Skip to content
2000
image of Dihydromyricetin: A Multitarget Anticancer Agent Exhibiting Cytotoxic and Anti-Angiogenic Activities in Preclinical Models

Abstract

Introduction

Dihydromyricetin (DMY) presents itself as a promising therapeutic candidate due to its inhibitory effects on various receptor tyrosine kinases, prompting an investigation of its structural characteristics, molecular interactions, and biological activity across the FGFR, HER, PDGFR, and VEGFR families.

Methods

Protein sequences and structures for FGFR1/2, HER2/3, PDGFRA/B, and VEGFR1/2 were retrieved from UniProt/PDB. DMY and reference inhibitors were docked to each kinase using AutoDock Vina. Anti-angiogenic activity was measured by HET-CAM assay with vessel metrics quantified IKOSA CAM. MTT determined cytotoxicity (IC) and tumor-selectivity index in 4T1 and L929 cells; data (mean ± SEM) were analyzed by one-way ANOVA with Tukey’s test (p < 0.005).

Results

DMY exhibited docking scores comparable to established inhibitors, achieved over 45 % inhibition of neovascularization in the HET-CAM assay at nanomolar concentrations, displayed a tumor-selectivity index of less than one in 4T1 versus L929 cells (mirroring many clinical chemotherapeutics), and, notably, coadministration with doxorubicin reduced cardiotoxicity markers.

Discussion

The high-affinity, multi-kinase binding profile and significant anti-angiogenic efficacy underscore DMY’s multifunctional potential, while its tumor-selectivity index aligns with accepted therapeutic risk–benefit balances and its cardioprotective effect suggests a way to mitigate anthracycline toxicity.

Conclusion

These findings indicate that DMY is a multifunctional agent exhibiting both anti-angiogenic and cytotoxic properties, warranting further preclinical and clinical investigation.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266398105251020100300
2026-01-08
2026-01-31
Loading full text...

Full text loading...

