Skip to content
2000
image of Network Pharmacology as a Tool to Explore the Therapeutic Mechanism of Opuntia Ficus-Indica (Nopal) in Type 2 Diabetes and Colorectal Cancer

Abstract

Introduction

Considering the shared physiological mechanisms between type 2 diabetes (T2D) and colorectal cancer (CRC), it is plausible that certain compounds may exert therapeutic effects on both diseases. Opuntia ficus-indica (nopal) has been traditionally used to manage these conditions. This study aims to elucidate the molecular mechanisms through which nopal exerts its effects on T2D and CRC.

Methods

Bioactive compounds of nopal, their molecular targets, and genes associated with T2D and CRC were identified from public databases. Gene Ontology (GO) analysis, metabolic pathway analysis, protein-protein interaction (PPI) network construction, and molecular docking were conducted to investigate the shared molecular targets.

Results

Nopal contains bioactive compounds that interact with molecular targets common to both T2D and CRC. These shared targets are implicated in lipid metabolism, apoptosis, kinase activity, interleukin-related pathways (IL-2 and IL-3), inflammation, gastrin signaling, and other critical processes. Key molecular targets identified include HSP90AA1 and MAPK8, while the principal bioactive compounds of nopal are eriodictyol and aromadendrin.

Discussion

The identification of eriodictyol and aromadendrin as modulators of HSP90AA1 and MAPK8 elucidates a pleiotropic mechanism underlying the link between type 2 diabetes and colorectal cancer. By modulating apoptotic and inflammatory pathways, these bioactive compounds offer a promising foundation for developing dual-action therapies targeting both metabolic and oncogenic pathways in patients with comorbid conditions.

Conclusion

The bioactive compounds of nopal engage multiple biological pathways relevant to T2D and CRC, suggesting that this plant may serve as a promising pharmacological candidate for the management of these diseases.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266398981251117100048
2026-01-09
2026-01-16
Loading full text...

Full text loading...

/deliver/fulltext/ctmc/10.2174/0115680266398981251117100048/BMS-CTMC-2025-HT275-6704-2.html?itemId=/content/journals/ctmc/10.2174/0115680266398981251117100048&mimeType=html&fmt=ahah

