Skip to content
2000
image of Unveiling PHF19: A Novel Prognostic Biomarker and Candidate Therapeutic Node in Pheochromocytoma and Paraganglioma

Abstract

Introduction

This research endeavors to thoroughly examine the expression patterns, clinical relevance, and possible regulatory networks of PHD finger protein 19 (PHF19) in pheochromocytoma and paraganglioma (PCPG). PHF19, known for its role in tumor biology, is being investigated as a potential prognostic biomarker and immunotherapy target in PCPG.

Methods

We examined RNAseq data from 184 PCPG tissues and 3 normal tissues sourced from The Cancer Genome Atlas (TCGA), as well as 84 PCPG tissues and 6 normal adrenal tissues from the GSE19422 dataset. Utilizing R software, we conducted differential expression analysis, Kaplan-Meier survival analysis, Cox regression, and gene set enrichment analysis (GSEA). Additionally, PHF19 expression in PCPG cell lines was confirmed by quantitative real-time PCR (qRT-PCR).

Results

In PCPG tumor tissues, the expression of PHF19 was markedly higher than that in normal tissues (mean expression: 4.014 ± 0.044 versus 2.886 ± 0.205, p = 0.001). ROC analysis yielded an AUC of 0.940 (95% CI: 0.881–0.999), indicating PHF19's potential as a diagnostic biomarker. Elevated PHF19 expression was significantly associated with worse overall survival (OS) (HR: 9.45; 95% CI: 1.11–80.09; p = 0.039). PHF19 expression was significantly associated with multiple biological pathways, including steroid hormone biosynthesis and immune-related processes. PHF19 expression positively correlated with central memory T cell (Tcm) and effector memory T cell (Tem) infiltration, while negatively correlating with B cell infiltration and immune checkpoint genes (., CD274 and SIGLEC15). Additionally, PHF19 expression correlated with sensitivity to specific chemotherapeutic agents, including vinblastine and etoposide.

Discussion

The results imply that PHF19 could serve as a potential prognostic indicator and immunotherapy target in PCPG. Its association with immune cell infiltration and immune checkpoint genes suggests a multifaceted role in the tumor immune microenvironment. The correlation with drug sensitivity highlights the potential for PHF19 to influence treatment outcomes. These findings underscore the importance of further investigating PHF19 as a potential immunomodulatory node and biomarker in PCPG; however, functional validation is required before any therapeutic targeting can be advocated.

Conclusion

This study establishes PHF19 as a potential prognostic indicator and immunotherapy target in PCPG, highlighting its immunomodulatory potential and the need to validate its therapeutic value functionally. Subsequent studies should focus on corroborating these results in broader cohorts and on probing the therapeutic prospects of targeting PHF19 in PCPG.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266425775251128104329
2026-01-15
2026-02-22
Loading full text...

Full text loading...