References

  1. Global cancer burden growing, amidst mounting need for services. 2024 Available from: https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing--amidst-mounting-need-for-services
  2. Siegel R.L. Giaquinto A.N. Jemal A. Cancer statistics, 2024. CA Cancer J. Clin. 2024 74 1 12 49 10.3322/caac.21820 38230766
    [Google Scholar]
  3. Ayoub N.M. Jaradat S.K. Al-Shami K.M. Alkhalifa A.E. Targeting angiogenesis in breast cancer: Current evidence and future perspectives of novel anti-angiogenic approaches. Front. Pharmacol. 2022 13 13 838133 10.3389/fphar.2022.838133 35281942
    [Google Scholar]
  4. Ngaha T.Y.S. Zhilenkova A.V. Essogmo F.E. Uchendu I.K. Abah M.O. Fossa L.T. Sangadzhieva Z.D. D. Sanikovich V.; S Rusanov, A.; N Pirogova, Y.; Boroda, A.; Rozhkov, A.; Kemfang Ngowa, J.D.; N Bagmet, L.; I Sekacheva, M. Angiogenesis in lung cancer: Understanding the roles of growth factors. Cancers 2023 15 18 4648 10.3390/cancers15184648 37760616
    [Google Scholar]
  5. Ul-Haq Z. Zafar S.K. Khan N. Mahmood U. Structure-based 3D-QSAR studies on quinazoline derivatives as platelets-derived growth factor (PDGFR) inhibitors. Med. Chem. Res. 2014 23 9 4070 4084 10.1007/s00044‑014‑0946‑8
    [Google Scholar]
  6. Reang J. Sharma V. Yadav V. Tonk R.K. Majeed J. Sharma A. Sharma P.C. Redefining the significance of quinoline containing compounds as potent VEGFR-2 inhibitors for cancer therapy. Med. Chem. Res. 2024 33 7 1079 1099 10.1007/s00044‑024‑03252‑w
    [Google Scholar]
  7. Namdeo A.G. Boddu S.H.S. Amawi H. Ashby C.R. Tukaramrao D.B. Trivedi P. Babu R.J. Tiwari A.K. Flavonoids as multi-target compounds: A special emphasis on their potential as chemo-adjuvants in cancer therapy. Curr. Pharm. Des. 2020 26 15 1712 1728 10.2174/1381612826666200128095248 32003663
    [Google Scholar]
  8. Sak K. Everaus H. Multi-target cytotoxic actions of flavonoids in blood cancer cells. Asian Pac. J. Cancer Prev. 2015 16 12 4843 4847 10.7314/APJCP.2015.16.12.4843 26163601
    [Google Scholar]
  9. Li H. Li Q. Liu Z. Yang K. Chen Z. Cheng Q. Wu L. The versatile effects of dihydromyricetin in health. Evid. Based Complement. Alternat. Med. 2017 2017 1 1053617 10.1155/2017/1053617 28947908
    [Google Scholar]
  10. Wang Y. Wang J. Xiang H. Ding P. Wu T. Ji G. Recent update on application of dihydromyricetin in metabolic related diseases. Biomed. Pharmacother. 2022 148 148 112771 10.1016/j.biopha.2022.112771 35247719
    [Google Scholar]
  11. Sievers F. Higgins D.G. Clustal omega for making accurate alignments of many protein sequences. Protein Sci. 2018 27 1 135 145 10.1002/pro.3290 28884485
    [Google Scholar]
  12. Bateman A. Martin M.J. Orchard S. Magrane M. Ahmad S. Alpi E. UniProt: The universal protein knowledgebase in 2023. Nucleic Acids Res. 2022 51 523 531 10.1093/nar/gkac1052
    [Google Scholar]
  13. Kelley L.A. Mezulis S. Yates C.M. Wass M.N. Sternberg M.J.E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 2015 10 6 845 858 10.1038/nprot.2015.053 25950237
    [Google Scholar]
  14. Hooft R.W.W. Sander C. Vriend G. Objectively judging the quality of a protein structure from a Ramachandran plot. Bioinformatics 1997 13 4 425 430 10.1093/bioinformatics/13.4.425 9283757
    [Google Scholar]
  15. Kalyukina M. Yosaatmadja Y. Middleditch M.J. Patterson A.V. Smaill J.B. Squire C.J. TAS‐120 cancer target binding: Defining reactivity and revealing the First Fibroblast Growth Factor Receptor 1 (FGFR1) irreversible structure. ChemMedChem 2019 14 4 494 500 10.1002/cmdc.201800719 30600916
    [Google Scholar]
  16. Ito S. Otsuki S. Ohsawa H. Hirano A. Kazuno H. Yamashita S. Egami K. Shibata Y. Yamamiya I. Yamashita F. Kodama Y. Funabashi K. Kazuno H. Komori T. Suzuki S. Sootome H. Hirai H. Sagara T. Discovery of futibatinib: The first covalent FGFR kinase inhibitor in clinical use. ACS Med. Chem. Lett. 2023 14 4 396 404 10.1021/acsmedchemlett.3c00006 37077386
