Skip to content
2000
image of Emerging Multi-Target Therapies for Type 2 Diabetes: Bridging Drug Innovation and Precision Delivery

Abstract

Diabetes is a long-term metabolic disorder characterized by elevated blood glucose levels and is primarily classified into Type 1 Diabetes Mellitus (T1DM) and Type 2 Diabetes Mellitus (T2DM). Conventional drug delivery systems often face limitations such as low bioavailability, inadequate target specificity, and the need for frequent dosing. Drug targeting offers significant advantages in diabetes treatment by enhancing therapeutic efficacy and reducing side effects. This is achieved by binding drug-loaded carriers to specific receptors on insulin-sensitive tissues or pancreatic β-cells, ensuring precise action at the disease site and improving patient compliance. Several therapeutic targets have been identified to improve glycemic control and overcome the limitations associated with traditional drug delivery approaches. The present study provides insights into emerging targets for diabetes management, including AMPK (AMP-Activated Protein Kinase), glucose absorption inhibitors, renal glucose reabsorption inhibitors, GLP-1 (Glucagon-Like Peptide-1) agonists, SGLT2 (Sodium-Glucose Cotransporter-2) inhibitors, and PPAR-γ (Peroxisome Proliferator-Activated Receptor Gamma) modulators. Increasing attention is also being given to multi-targeted therapy, which simultaneously modulates multiple interconnected physiological pathways involved in diabetes pathogenesis. Such strategies have demonstrated the potential to improve glycemic control, reduce long-term complications, and offer better safety profiles compared to monotherapy. Given the multifactorial nature of diabetes, a combination of precision-based and multi-targeted approaches holds promise for developing safer, better tolerated, and patient-centered antidiabetic therapies. This review highlights recent advances in identifying novel therapeutic targets and drug delivery strategies, contributing to the evolving paradigms that may shape the future of diabetes care.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266429073251122045133
2026-01-08
2026-01-31
Loading full text...

Full text loading...