References

  1. Pang Y. Liu Y. Pacak K. Yang C. Pheochromocytomas and paragangliomas: From genetic diversity to targeted therapies. Cancers 2019 11 4 436 10.3390/cancers11040436 30925729
    [Google Scholar]
  2. Li H. Hardin H. Zaeem M. Huang W. Hu R. Lloyd R.V. LncRNA expression and SDHB mutations in pheochromocytomas and paragangliomas. Ann. Diagn. Pathol. 2021 55 151801 10.1016/j.anndiagpath.2021.151801 34461576
    [Google Scholar]
  3. Fischer S. Liefke R. Polycomb-like proteins in gene regulation and cancer. Genes 2023 14 4 938 10.3390/genes14040938 37107696
    [Google Scholar]
  4. Li H. Liefke R. Jiang J. Kurland J.V. Tian W. Deng P. Zhang W. He Q. Patel D.J. Bulyk M.L. Shi Y. Wang Z. Polycomb-like proteins link the PRC2 complex to CpG islands. Nature 2017 549 7671 287 291 10.1038/nature23881 28869966
    [Google Scholar]
  5. Cai L. Rothbart S.B. Lu R. Xu B. Chen W.Y. Tripathy A. Rockowitz S. Zheng D. Patel D.J. Allis C.D. Strahl B.D. Song J. Wang G.G. An H3K36 methylation-engaging Tudor motif of polycomb-like proteins mediates PRC2 complex targeting. Mol. Cell 2013 49 3 571 582 10.1016/j.molcel.2012.11.026 23273982
    [Google Scholar]
  6. Li Y.Q. Liu D. Wang L.L. Shao Y.L. Zhou H.S. Hu Y.L. Min K.L. Gao C.J. Liu D.H. Zhou J. Lin J. Gao X.N. WTAP-mediated m6A methylation of PHF19 facilitates cell cycle progression by remodeling the accessible chromatin landscape in t(8;21) AML. Oncogene 2025 44 20 1504 1516 10.1038/s41388‑025‑03329‑9 40038518
    [Google Scholar]
  7. Xu H. Hu Y.W. Zhao J.Y. Hu X.M. Li S.F. Wang Y.C. Gao J.J. Sha Y.H. Kang C.M. Lin L. Huang C. Zhao J.J. Zheng L. Wang Q. MicroRNA-195-5p acts as an anti-oncogene by targeting PHF19 in hepatocellular carcinoma. Oncol. Rep. 2015 34 1 175 182 10.3892/or.2015.3957 25955388
    [Google Scholar]
  8. Zhang J. Lv W. Liu Y. Fu W. Chen B. Ma Q. Gao X. LINC_00355 promotes gastric cancer progression by upregulating PHF19 expression through sponging miR-15a-5p. BMC Cancer 2021 21 1 657 10.1186/s12885‑021‑08227‑3 34078310
    [Google Scholar]
  9. Lu J. Ji H. Tang H. Xu Z. microRNA-124a suppresses PHF19 over-expression, EZH2 hyper-activation, and aberrant cell proliferation in human glioma. Biochem. Biophys. Res. Commun. 2018 503 3 1610 1617 10.1016/j.bbrc.2018.07.089 30131250
    [Google Scholar]
  10. Xu Y. Jiang J. Wang Y. Wang W. Li H. Lai W. Zhou Z. Zhu W. Xiang Z. Wang Z. Zhu Z. Yu L. Huang X. Zheng H. Wu S. Engineered T cell therapy for gynecologic malignancies: Challenges and opportunities. Front. Immunol. 2021 12 725330 10.3389/fimmu.2021.725330 34386017
    [Google Scholar]
  11. Liu H. Dong A. Rasteh A.M. Wang P. Weng J. Identification of the novel exhausted T cell CD8 + markers in breast cancer. Sci. Rep. 2024 14 1 19142 10.1038/s41598‑024‑70184‑1 39160211
    [Google Scholar]
  12. Liu H. Expression and potential immune involvement of cuproptosis in kidney renal clear cell carcinoma. Cancer Genet. 2023 274-275 21 25 10.1016/j.cancergen.2023.03.002 36963335
    [Google Scholar]