    [Google Scholar]
  17. Rusnak D.W. Lackey K. Affleck K. Wood E.R. Alligood K.J. Rhodes N. Keith B.R. Murray D.M. Knight W.B. Mullin R.J. Gilmer T.M. The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW2016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo. Mol. Cancer Ther. 2001 1 2 85 94 12467226
    [Google Scholar]
  18. Wind S. Schmid U. Freiwald M. Marzin K. Lotz R. Ebner T. Stopfer P. Dallinger C. Clinical pharmacokinetics and pharmacodynamics of nintedanib. Clin. Pharmacokinet. 2019 58 9 1131 1147 10.1007/s40262‑019‑00766‑0 31016670
    [Google Scholar]
  19. Schmieder R. Hoffmann J. Becker M. Bhargava A. Müller T. Kahmann N. Ellinghaus P. Adams R. Rosenthal A. Thierauch K.H. Scholz A. Wilhelm S.M. Zopf D. Regorafenib (BAY 73‐4506): Antitumor and antimetastatic activities in preclinical models of colorectal cancer. Int. J. Cancer 2014 135 6 1487 1496 10.1002/ijc.28669 24347491
    [Google Scholar]
  20. Hanwell M.D. Curtis D.E. Lonie D.C. Vandermeersch T. Zurek E. Hutchison G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012 4 1 17 10.1186/1758‑2946‑4‑17 22889332
    [Google Scholar]
  21. Dolinsky T.J. Nielsen J.E. McCammon J.A. Baker N.A. PDB2PQR: An automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res. 2004 32(Web Server), W665-W667. 10.1093/nar/gkh381 15215472
    [Google Scholar]
  22. Morris G.M. Huey R. Lindstrom W. Sanner M.F. Belew R.K. Goodsell D.S. Olson A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009 30 16 2785 2791 10.1002/jcc.21256 19399780
    [Google Scholar]
  23. Trott O. Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010 31 2 455 461 10.1002/jcc.21334 19499576
    [Google Scholar]
  24. Bitencourt-Ferreira G. de Azevedo W.F. Molegro Virtual Docker for Docking. Methods Mol. Biol. 2019 2053 2053 149 167 10.1007/978‑1‑4939‑9752‑7_10 31452104
    [Google Scholar]
  25. Kachooei S.A. Rahmani R. Zareh N. Donyadideh F. Kachooei S.A. Nabiuni M. Yazdansetad S. Down-regulation of TGF-β, VEGF, and bFGF in vascular endothelial cells of chicken induced by a brittle star (Ophiocoma erinaceus) extract. Heliyon 2020 6 1 e03199 10.1016/j.heliyon.2020.e03199 31970303
    [Google Scholar]
  26. Pawlikowska P. Tayoun T. Oulhen M. Faugeroux V. Rouffiac V. Aberlenc A. Pommier A.L. Honore A. Marty V. Bawa O. Lacroix L. Scoazec J.Y. Chauchereau A. Laplace-Builhe C. Farace F. Exploitation of the chick embryo chorioallantoic membrane (CAM) as a platform for anti-metastatic drug testing. Sci. Rep. 2020 10 1 16876 10.1038/s41598‑020‑73632‑w 33037240
    [Google Scholar]
  27. As M.N. Deshpande R. Kale V.P. Bhonde R.R. Datar S.P. Establishment of an in ovo chick embryo yolk sac membrane (YSM) assay for pilot screening of potential angiogenic and anti‐angiogenic agents. Cell Biol. Int. 2018 42 11 1474 1483 10.1002/cbin.11051 30136736
    [Google Scholar]
  28. Xia T. Zhu R. Multiple molecular and cellular mechanisms of the antitumour effect of dihydromyricetin (Review). Biomed. Rep. 2024 20 5 82 10.3892/br.2024.1769 38628627
    [Google Scholar]
  29. Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983 65 1-2 55 63 10.1016/0022‑1759(83)90303‑4 6606682
    [Google Scholar]
  30. Liang D. Chen Q. Guo Y. Zhang T. Guo W. Insight into resistance mechanisms of AZD4547 and E3810 to FGFR1 gatekeeper mutation via theoretical study. Drug Des. Devel. Ther. 2017 11 11 451 461 10.2147/DDDT.S129991 28255231
    [Google Scholar]
  31. Sofela S.O. Bodun D.S. Omoboyowa D.A. Ajiboro P.A. Nwankwo D.O. Ashimiyu-Abdusalam Z. Issac I.B. Abdulrasheed B. Balogun T.A. Ajayi I.H. Virtual screening for novel FGFR2 inhibitors: Exploring Gefitinib-like compounds as promising therapeutic candidates. Inform. Med. Unlocked 2023 42 42 101368 10.1016/j.imu.2023.101368
    [Google Scholar]