References

  1. ElSayed N.A. Aleppo G. Bannuru R.R. Bruemmer D. Collins B.S. Ekhlaspour L. Gaglia J.L. Hilliard M.E. Johnson E.L. Khunti K. Lingvay I. Matfin G. McCoy R.G. Perry M.L. Pilla S.J. Polsky S. Prahalad P. Pratley R.E. Segal A.R. Seley J.J. Selvin E. Stanton R.C. Gabbay R.A. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes— 2024. Diabetes Care 2024 47 S20 S42.(Suppl. 1) American Diabetes Association Professional Practice Committee. 10.2337/dc24‑S002 38078589
    [Google Scholar]
  2. Sun H. Saeedi P. Karuranga S. Pinkepank M. Ogurtsova K. Duncan B.B. Stein C. Basit A. Chan J.C.N. Mbanya J.C. Pavkov M.E. Ramachandaran A. Wild S.H. James S. Herman W.H. Zhang P. Bommer C. Kuo S. Boyko E.J. Magliano D.J. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022 183 109119 10.1016/j.diabres.2021.109119 34879977
    [Google Scholar]
  3. Tinajero M.G. Malik V.S. An update on the epidemiology of type 2 Diabetes. Endocrinol. Metab. Clin. North Am. 2021 50 3 337 355 10.1016/j.ecl.2021.05.013 34399949
    [Google Scholar]
  4. Guzmán-Flores J.M. López-Briones S. [Cells of innate and adaptive immunity in type 2 diabetes and obesity] Gac. Med. Mex. 2012 148 4 381 389 22976756
    [Google Scholar]
  5. Dekker E. Tanis P.J. Vleugels J.L.A. Kasi P.M. Wallace M.B. Colorectal cancer. Lancet 2019 394 10207 1467 1480 10.1016/S0140‑6736(19)32319‑0 31631858
    [Google Scholar]
  6. Bray F. Laversanne M. Sung H. Ferlay J. Siegel R.L. Soerjomataram I. Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  7. Leal Y.A. Torres J. Gamboa R. Mantilla-Morales A. Piña-Sanchez P. Arrieta O. Bonifaz L. Meneses A. Duque C. Piñeros M. Cancer Incidence in Merida, Mexico 2015-2018: First report from the population-based cancer registry. Arch. Med. Res. 2022 53 8 859 866 10.1016/j.arcmed.2022.11.015 36462950
    [Google Scholar]
  8. Lawler T. Walts Z.L. Steinwandel M. Lipworth L. Murff H.J. Zheng W. Warren Andersen S. Type 2 Diabetes and colorectal cancer risk. JAMA Netw. Open 2023 6 11 e2343333 10.1001/jamanetworkopen.2023.43333 37962884
    [Google Scholar]
  9. Yu G.H. Li S.F. Wei R. Jiang Z. Diabetes and colorectal cancer risk: Clinical and therapeutic implications. J. Diabetes Res. 2022 2022 1 16 10.1155/2022/1747326 35296101
    [Google Scholar]
  10. Martínez-Esquivias F. Guzmán-Flores J.M. Pérez-Larios A. Rico J.L. Becerra-Ruiz J.S. A review of the effects of gold, silver, selenium, and zinc nanoparticles on Diabetes Mellitus in murine models. Mini Rev. Med. Chem. 2021 21 14 1798 1812 10.2174/18755607MTEziOTEv4 33535949
    [Google Scholar]
  11. Pérez-Vázquez V. Silva-Gaona O.G. Guzmán-Flores J.M. Hernández-Ortiz M. Vargas-Ortiz K. Ramírez-Emiliano J. Encarnación-Guevara S. Curcumin reverts the protein differential expression in the liver of the Diabetic Obese db/db mice. Curr. Proteomics 2022 19 1 39 50 10.2174/1570164618666210114112642
    [Google Scholar]
  12. Weng W. Goel A. Curcumin and colorectal cancer: An update and current perspective on this natural medicine. Semin. Cancer Biol. 2022 80 73 86 10.1016/j.semcancer.2020.02.011 32088363
    [Google Scholar]
  13. Martínez-Esquivias F. Gutiérrez-Angulo M. Becerra-Ruiz J.S. Martinez-Perez L.A. de la Cruz-Ahumada C.J. Guzmán-Flores J.M. Bioinformatic analysis of the effect of silver nanoparticles on colorectal cancer cell line. BioMed Res. Int. 2022 2022 1 6828837 10.1155/2022/6828837 35445138
    [Google Scholar]
  14. Madrigal-Santillán E. Portillo-Reyes J. Madrigal-Bujaidar E. Sánchez-Gutiérrez M. Izquierdo-Vega J.A. Izquierdo-Vega J. Delgado-Olivares L. Vargas-Mendoza N. Álvarez-González I. Morales-González Á. Morales-González J.A. Opuntia spp. in human health: A comprehensive summary on its pharmacological, therapeutic and preventive properties. Part 2. Plants 2022 11 18 2333 10.3390/plants11182333 36145735
    [Google Scholar]
  15. Hwang S.H. Kang I.J. Lim S.S. Antidiabetic effect of fresh nopal (Opuntia ficus-indica) in low‐dose streptozotocin‐induced diabetic rats fed a high‐fat diet. Evid. Based Complement. Alternat. Med. 2017 2017 1 4380721 10.1155/2017/4380721 28303158