  13. Liu H. Li Y. Potential roles of Cornichon Family AMPA Receptor Auxiliary Protein 4 (CNIH4) in head and neck squamous cell carcinoma. Cancer Biomark. 2022 35 4 439 450 10.3233/CBM‑220143 36404537
    [Google Scholar]
  14. Ou L. Liu H. Peng C. Zou Y. Jia J. Li H. Feng Z. Zhang G. Yao M. Helicobacter pylori infection facilitates cell migration and potentially impact clinical outcomes in gastric cancer. Heliyon 2024 10 17 37046 10.1016/j.heliyon.2024.e37046 39286209
    [Google Scholar]
  15. Wang K. Feng X. Zheng L. Chai Z. Yu J. You X. Li X. Cheng X. TRPV4 is a prognostic biomarker that correlates with the immunosuppressive microenvironment and chemoresistance of anti-cancer drugs. Front. Mol. Biosci. 2021 8 690500 10.3389/fmolb.2021.690500 34262942
    [Google Scholar]
  16. Yang D. Liu M. Jiang J. Luo Y. Wang Y. Chen H. Li D. Wang D. Yang Z. Chen H. Comprehensive analysis of DMRT3 as a potential biomarker associated with the immune infiltration in a pan-cancer analysis and validation in lung adenocarcinoma cancers 2022 14 24 6220 10.3390/cancers14246220 36551704
    [Google Scholar]
  17. Sun P. Li D. Yan J. Comprehensive analysis of TSPAN11: A potential prognostic and immunotherapy biomarker in colorectal cancer. Curr. Top. Med. Chem. 2025 10.2174/0115680266392910250728013705
    [Google Scholar]
  18. Lai I.L. Chang Y.S. Chan W.L. Lee Y.T. Yen J.C. Yang C.A. Hung S.Y. Chang J.G. Male-Specific Long Noncoding R.N.A. Male-specific long noncoding RNA TTTY15 inhibits non small cell lung cancer proliferation and metastasis via TBX4. Int. J. Mol. Sci. 2019 20 14 3473 10.3390/ijms20143473 31311130
    [Google Scholar]
  19. Xing S. Li D. Zhao Q. RPL22L1 is a novel biomarker for prognosis and immune infiltration in lung adenocarcinoma, promoting the growth and metastasis of LUAD cells by inhibiting the MDM2/P53 signaling pathway. Aging 2024 16 17 12392 12413 10.18632/aging.206096 39207452
    [Google Scholar]
  20. Cai H. Chen S. Wu Z. Wang F. Tang S. Li D. Wang D. Guo W. Comprehensive analysis of ZNF692 as a potential biomarker associated with immune infiltration in a pan cancer analysis and validation in hepatocellular carcinoma. Aging 2023 15 22 13041 13058 10.18632/aging.205218 37980166
    [Google Scholar]
  21. Chen R. Duan J. Ye Y. Xu H. Ding Y. Liu J. Identification and verification of a prognostic risk signature in oral squamous cell carcinoma. Curr. Top. Med. Chem. 2024 24 10.2174/0115680266335055240828061128 39238386
    [Google Scholar]
  22. Zhao Z. Wang Z. Wang P. Liu S. Li Y. Yang X. EPDR1, which is negatively regulated by miR-429, suppresses epithelial ovarian cancer progression via PI3K/AKT signaling pathway. Front. Oncol. 2021 11 751567 10.3389/fonc.2021.751567 35004274
    [Google Scholar]
  23. Lin W. Zhou J. Ma Y. Ge L. Luo Y. Wang Y. Zhou S. Prognostic value of mitochondrial CKMT2 in Pan-cancer and its tumor immune correlation analysis. Sci. Rep. 2024 14 1 342 10.1038/s41598‑023‑46468‑3 38172162
    [Google Scholar]
  24. Xu W. Su X. Qin J. Jin Y. Zhang N. Huang S. Identification of autophagy-related biomarkers and diagnostic model in Alzheimer’s disease. Genes 2024 15 8 1027 10.3390/genes15081027 39202387