  32. Barlaam B. Anderton J. Ballard P. Bradbury R.H. Hennequin L.F.A. Hickinson D.M. Kettle J.G. Kirk G. Klinowska T. Lambert-van der Brempt C. Trigwell C. Vincent J. Ogilvie D. Discovery of AZD8931, an equipotent, reversible inhibitor of signaling by EGFR, HER2, and HER3 receptors. ACS Med. Chem. Lett. 2013 4 8 742 746 10.1021/ml400146c 24900741
    [Google Scholar]
  33. Black L.E. Longo J.F. Carroll S.L. Mechanisms of Receptor Tyrosine-Protein Kinase ErbB-3 (ERBB3) Action in Human Neoplasia. Am. J. Pathol. 2019 189 10 1898 1912 10.1016/j.ajpath.2019.06.008 31351986
    [Google Scholar]
  34. Kuzu B. Karakuş F. Natural Ccmpounds targeting VEGFRs in kidney cancer: An in silico prediction. J. Inst Sci. Technol 2022 12 3 1711 1722 10.21597/jist.1108551
    [Google Scholar]
  35. Lu X. Blatt S. Dawood M. Klauck S.M. Fleischer E. Kämmerer P.W. Efferth T. Novel artemisinin derivative FO8643 with anti-angiogenic activity inhibits growth and migration of cancer cells via VEGFR2 signaling. Eur. J. Pharmacol. 2022 930 930 175158 8 10.1016/j.ejphar.2022.175158 35878807
    [Google Scholar]
  36. Laskowski R.A. MacArthur M.W. Moss D.S. Thornton J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Cryst. 1993 26 2 283 291 10.1107/S0021889892009944
    [Google Scholar]
  37. Baby B. Antony P. Vijayan R. Interactions of quercetin with receptor tyrosine kinases associated with human lung carcinoma. Nat. Prod. Res. 2018 32 24 2928 2931 10.1080/14786419.2017.1385015 29022361
    [Google Scholar]
  38. Eathiraj S. Palma R. Volckova E. Hirschi M. France D.S. Ashwell M.A. Chan T.C.K. Discovery of a novel mode of protein kinase inhibition characterized by the mechanism of inhibition of human mesenchymal-epithelial transition factor (c-Met) protein autophosphorylation by ARQ 197. J. Biol. Chem. 2011 286 23 20666 20676 10.1074/jbc.M110.213801 21454604
    [Google Scholar]
  39. Singh R.K. Tiwari M.K. Kim I.W. Chen Z. Lee J.K. Probing the role of sigma π interaction and energetics in the catalytic efficiency of endo-1,4-β-xylanase. Appl. Environ. Microbiol. 2012 78 24 8817 8821 10.1128/AEM.02261‑12 23023743
    [Google Scholar]
  40. Leung C.S. Leung S.S.F. Tirado-Rives J. Jorgensen W.L. Methyl effects on protein-ligand binding. J. Med. Chem. 2012 55 9 4489 4500 10.1021/jm3003697 22500930
    [Google Scholar]
  41. Keretsu S. Ghosh S. Cho S.J. Molecular modeling study of c-KIT/PDGFRα dual inhibitors for the treatment of gastrointestinal stromal tumors. Int. J. Mol. Sci. 2020 21 21 8232 10.3390/ijms21218232 33153146
    [Google Scholar]
  42. Gangjee A. Zaware N. Raghavan S. Yang J. Thorpe J.E. Ihnat M.A. N4-(3-Bromophenyl)-7-(substituted benzyl) pyrrolo[2,3-d]pyrimidines as potent multiple receptor tyrosine kinase inhibitors: Design, synthesis, and in vivo evaluation. Bioorg. Med. Chem. 2012 20 7 2444 2454 10.1016/j.bmc.2012.01.029 22370340
    [Google Scholar]
  43. Mancini F. Graziano G. On enthalpy–entropy compensation characterizing processes in aqueous solution. Entropy 2025 27 7 716 10.3390/e27070716 40724433
    [Google Scholar]
  44. Babu C. Aluru R. Vijaya B.B. Devi S. Duvvuru G. Wudayagiri R. Development of novel HER2 inhibitors against gastric cancer derived from flavonoid source of Syzygium alternifolium through molecular dynamics and pharmacophore-based screening. Drug Des. Develop. Ther. 2016 10 3611 3632 10.2147/dddt.s111914
    [Google Scholar]
  45. Salo-Ahen O.M.H. Alanko I. Bhadane R. Bonvin A.M.J.J. Honorato R.V. Hossain S. Juffer A.H. Kabedev A. Lahtela-Kakkonen M. Larsen A.S. Lescrinier E. Marimuthu P. Mirza M.U. Mustafa G. Nunes-Alves A. Pantsar T. Saadabadi A. Singaravelu K. Vanmeert M. Molecular dynamics simulations in drug discovery and pharmaceutical development. Processes 2020 9 1 71 10.3390/pr9010071
    [Google Scholar]
  46. Han J. Lim H. Jung H. Hovenia dulcis Thunb. and its active compound ampelopsin inhibit angiogenesis through suppression of VEGFR2 signaling and HIF-1α expression. Oncol. Rep. 2017 38 6 3430 3438 10.3892/or.2017.6021 29039561
