ali S.K. Reyad A.M. Siddique Y.H. Protective effect of kaempferol on the transgenic drosophila model of Alzheimer’s disease. CNS Neurol. Disord. Drug Targets 2018 17 6 421 429 10.2174/1871527317666180508123050 29745345
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266356916250729040245
Loading
/content/journals/ctmc/10.2174/0115680266356916250729040245
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test