    [Google Scholar]
  25. Tao Y. Li J. Pan J. Wang Q. Ke R. Yuan D. Wu H. Cao Y. Zhao L. Integration of scRNA-Seq and bulk RNA-Seq identifies circadian rhythm disruption-related genes associated with prognosis and drug resistance in colorectal cancer patients. ImmunoTargets Ther. 2025 14 475 489 10.2147/ITT.S499806 40241740
    [Google Scholar]
  26. Fan Y. Hou J. Liu X. Han B. Meng Y. Liu B. Chen F. Shang Y. Cao P. Tan K. Integrated bioinformatics analysis identifies heat shock factor 2 as a prognostic biomarker associated with immune cell infiltration in hepatocellular carcinoma. Front. Genet. 2021 12 668516 10.3389/fgene.2021.668516 34917120
    [Google Scholar]
  27. Ding X. Wan A. Qi X. Jiang K. Liu Z. Chen B. ZNF695, a potential prognostic biomarker, correlates with im mune infiltrates in cervical squamous cell carcinoma and endoce rvical adenocarcinoma: Bioinformatic analysis and experimental verification. Curr. Gene Ther. 2024 24 5 441 452 10.2174/0115665232285216240228071244 38441026
    [Google Scholar]
  28. Huang Y. He J. Duan X. Hou R. Shi J. Prognostic gene HLA‐DMA associated with cell cycle and immune infiltrates in LUAD. Clin. Respir. J. 2023 17 12 1286 1300 10.1111/crj.13716 37972401
    [Google Scholar]
  29. Li G. Wang Y. Wang W. Lv G. Li X. Wang J. Liu X. Yuan D. Deng S. You D. BIRC5 as a prognostic and diagnostic biomarker in pan-cancer: An integrated analysis of expression, immune subtypes, and functional networks. Front. Genet. 2024 15 1509342 10.3389/fgene.2024.1509342 39703228
    [Google Scholar]
  30. Chen Y. Sun Y. Luo Z. Lin J. Qi B. Kang X. Ying C. Guo C. Yao M. Chen X. Wang Y. Wang Q. Chen J. Chen S. Potential mechanism underlying exercise upregulated circulating blood exosome miR-215-5p to prevent necroptosis of neuronal cells and a model for early diagnosis of Alzheimer’s disease. Front. Aging Neurosci. 2022 14 860364 10.3389/fnagi.2022.860364 35615585
    [Google Scholar]
  31. Zhou D. Cui Y. Liang T. Wu Z. Yan H. Li Y. Yin W. Lin Y. You Q. Pan-cancer analysis identifies CLEC12A as a potential biomarker and therapeutic target for lung adenocarcinoma. Cancer Cell Int. 2025 25 1 128 10.1186/s12935‑025‑03755‑5 40181336
    [Google Scholar]
  32. Wang Y. Yang Y. Chen Y. Zhou Y. Zhang S. Zhu W. Zhang X. Zhu J. Qing’e Pill rectifies bone homeostasis imbalance in diabetic osteoporosis via the AGE/RAGE pathway: A network pharmacology analysis and multi-omics validation. J. Ethnopharmacol. 2025 348 119816 10.1016/j.jep.2025.119816 40245968
    [Google Scholar]
  33. Chen B. Ding X. Wan A. Qi X. Lin X. Wang H. Mu W. Wang G. Zheng J. Comprehensive analysis of TLX2 in pan cancer as a prognostic and immunologic biomarker and validation in ovarian cancer. Sci. Rep. 2023 13 1 16244 10.1038/s41598‑023‑42171‑5 37758722
    [Google Scholar]
  34. Su W. Hong T. Feng B. Yang Z. Lei G. A unique regulated cell death-related classification regarding prognosis and immune landscapes in non-small cell lung cancer. Front. Immunol. 2023 14 1075848 10.3389/fimmu.2023.1075848 36817452