    [Google Scholar]
  16. Naselli F. Tesoriere L. Caradonna F. Bellavia D. Attanzio A. Gentile C. Livrea M.A. Anti-proliferative and pro-apoptotic activity of whole extract and isolated indicaxanthin from Opuntia ficus-indica associated with re-activation of the onco-suppressor p16INK4a gene in human colorectal carcinoma (Caco-2) cells. Biochem. Biophys. Res. Commun. 2014 450 1 652 658 10.1016/j.bbrc.2014.06.029 24937448
    [Google Scholar]
  17. Mohanraj K. Karthikeyan B.S. Vivek-Ananth R.P. Chand R.P.B. Aparna S.R. Mangalapandi P. Samal A. IMPPAT: A curated database of Indian medicinal plants, phytochemistry and therapeutics. Sci. Rep. 2018 8 1 4329 10.1038/s41598‑018‑22631‑z 29531263
    [Google Scholar]
  18. Xu X. Zhang W. Huang C. Li Y. Yu H. Wang Y. Duan J. Ling Y. A novel chemometric method for the prediction of human oral bioavailability. Int. J. Mol. Sci. 2012 13 6 6964 6982 10.3390/ijms13066964 22837674
    [Google Scholar]
  19. Zhao P. Zhang X. Gong Y. Li W. Wu Z. Tang Y. Liu G. Investigation of the mechanism of Shen Qi Wan prescription in the treatment of T2DM via network pharmacology and molecular docking. In Silico Pharmacol. 2022 10 1 9 10.1007/s40203‑022‑00124‑2 35673584
    [Google Scholar]
  20. Daina A. Michielin O. Zoete V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019 47 W1 W357 W364 10.1093/nar/gkz382 31106366
    [Google Scholar]
  21. Wang X. Shen Y. Wang S. Li S. Zhang W. Liu X. Lai L. Pei J. Li H. PharmMapper 2017 update: A web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res. 2017 45 W1 W356 W360 10.1093/nar/gkx374 28472422
    [Google Scholar]
  22. Davis A.P. Wiegers T.C. Johnson R.J. Sciaky D. Wiegers J. Mattingly C.J. Comparative Toxicogenomics Database (CTD): update 2023. Nucleic Acids Res. 2023 51 D1 D1257 D1262 10.1093/nar/gkac833 36169237
    [Google Scholar]
  23. Rappaport N. Twik M. Plaschkes I. Nudel R. Iny Stein T. Levitt J. Gershoni M. Morrey C.P. Safran M. Lancet D. MalaCards: An amalgamated human disease compendium with diverse clinical and genetic annotation and structured search. Nucleic Acids Res. 2017 45 D1 D877 D887 10.1093/nar/gkw1012 27899610
    [Google Scholar]
  24. Piñero J. Ramírez-Anguita J.M. Saüch-Pitarch J. Ronzano F. Centeno E. Sanz F. Furlong L.I. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 2019 48 D1 gkz1021 10.1093/nar/gkz1021 31680165
    [Google Scholar]
  25. Ge S.X. Jung D. Yao R. Shiny G.O. A graphical gene-set enrichment tool for animals and plants. Bioinformatics 2020 36 8 2628 2629 10.1093/bioinformatics/btz931 31882993
    [Google Scholar]
  26. Chen J. Bardes E.E. Aronow B.J. Jegga A.G. ToppGene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 2009 37 Web Server W305 W311 10.1093/nar/gkp427 19465376
    [Google Scholar]
  27. Shannon P. Markiel A. Ozier O. Baliga N.S. Wang J.T. Ramage D. Amin N. Schwikowski B. Ideker T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003 13 11 2498 2504 10.1101/gr.1239303 14597658
    [Google Scholar]
  28. Varadi M. Anyango S. Deshpande M. Nair S. Natassia C. Yordanova G. Yuan D. Stroe O. Wood G. Laydon A. Žídek A. Green T. Tunyasuvunakool K. Petersen S. Jumper J. Clancy E. Green R. Vora A. Lutfi M. Figurnov M. Cowie A. Hobbs N. Kohli P. Kleywegt G. Birney E. Hassabis D. Velankar S. AlphaFold protein structure database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022 50 D1 D439 D444 10.1093/nar/gkab1061 34791371
    [Google Scholar]
  29. Dallakyan S. Olson A.J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol. 2015 1263 243 250 10.1007/978‑1‑4939‑2269‑7_19 25618350
    [Google Scholar]
  30. Islam A. Islam M.S. Rahman M.K. Uddin M.N. Akanda M.R. The pharmacological and biological roles of eriodictyol. Arch. Pharm. Res. 2020 43 6 582 592 10.1007/s12272‑020‑01243‑0 32594426
    [Google Scholar]
  31. Patel K. Patel D.K. Biological potential of aromadendrin against human disorders: Recent development in pharmacological activities and analytical aspects. Pharmacol. Res. Mod. Chin. Med. 2024 11 100424 10.1016/j.prmcm.2024.100424