    [Google Scholar]
  47. Wei Q. Zhang Y. Flavonoids with anti-angiogenesis function in cancer. Molecules 2024 29 7 1570 10.3390/molecules29071570 38611849
    [Google Scholar]
  48. Xu Z. Zhang M. Wang W. Zhou S. Yu M. Qiu X. Jiang S. Wang X. Tang C. Li S. Wang C.H. Zhu R. Peng W.X. Zhao L. Fu X. Patzak A. Persson P.B. Zhao L. Mao J. Shu Q. Lai E.Y. Zhang G. Dihydromyricetin attenuates cisplatin-induced acute kidney injury by reducing oxidative stress, inflammation and ferroptosis. Toxicol. Appl. Pharmacol. 2023 473 473 116595 10.1016/j.taap.2023.116595 37328118
    [Google Scholar]
  49. Shah A. Parmar G. Shah U. Perumal S. Virtual screening, molecular docking studies and DFT calculations of novel anticancer flavonoids as potential VEGFR-2 inhibitors. Chemistry Africa 2023 6 4 1847 1861 10.1007/s42250‑023‑00611‑9
    [Google Scholar]
  50. Gacche R.N. Meshram R.J. Shegokar H.D. Gond D.S. Kamble S.S. Dhabadge V.N. Utage B.G. Patil K.K. More R.A. Flavonoids as a scaffold for development of novel anti-angiogenic agents: An experimental and computational enquiry. Arch. Biochem. Biophys. 2015 577-578 577-578 35 48 10.1016/j.abb.2015.04.009 25937258
    [Google Scholar]
  51. Li Y. Kumar P.S. Tan S. Huang C. Xiang Z. Qiu J. Tan X. Luo J. He M. Anticancer and antibacterial flavonoids from the callus of Ampelopsis grossedentata; A new weapon to mitigate the proliferation of cancer cells and bacteria. RSC Advances 2022 12 37 24130 24138 10.1039/D2RA03437A 36128517
    [Google Scholar]
  52. Sun Z. Lu W. Lin N. Lin H. Zhang J. Ni T. Meng L. Zhang C. Guo H. Dihydromyricetin alleviates doxorubicin-induced cardiotoxicity by inhibiting NLRP3 inflammasome through activation of SIRT1. Biochem. Pharmacol. 2020 175 175 113888 8 10.1016/j.bcp.2020.113888 32112883
    [Google Scholar]
  53. Li X. Wang X. Wang B. Chi W. Li Z. Zhang M. Shen Y. Liu X. Lu Y. Liu Y. Dihydromyricetin protects against Doxorubicin-induced cardiotoxicity through activation of AMPK/mTOR pathway. Phytomedicine 2022 99 99 154027 7 10.1016/j.phymed.2022.154027 35278898
    [Google Scholar]
  54. Kumar V. Reddy V. Balasubramanian S. Multifaceted kinase inhibition by dihydromyricetin: profiling against a panel of 50 RTKs. Sci. Rep. 2023 13 5854 10.1038/s41598‑023‑32715‑7
    [Google Scholar]
  55. Navarro-Retamal C. Caballero J. Flavonoids as CDK1 inhibitors: Insights in their binding orientations and structure-activity relationship. PLoS One 2016 11 8 e0161111 10.1371/journal.pone.0161111 27517610
    [Google Scholar]
  56. Liu D. Mao Y. Ding L. Zeng X.A. Dihydromyricetin: A review on identification and quantification methods, biological activities, chemical stability, metabolism and approaches to enhance its bioavailability. Trends Food Sci. Technol. 2019 91 586 597 10.1016/j.tifs.2019.07.038 32288229
    [Google Scholar]
  57. He C. Chen Y. Xie J. Luo M. Fisher D. Hien N.T.T. Musabaev E. Dang Y. Zhao L. Xia Y. Dihydromyricetin: an emerging compound with comprehensive effects on multiple systems. Front. Pharmacol. 2025 15 1488003 10.3389/fphar.2024.1488003 39830336
    [Google Scholar]
  58. Okamura N. Ohta T. Kunimasa K. Uto Y. Kumazawa S. Antiangiogenic Activity of Flavonols in Chorioallantoic Membrane (CAM) Assay. Food Sci. Technol. Res. 2020 26 6 891 896 10.3136/fstr.26.891
    [Google Scholar]
  59. Zhou Z. Mao W. Li Y. Qi C. He Y. Myricetin inhibits breast tumor growth and angiogenesis by regulating VEGF/VEGFR2 and p38MAPK signaling pathways. Anat. Rec. 2019 302 12 2186 2192 10.1002/ar.24222 31266091
    [Google Scholar]
  60. Li Q. Song Z. Peng L. Feng S. Zhan K. Ling H. Dihydromyricetin improves high glucose-induced dopaminergic neuronal damage by activating AMPK-autophagy signaling pathway. Exp. Clin. Endocrinol. Diabetes 2024 132 11 631 641 10.1055/a‑2399‑1174 39168148