    [Google Scholar]
  35. Li Y. Cai Y. Ji L. Wang B. Shi D. Li X. Machine learning and bioinformatics analysis of diagnostic biomarkers associated with the occurrence and development of lung adenocarcinoma. PeerJ 2024 12 17746 10.7717/peerj.17746 39071134
    [Google Scholar]
  36. Liang D. Zhang Q. Pang Y. Yan R. Ke Y. SGSM2 in Uveal Melanoma: Implications for Survival, Immune Infiltration, and Drug Sensitivity. Protein Pept. Lett. 2024 31 11 894 905 10.2174/0109298665341953240926041613 39501960
    [Google Scholar]
  37. Miao L. Jing L. Chen B. Zeng T. Chen Y. TPD52 is a potential prognostic biomarker and correlated with immune infiltration: A pan-cancer analysis. Curr. Mol. Med. 2024 24 11 1413 1425 10.2174/0115665240260252230919054858 38178662
    [Google Scholar]
  38. Iaconis D. Crina C. Brillante S. Indrieri A. Morleo M. Franco B. The HOPS complex subunit VPS39 controls ciliogenesis through autophagy. Hum. Mol. Genet. 2020 29 6 1018 1029 10.1093/hmg/ddaa029 32077937
    [Google Scholar]
  39. Craig J.E. Cliffe A. Garnett K. High N.J. Survival of nontypeable Haemophilus influenzae in macrophages. FEMS Microbiol. Lett. 2001 203 1 55 61 10.1111/j.1574‑6968.2001.tb10820.x 11557140
    [Google Scholar]
  40. Johnson T.S. Sudha P. Liu E. Becker N. Robertson S. Blaney P. Morgan G. Chopra V.S. Dos Santos C. Nixon M. Huang K. Suvannasankha A. Zaid M.A. Abonour R. Walker B.A. 1q amplification and PHF19 expressing high-risk cells are associated with relapsed/refractory multiple myeloma. Nat. Commun. 2024 15 1 4144 10.1038/s41467‑024‑48327‑9 38755140
    [Google Scholar]
  41. Ghamlouch H. Boyle E.M. Blaney P. Wang Y. Choi J. Williams L. Bauer M. Auclair D. Bruno B. Walker B.A. Davies F.E. Morgan G.J. Insights into high-risk multiple myeloma from an analysis of the role of PHF19 in cancer. J. Exp. Clin. Cancer Res. 2021 40 1 380 10.1186/s13046‑021‑02185‑1 34857028
    [Google Scholar]
  42. An H. Chen S. Zhang X. Ke S. Ke J. Lu Y. PHF19 before and post induction treatment possess favorable potency of reflecting treatment response to protease inhibitors, event-free survival, and overall survival in multiple myeloma patients. Hematology 2024 29 1 2331389 10.1080/16078454.2024.2331389 38511642
    [Google Scholar]
  43. Li Y. Gong J. Zhang L. PHD finger protein 19 expression in multiple myeloma: Association with clinical features, induction therapy outcome, disease progression, and survival. J. Clin. Lab. Anal. 2021 35 9 23910 10.1002/jcla.23910 34390275
    [Google Scholar]
  44. Mason M.J. Schinke C. Eng C.L.P. Towfic F. Gruber F. Dervan A. White B.S. Pratapa A. Guan Y. Chen H. Cui Y. Li B. Yu T. Chaibub Neto E. Mavrommatis K. Ortiz M. Lyzogubov V. Bisht K. Dai H.Y. Schmitz F. Flynt E. Dan Rozelle; Danziger, S.A.; Ratushny, A.; Dalton, W.S.; Goldschmidt, H.; Avet-Loiseau, H.; Samur, M.; Hayete, B.; Sonneveld, P.; Shain, K.H.; Munshi, N.; Auclair, D.; Hose, D.; Morgan, G.; Trotter, M.; Bassett, D.; Goke, J.; Walker, B.A.; Thakurta, A.; Guinney, J. Multiple Myeloma DREAM Challenge reveals epigenetic regulator PHF19 as marker of aggressive disease. Leukemia 2020 34 7 1866 1874 10.1038/s41375‑020‑0742‑z 32060406