    [Google Scholar]
  32. Pakiet A. Kobiela J. Stepnowski P. Sledzinski T. Mika A. Changes in lipids composition and metabolism in colorectal cancer: A review. Lipids Health Dis. 2019 18 1 29 10.1186/s12944‑019‑0977‑8 30684960
    [Google Scholar]
  33. Escutia-Gutiérrez R. Sandoval-Rodríguez A. Galicia-Moreno M. Rosas-Campos R. Almeida-López M. Santos A. Armendáriz-Borunda J. Mexican ancestral foods (theobroma cacao, opuntia ficus indica, Persea americana and Phaseolus vulgaris) supplementation on anthropometric, lipid and glycemic control variables in obese patients: A systematic review and meta-analysis. Foods 2023 12 6 1177 10.3390/foods12061177 36981103
    [Google Scholar]
  34. You S. Zheng J. Chen Y. Huang H. Research progress on the mechanism of beta-cell apoptosis in type 2 diabetes mellitus. Front. Endocrinol. (Lausanne) 2022 13 976465 10.3389/fendo.2022.976465 36060972
    [Google Scholar]
  35. Yan L. Shi J. Zhu J. Cellular and molecular events in colorectal cancer: biological mechanisms, cell death pathways, drug resistance and signalling network interactions. Discov. Oncol. 2024 15 1 294 10.1007/s12672‑024‑01163‑1 39031216
    [Google Scholar]
  36. Antunes-Ricardo M. Hernández-Reyes A. Uscanga-Palomeque A.C. Rodríguez-Padilla C. Martínez-Torres A.C. Gutiérrez-Uribe J.A. Isorhamnetin glycoside isolated from Opuntia ficus-indica (L.) MilI induces apoptosis in human colon cancer cells through mitochondrial damage. Chem. Biol. Interact. 2019 310 108734 10.1016/j.cbi.2019.108734 31276661
    [Google Scholar]
  37. Chen R. Ma K. Li S. Zhou X. Chen H. Protective effects and mechanisms of opuntia polysaccharide in animal models of diabetes mellitus: A systematic review and meta-analysis. J. Ethnopharmacol. 2023 312 116490 10.1016/j.jep.2023.116490 37054824
    [Google Scholar]
  38. Krako Jakovljevic N. Pavlovic K. Jotic A. Lalic K. Stoiljkovic M. Lukic L. Milicic T. Macesic M. Stanarcic Gajovic J. Lalic N.M. Targeting mitochondria in diabetes. Int. J. Mol. Sci. 2021 22 12 6642 10.3390/ijms22126642 34205752
    [Google Scholar]
  39. Williams C. DiLeo A. Niv Y. Gustafsson J.Å. Estrogen receptor beta as target for colorectal cancer prevention. Cancer Lett. 2016 372 1 48 56 10.1016/j.canlet.2015.12.009 26708506
    [Google Scholar]
  40. Gregorio K.C.R. Laurindo C.P. Machado U.F. Estrogen and glycemic homeostasis: The fundamental role of nuclear estrogen receptors ESR1/ESR2 in glucose transporter GLUT4 regulation. Cells 2021 10 1 99 10.3390/cells10010099 33430527
    [Google Scholar]
  41. Li W. Chen F. Gao H. Xu Z. Zhou Y. Wang S. Lv Z. Zhang Y. Xu Z. Huo J. Zhao J. Zong Y. Feng W. Shen X. Wu Z. Lu A. Cytokine concentration in peripheral blood of patients with colorectal cancer. Front. Immunol. 2023 14 1175513 10.3389/fimmu.2023.1175513 37063892
    [Google Scholar]
  42. Suri S. Mitra P. Abhilasha A. Saxena I. Garg M.K. Bohra G.K. Sharma P. Role of interleukin-2 and interleukin-18 in newly diagnosed type 2 diabetes mellitus. J. Basic Clin. Physiol. Pharmacol. 2022 33 2 185 190 10.1515/jbcpp‑2020‑0272 33711216
    [Google Scholar]
  43. Amin K. Qadr S.H. Hassan Hussein R. Ali K.M. Rahman H.S. Levels of cytokines and GADA in type I and II diabetic patients. Prim. Care Diabetes 2020 14 1 61 67 10.1016/j.pcd.2019.03.008 31014937
    [Google Scholar]
  44. Mroczko B. Szmitkowski M. WereszczyńSka-Siemiątkowska, U.; Okulczyk, B. Stem cell factor (SCF) and interleukin 3 (IL-3) in the sera of patients with colorectal cancer. Dig. Dis. Sci. 2005 50 6 1019 1024 10.1007/s10620‑005‑2697‑3 15986847
    [Google Scholar]
  45. Attanzio A. Tesoriere L. Vasto S. Pintaudi A.M. Livrea M.A. Allegra M. Short-term cactus pear [Opuntia ficus-indica (L.) Mill] fruit supplementation ameliorates the inflammatory profile and is associated with improved antioxidant status among healthy humans. Food Nutr. Res. 2018 62 0 10.29219/fnr.v62.1262 30150921
    [Google Scholar]
  46. Antunes-Ricardo M. Gutiérrez-Uribe J.A. Martínez-Vitela C. Serna-Saldívar S.O. Topical anti-inflammatory effects of isorhamnetin glycosides isolated from Opuntia ficus-indica. BioMed Res. Int. 2015 2015 1 9 10.1155/2015/847320 25821823