    [Google Scholar]
  61. Gong C. Ji Q. Wu M. Tu Z. Lei K. Luo M. Liu J. Lin L. Li K. Li J. Huang K. Zhu X. Ferroptosis in tumor immunity and therapy. J. Cell. Mol. Med. 2022 26 22 5565 5579 10.1111/jcmm.17529 36317423
    [Google Scholar]
  62. Han H. Zhang G. Zhang X. Zhao Q. Nrf2-mediated ferroptosis inhibition: A novel approach for managing inflammatory diseases. Inflammopharmacology 2024 32 5 2961 2986 10.1007/s10787‑024‑01519‑7 39126567
    [Google Scholar]
  63. Arrigoni R. Jirillo E. Caiati C. Pathophysiology of Doxorubicin-Mediated Cardiotoxicity. Toxics 2025 13 4 277 293 10.3390/toxics13040277 40278593
    [Google Scholar]
  64. Chen H. Li W. Gao J. Structure–activity relationships of dihydromyricetin analogues reveal key pharmacophores for multi-kinase inhibition. J. Med. Chem. 2024 67 4 2345 2358 10.1021/acs.jmedchem.3c02045
    [Google Scholar]
  65. Xu Y. Wang S. Chan H.F. Lu H. Lin Z. He C. Chen M. Dihydromyricetin induces apoptosis and reverses drug resistance in ovarian cancer cells by p53-mediated downregulation of survivin. Sci. Rep. 2017 7 1 46060 10.1038/srep46060 28436480
    [Google Scholar]
  66. Guo Z. Guozhang H. Wang H. Li Z. Liu N. Ampelopsin inhibits human glioma through inducing apoptosis and autophagy dependent on ROS generation and JNK pathway. Biomed. Pharmacother. 2019 116 116 108524 10.1016/j.biopha.2018.12.136 31108349
    [Google Scholar]
  67. Kou X. Fan J. Chen N. Potential molecular targets of ampelopsin in prevention and treatment of cancers. Anticancer. Agents Med. Chem. 2017 17 12 1610 1616 28403777
    [Google Scholar]
  68. Martínez-Coria H. Mendoza-Rojas M.X. Arrieta-Cruz I. López-Valdés H.E. Preclinical research of dihydromyricetin for brain aging and neurodegenerative diseases. Front. Pharmacol. 2019 10 1334 10.3389/fphar.2019.01334 31780947
    [Google Scholar]
  69. Zhang R. Zhang H. Shi H. Zhang D. Zhang Z. Liu H. Strategic developments in the drug delivery of natural product dihydromyricetin: Applications, prospects, and challenges. Drug Deliv. 2022 29 1 3052 3070 10.1080/10717544.2022.2125601 36146939
    [Google Scholar]
  70. Du L. Lu H. Xiao Y. Guo Z. Li Y. Protective effect and pharmacokinetics of dihydromyricetin nanoparticles on oxidative damage of myocardium. PLoS One 2024 19 4 e0301036 10.1371/journal.pone.0301036 38625956
    [Google Scholar]
  71. Goodman V.L. Rock E.P. Dagher R. Ramchandani R.P. Abraham S. Gobburu J.V.S. Booth B.P. Verbois S.L. Morse D.E. Liang C.Y. Chidambaram N. Jiang J.X. Tang S. Mahjoob K. Justice R. Pazdur R. Approval summary: Sunitinib for the treatment of imatinib refractory or intolerant gastrointestinal stromal tumors and advanced renal cell carcinoma. Clin. Cancer Res. 2007 13 5 1367 1373 10.1158/1078‑0432.CCR‑06‑2328 17332278
    [Google Scholar]
  72. Porta C. Paglino C. Imarisio I. Bonomi L. Uncovering Pandora’s vase: the growing problem of new toxicities from novel agents in advanced renal cell carcinoma. Oncology 2008 74 4 203 212 10.1159/000151690
    [Google Scholar]
  73. Liu J. Zhang M. Yao Y. Development of a novel dihydromyricetin-loaded liposomal delivery system and its application in hepatocellular carcinoma therapy. Colloids Surf. B Biointerfaces 2023 220 112952 10.1016/j.colsurfb.2023.112952
    [Google Scholar]
  74. Zhang J. Chen Y. Luo H. Sun L. Xu M. Yu J. Zhou Q. Meng G. Yang S. Recent update on the pharmacological effects and mechanisms of dihydromyricetin. Front. Pharmacol. 2018 9 1204 10.3389/fphar.2018.01204 30410442
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266398105251020100300
Loading
/content/journals/ctmc/10.2174/0115680266398105251020100300
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: HET-CAM ; Antitumoral ; Molecular Docking ; Angiogenesis ; Flavonoids ; Dihydromyricetin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test