    [Google Scholar]
  45. Ren Z. Ahn J.H. Liu H. Tsai Y.H. Bhanu N.V. Koss B. Allison D.F. Ma A. Storey A.J. Wang P. Mackintosh S.G. Edmondson R.D. Groen R.W.J. Martens A.C. Garcia B.A. Tackett A.J. Jin J. Cai L. Zheng D. Wang G.G. PHF19 promotes multiple myeloma tumorigenicity through PRC2 activation and broad H3K27me3 domain formation. Blood 2019 134 14 1176 1189 10.1182/blood.2019000578 31383640
    [Google Scholar]
  46. Cheng Y. Song Z. Cheng J. Tang Z. JARID2, a novel regulatory factor, promotes cell proliferation, migration, and invasion in oral squamous cell carcinoma. BMC Cancer 2024 24 1 793 10.1186/s12885‑024‑12457‑6 38961353
    [Google Scholar]
  47. Zhong C. Xie Z. Zeng L. Yuan C. Duan S. MIR4435-2HG is a potential pan-cancer biomarker for diagnosis and prognosis. Front. Immunol. 2022 13 855078 10.3389/fimmu.2022.855078 35784328
    [Google Scholar]
  48. Linder K. Iragavarapu C. Liu D. SETBP1 mutations as a biomarker for myelodysplasia/myeloproliferative neoplasm overlap syndrome. Biomark. Res. 2017 5 1 33 10.1186/s40364‑017‑0113‑8 29225884
    [Google Scholar]
  49. Li Q.L. Lin X. Yu Y.L. Chen L. Hu Q.X. Chen M. Cao N. Zhao C. Wang C.Y. Huang C.W. Li L.Y. Ye M. Wu M. Genome-wide profiling in colorectal cancer identifies PHF19 and TBC1D16 as oncogenic super enhancers. Nat. Commun. 2021 12 1 6407 10.1038/s41467‑021‑26600‑5 34737287
    [Google Scholar]
  50. Li P. Sun J. Ruan Y. Song L. High PHD Finger Protein 19 (PHF19) expression predicts poor prognosis in colorectal cancer: A retrospective study. PeerJ 2021 9 11551 10.7717/peerj.11551 34141488
    [Google Scholar]
  51. Zhu Z. Tang N. Wang M. Zhou J. Wang J. Ren H. Shi X. Comprehensive pan-cancer genomic analysis reveals PHF19 as a carcinogenic indicator related to immune infiltration and prognosis of hepatocellular carcinoma. Front. Immunol. 2022 12 781087 10.3389/fimmu.2021.781087 35069553
    [Google Scholar]
  52. Xiaoyun S. Yuyuan Z. Jie X. Yingjie N. Qing X. Yuezhen D. Haiguang X. PHF19 activates hedgehog signaling and promotes tumorigenesis in hepatocellular carcinoma. Exp. Cell Res. 2021 406 1 112690 10.1016/j.yexcr.2021.112690 34129846
    [Google Scholar]
  53. Cai Z. Qian Z.Y. Jiang H. Ma N. Li Z. Liu L.Y. Ren X.X. Shang Y.R. Wang J.J. Li J.J. Liu D.P. Zhang X.P. Feng D. Ni Q.Z. Feng Y.Y. Li N. Zhou X.Y. Wang X. Bao Y. Zhang X.L. Deng Y.Z. Xie D. hPCL3s promotes hepatocellular carcinoma metastasis by activating β-Catenin signaling. Cancer Res. 2018 78 10 2536 2549 10.1158/0008‑5472.CAN‑17‑0028 29483096
    [Google Scholar]
  54. Pidíkova P. Reis R. Herichova I. miRNA clusters with down-regulated expression in human colorectal cancer and their regulation. Int. J. Mol. Sci. 2020 21 13 4633 10.3390/ijms21134633 32610706
    [Google Scholar]
  55. Li N. Wang B. Suppressive effects of umbilical cord mesenchymal stem cell-derived exosomal miR-15a-5p on the progression of cholangiocarcinoma by inhibiting CHEK1 expression. Cell Death Discov. 2022 8 1 205 10.1038/s41420‑022‑00932‑7 35428780