    [Google Scholar]
  47. Ramírez-Perdomo A. Márquez-Barrios G. Gutiérrez L.D. Parra-Medina R. Neuroendocrine peptides in the pathogenesis of colorectal carcinoma. Exp. Oncol. 2023 45 1 3 16 10.15407/exp‑oncology.2023.01.003 37417286
    [Google Scholar]
  48. Bilic-Curcic I. Berkovic M.C. Gastrin - A potential predictor of response to incretin therapy in Diabetes Type 2 patients. Endocr. Metab. Immune Disord. Drug Targets 2017 17 4 297 302 10.2174/1871530317666171003162104 28982341
    [Google Scholar]
  49. Albakova Z. HSP90 multi-functionality in cancer. Front. Immunol. 2024 15 1436973 10.3389/fimmu.2024.1436973 39148727
    [Google Scholar]
  50. Shi W. Feng L. Dong S. Ning Z. Hua Y. Liu L. Chen Z. Meng Z. FBXL6 governs c-MYC to promote hepatocellular carcinoma through ubiquitination and stabilization of HSP90AA1. Cell Commun. Signal. 2020 18 1 100 10.1186/s12964‑020‑00604‑y 32576198
    [Google Scholar]
  51. Tam S.Y. Wu V.W.C. Law H.K.W. JNK pathway mediates low oxygen level induced epithelial-mesenchymal transition and stemness maintenance in colorectal cancer cells. Cancers 2020 12 1 224 10.3390/cancers12010224 31963305
    [Google Scholar]
  52. Garg R. Kumariya S. Katekar R. Verma S. Goand U.K. Gayen J.R. JNK signaling pathway in metabolic disorders: An emerging therapeutic target. Eur. J. Pharmacol. 2021 901 174079 10.1016/j.ejphar.2021.174079 33812885
    [Google Scholar]
  53. Guzmán-Flores J.M. Pérez-Vázquez V. Martínez-Esquivias F. Isiordia-Espinoza M.A. Viveros-Paredes J.M. Molecular docking integrated with network pharmacology explores the therapeutic mechanism of Cannabis sativa against Type 2 Diabetes. Curr. Issues Mol. Biol. 2023 45 9 7228 7241 10.3390/cimb45090457 37754241
    [Google Scholar]
  54. Xu M. Li Z. Yang L. Zhai W. Wei N. Zhang Q. Chao B. Huang S. Cui H. Elucidation of the mechanisms and molecular targets of Sanhuang Xiexin decoction for Type 2 Diabetes mellitus based on network pharmacology. BioMed Res. Int. 2020 2020 1 5848497 10.1155/2020/5848497 32851081
    [Google Scholar]
  55. Guo F. Yao L. Zhang W. Chen P. Hao R. Huang X. Jiang J. Wu S. The therapeutic mechanism of Yuye decoction on type 2 diabetes mellitus based on network pharmacology and experimental verification. J. Ethnopharmacol. 2023 308 116222 10.1016/j.jep.2023.116222 36828194
    [Google Scholar]
  56. Lin F. Zhang G. Yang X. Wang M. Wang R. Wan M. Wang J. Wu B. Yan T. Jia Y. A network pharmacology approach and experimental validation to investigate the anticancer mechanism and potential active targets of ethanol extract of Wei-Tong-Xin against colorectal cancer through induction of apoptosis via PI3K/AKT signaling pathway. J. Ethnopharmacol. 2023 303 115933 10.1016/j.jep.2022.115933 36403742
    [Google Scholar]
  57. Zhang M. Peng Y. Yang Z. Zhang H. Xu C. Liu L. Zhao Q. Wu J. Wang H. Liu J. DAB2IP down-regulates HSP90AA1 to inhibit the malignant biological behaviors of colorectal cancer. BMC Cancer 2022 22 1 561 10.1186/s12885‑022‑09596‑z 35590292
    [Google Scholar]
  58. Mahana A. Hammoda H.M. Khalifa A.A. Elblehi S.S. Harraz F.M. Shawky E. Integrated serum pharmacochemistry and network pharmacology analyses reveal the bioactive metabolites and potential functional mechanism of ground cherry (Physalis pruinosa L.) in treatment of type 2 diabetes mellitus in rats. J. Ethnopharmacol. 2023 300 115750 10.1016/j.jep.2022.115750 36162547
    [Google Scholar]
  59. Shi H. Tian S. Tian H. Network pharmacology interpretation of Fuzheng-Jiedu decoction against colorectal cancer. Evid. Based Complement. Alternat. Med. 2021 2021 1 16 10.1155/2021/4652492 33688358
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266398981251117100048
Loading
/content/journals/ctmc/10.2174/0115680266398981251117100048
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Cancer ; Diabetes ; Bioinformatics ; Nopal ; Colorectal ; Network pharmacology
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test