    [Google Scholar]
  56. Liu X.S. Zhou L.M. Yuan L.L. Gao Y. Kui X.Y. Liu X.Y. Pei Z.J. NPM1 is a prognostic biomarker involved in immune infiltration of lung adenocarcinoma and associated with m6A modification and glycolysis. Front. Immunol. 2021 12 724741 10.3389/fimmu.2021.724741 34335635
    [Google Scholar]
  57. Patra S. Elahi N. Armorer A. Arunachalam S. Omala J. Hamid I. Ashton A.W. Joyce D. Jiao X. Pestell R.G. Mechanisms governing metabolic heterogeneity in breast cancer and other tumors. Front. Oncol. 2021 11 700629 10.3389/fonc.2021.700629 34631530
    [Google Scholar]
  58. Lyu F. Li Y. Yan Z. He Q. Cheng L. Zhang P. Liu B. Liu C. Song Y. Xing Y. Identification of ISG15 and ZFP36 as novel hypoxia- and immune-related gene signatures contributing to a new perspective for the treatment of prostate cancer by bioinformatics and experimental verification. J. Transl. Med. 2022 20 1 202 10.1186/s12967‑022‑03398‑4 35538543
    [Google Scholar]
  59. Wang H. Xu P. Sun G. Lv J. Cao J. Xu Z. Downregulation of PHF19 inhibits cell growth and migration in gastric cancer. Scand. J. Gastroenterol. 2020 55 6 687 693 10.1080/00365521.2020.1766555 32449434
    [Google Scholar]
  60. Wells A.C. Pobezinskaya E.L. Pobezinsky L.A. Non-coding RNAs in CD8 T cell biology. Mol. Immunol. 2020 120 67 73 10.1016/j.molimm.2020.01.023 32085976
    [Google Scholar]
  61. Zhang C. Guo C. Li Y. Ouyang L. Zhao Q. Liu K. The role of YTH domain containing 2 in epigenetic modification and immune infiltration of pan‐cancer. J. Cell. Mol. Med. 2021 25 18 8615 8627 10.1111/jcmm.16818 34312987
    [Google Scholar]
  62. Gautier T. Fahet N. Tamanai-Shacoori Z. Oliviero N. Blot M. Sauvager A. Burel A. Gall S.D.L. Tomasi S. Blat S. Bousarghin L. Roseburia intestinalis modulates PYY expression in a new a multicellular model including enteroendocrine cells. Microorganisms 2022 10 11 2263 10.3390/microorganisms10112263 36422333
    [Google Scholar]
  63. Xu C. Xie Y. Xie P. Li J. Tong Z. Yang Y. ZDHHC9: A promising therapeutic target for triple-negative breast cancer through immune modulation and immune checkpoint blockade resistance. Discover Oncology 2023 14 1 191 10.1007/s12672‑023‑00790‑4 37875591
    [Google Scholar]
  64. Wang Y. Wen H. Sun D. SLC2A1 plays a significant prognostic role in lung adenocarcinoma and is associated with tumor immunity based on bioinformatics analysis. Ann. Transl. Med. 2022 10 9 519 10.21037/atm‑22‑1430 35928739
    [Google Scholar]
  65. Schinke C.D. Bird J.T. Qu P. Yaccoby S. Lyzogubov V.V. Shelton R. Ling W. Boyle E.M. Deshpande S. Byrum S.D. Washam C. Mackintosh S. Stephens O. Thanendrarajan S. Zangari M. Shaughnessy J. Zhan F. Barlogie B. van Rhee F. Walker B.A. PHF19 inhibition as a therapeutic target in multiple myeloma. Curr. Res. Transl. Med. 2021 69 3 103290 10.1016/j.retram.2021.103290 33894670
    [Google Scholar]
  66. Tian X.M. Xiang B. Yu Y.H. Li Q. Zhang Z.X. Zhanghuang C. Jin L.M. Wang J.K. Mi T. Chen M.L. Liu F. Wei G.H. A novel cuproptosis-related subtypes and gene signature associates with immunophenotype and predicts prognosis accurately in neuroblastoma. Front. Immunol. 2022 13 999849 10.3389/fimmu.2022.999849 36211401
    [Google Scholar]
  67. Todosenko N. Yurova K. Khaziakhmatova O. Malashchenko V. Khlusov I. Litvinova L. Heparin and heparin-based drug delivery systems: Pleiotropic molecular effects at multiple drug resistance of osteosarcoma and immune cells. Pharmaceutics 2022 14 10 2181 10.3390/pharmaceutics14102181 36297616
    [Google Scholar]
  68. Liu H. Wang P. CRISPR screening and cell line IC50 data reveal novel key genes for trametinib resistance. Clin. Exp. Med. 2024 25 1 21 10.1007/s10238‑024‑01538‑2 39708249
    [Google Scholar]
  69. Jin Z. Zhang W. Liu H. Ding A. Lin Y. Wu S.X. Lin J. Potential therapeutic application of local anesthetics in cancer treatment. Recent Patents Anticancer Drug Discov. 2022 17 4 326 342 10.2174/1574892817666220119121204 35043766
    [Google Scholar]
  70. Ou L. Liu H. Shi X. Peng C. Zou Y. Jia J. Li H. Zhu Z. Wang Y. Su B. Lai Y. Chen M. Zhu W. Feng Z. Zhang G. Yao M. Terminalia chebula Retz. aqueous extract inhibits the Helicobacter pylori-induced inflammatory response by regulating the inflammasome signaling and ER-stress pathway. J. Ethnopharmacol. 2024 320 117428 10.1016/j.jep.2023.117428 37981121
    [Google Scholar]
  71. Ou L. Hao Y. Liu H. Zhu Z. Li Q. Chen Q. Wei R. Feng Z. Zhang G. Yao M. Chebulinic acid isolated from aqueous extracts of Terminalia chebula Retz inhibits Helicobacter pylori infection by potential binding to Cag A protein and regulating adhesion. Front. Microbiol. 2024 15 1416794 10.3389/fmicb.2024.1416794 39421559
    [Google Scholar]
  72. Liu H. Karsidag M. Chhatwal K. Wang P. Tang T. Single-cell and bulk RNA sequencing analysis reveals CENPA as a potential biomarker and therapeutic target in cancers. PLoS One 2025 20 1 0314745 10.1371/journal.pone.0314745 39820192
    [Google Scholar]
  73. Huang W. Wu Y. Zhu J. Luo N. Wang C. Liu S. Cheng Z. Pan-cancer integrated bioinformatics analysis reveals cuproptosis related gene FDX1 is a potential prognostic and immunotherapeutic biomarker for lower-grade gliomas. Front. Mol. Biosci. 2023 10 963639 10.3389/fmolb.2023.963639 36825202
    [Google Scholar]
  74. Liu J. Wang J. Wang J. Wu M. Yu J. Chen D. Disulfidptosis-associated gene signature predicts prognosis and radioresistance in NSCLC. Transl. Oncol. 2025 61 102496 10.1016/j.tranon.2025.102496 40840079
    [Google Scholar]
  75. Liu H. Weng J. A pan-cancer bioinformatic analysis of RAD51 regarding the values for diagnosis, prognosis, and therapeutic prediction. Front. Oncol. 2022 12 858756 10.3389/fonc.2022.858756 35359409
    [Google Scholar]
  76. Liu H. Dilger J.P. Lin J. A pan-cancer-bioinformatic-based literature review of TRPM7 in cancers. Pharmacol. Ther. 2022 240 108302 10.1016/j.pharmthera.2022.108302 36332746
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266425775251128104329
Loading
/content/journals/ctmc/10.2174/0115680266425775251128104329
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test