References

  1. Deichmann J. Kaltenbach H.M. Model predictive control to account for prolonged changes in insulin requirements following exercise in type 1 diabetes. J. Process Contr. 2023 129 103042 10.1016/j.jprocont.2023.103042
    [Google Scholar]
  2. Kumar A. Mazumder R. Rani A. Pandey P. Khurana N. Novel Approaches for the Management of Type 2 Diabetes Mellitus: An Update. Curr. Diabetes Rev. 2024 20 4 051023221768 10.2174/0115733998261903230921102620 37888820
    [Google Scholar]
  3. Tang S. Luo W. Li T. Chen X. Zeng Q. Gao R. Kang B. Peng C. Wang Z. Yang S. Li Q. Hu J. Individual cereals intake is associated with progression of diabetes and diabetic chronic complications. Diabetes Metab. Syndr. 2024 18 9 103127 10.1016/j.dsx.2024.103127 39332264
    [Google Scholar]
  4. Cefalu W.T. Andersen D.K. Arreaza-Rubín G. Pin C.L. Sato S. Verchere C.B. Woo M. Rosenblum N.D. Heterogeneity of diabetes: B-Cells, phenotypes, and precision medicine: Proceedings of an international symposium of the canadian institutes of health research’s institute of nutrition, metabolism and diabetes and the U.S. national institutes of health’s national institute of diabetes and digestive and kidney diseases. Diabetes 2022 71 1 1 22 10.2337/db21‑0777 34782351
    [Google Scholar]
  5. Rupprecht B. Stöckl A. Umgang mit der Dauermedikation bei Patienten mit Diabetes mellitus. Anasthesiol. Intensivmed. Notfallmed. Schmerzther. 2021 56 10 679 690 10.1055/a‑1226‑4733 34704245
    [Google Scholar]
  6. Brod M. Nikolajsen A. Weatherall J. Pfeiffer K.M. Understanding post-prandial hyperglycemia in patients with type 1 and type 2 diabetes: A web-based survey in germany, the UK, and USA. Diabetes Ther. 2016 7 2 335 348 10.1007/s13300‑016‑0175‑x 27233285
    [Google Scholar]
  7. Debnath A. Rani A. Mazumder R. Mazumder A. Singh R.K. Sharma S. Srivastava S. Chaudhary H. Mishra R. Khurana N. Sanchitra J. Jan S.A. Discovery of novel PTP1B inhibitors by high-throughput virtual screening. Curr. Computeraided Drug Des. 2024 ••• 21 10.2174/0115734099278007241004105500 39411941
    [Google Scholar]
  8. Barjouei M.S. Norouzi S. Bernoos P. Mokhtari K. Asadzadeh A. Comparison of the inhibitory activity of bioactive compounds of salvia officinalis with antidiabetic drugs, voglibose and miglitol, in suppression of alpha-glucosidase enzyme by in silico method. Int. J. Diabetes Metab. 2022 22 145 154
    [Google Scholar]
  9. Marzook A. Tomas A. Jones B. The interplay of glucagon-like peptide-1 receptor trafficking and signalling in pancreatic beta cells. Front. Endocrinol. 2021 12 678055 10.3389/fendo.2021.678055 34040588
    [Google Scholar]
  10. Mitanchez D. Ciangura C. Jacqueminet S. How can maternal lifestyle interventions modify the effects of gestational diabetes in the neonate and the offspring? a systematic review of meta-analyses. Nutrients 2020 12 2 353 10.3390/nu12020353 32013197
    [Google Scholar]
  11. Julius A. Hopper W. A non-invasive, multi-target approach to treat diabetic retinopathy. Biomed. Pharmacother. 2019 109 708 715 10.1016/j.biopha.2018.10.185 30551523
    [Google Scholar]
  12. Julius A. Malakondaiah S. Pothireddy R.B. Insights on metabolic connections and interplay between cancer and diabetes: Role of multi-target drugs. Discov. Med. 2025 2 1 87 10.1007/s44337‑025‑00286‑w
    [Google Scholar]
  13. Makhoba X.H. Viegas C. Mosa R.A. Viegas F.P.D. Pooe O.J. Potential impact of the multi-target drug approach in the treatment of some complex diseases. Drug Des. Devel. Ther. 2020 14 3235 3249 10.2147/DDDT.S257494 32884235
    [Google Scholar]
  14. Khakpour A. Ghiabi S. Babaheydari A.K. Mirahmadi S.A. Baziyar P. Heidari-Soureshjani E. Horestani M.K. Discovering the therapeutic potential of Naringenin in diabetes related to GLUT-4 and its regulatory factors: A computational approach. Chemical Physics Impact 2025 10 100784 10.1016/j.chphi.2024.100784
    [Google Scholar]
  15. Dumpati R. Ramatenki V. Vadija R. Vellanki S. Vuruputuri U. Structural insights into suppressor of cytokine signaling 1 protein‐ identification of new leads for type 2 diabetes mellitus. J. Mol. Recognit. 2018 31 7 2706 10.1002/jmr.2706 29630758
    [Google Scholar]
  16. Fu X. Zhou J. Zhao J. Yang R. Zhou A. Fang Z. Wu H. Rapid identification of chemical compounds in danzhi jiangtang capsule using ultra‐performance liquid chromatography quadrupole time‐of‐flight mass spectrometry combined with multiple data processing techniques. J. Mass Spectrom. 2025 60 5 5140 10.1002/jms.5140 40285534
    [Google Scholar]
  17. Shi J. Chen J. Cheng C. Li W. Li M. Ye S. Liu Z. Ding Y. Systems pharmacology-based drug discovery and active mechanism of Ganoderma lucidum triterpenoids for type 2 diabetes mellitus by integrating network pharmacology and molecular docking. Curr. Pharm. Des. 2025 31 33 2666 2690 10.2174/0113816128365423250126035306 39949090
    [Google Scholar]
  18. Elzahhar P.A. Nematalla H.A. Abouayana M.A. El Ashry E.S.H. Balbaa M. Petreni A. Multi-target glitazones for modulating peroxisome proliferator-activated receptor-γ, cyclooxygenase-2, and carbonic anhydrases for the management of metabolic dysfunction. ACS Pharmacol. Transl. Sci. 2025 8 6 1627 1658 10.1021/acsptsci.5c00011
    [Google Scholar]
  19. Tian X. Wang L. Zhang L. Chen X. Wang W. Zhang K. Ge X. Luo Z. Zhai X. Shao H. New discoveries in therapeutic targets and drug development pathways for type 2 diabetes mellitus under the guidance of precision medicine. Eur. J. Med. Res. 2025 30 1 450 10.1186/s40001‑025‑02682‑5 40468398
    [Google Scholar]
  20. Park S.R. Kim J.H. Jang H.D. Yang S.Y. Kim Y.H. Inhibitory activity of minor phlorotannins from Ecklonia cava on α-glucosidase. Food Chem. 2018 257 128 134 10.1016/j.foodchem.2018.03.013 29622188
    [Google Scholar]
  21. Ivanova E.A. Parolari A. Myasoedova V. Melnichenko A.A. Bobryshev Y.V. Orekhov A.N. Peroxisome proliferator-activated receptor (PPAR) gamma in cardiovascular disorders and cardiovascular surgery. J. Cardiol. 2015 66 4 271 278 10.1016/j.jjcc.2015.05.004 26072262
    [Google Scholar]
  22. Liu Q.K. Mechanisms of action and therapeutic applications of GLP-1 and dual GIP/GLP-1 receptor agonists. Front. Endocrinol. 2024 15 1431292 10.3389/fendo.2024.1431292 39114288
    [Google Scholar]
  23. Meduru H. Wang Y.T. Tsai J. Chen Y.C. Finding a potential dipeptidyl peptidase-4 (DPP-4) inhibitor for type-2 diabetes treatment based on molecular docking, pharmacophore generation, and molecular dynamics simulation. Int. J. Mol. Sci. 2016 17 6 920 10.3390/ijms17060920 27304951
    [Google Scholar]
  24. Dissanayake H.A. Somasundaram N.P. Polyagonists in type 2 diabetes management. Curr. Diab. Rep. 2024 24 1 1 12 10.1007/s11892‑023‑01530‑2 38150106
    [Google Scholar]
  25. Gu J. Zhang H. Chen L. Xu S. Yuan G. Xu X. Drug-target network and polypharmacology studies of a Traditional Chinese Medicine for type II diabetes mellitus. Comput. Biol. Chem. 2011 35 5 293 297 10.1016/j.compbiolchem.2011.07.003 22000800
    [Google Scholar]
  26. Nursamsiar N. Marwati M. Khairuddin K. Sami F.J. Kasmawati H. Aligita W. Febrina E. Asnawi A. Isolation, characterization, and in vitro inhibitory activity of a new alpha-glucosidase inhibitor from Schleichera oleosa (Lour.) Oken leaves. J. Pharm. Pharmacogn. Res. 2025 13 1 140 151 10.56499/jppres24.1960_13.1.140
    [Google Scholar]
  27. Ali S.P. Mansoor F. Albaayit S.F.A. Ali F. Dera A.A. Shahbaz M. Ullah J. Almohaimeed H.M. Gahtani R.M. Abdulfattah A.M. Alshabrmi F.M. Alam S. Ullah S. Exploring dihydropyrimidone derivatives as modulators of carbohydrate catabolic enzyme to mitigate diabetes. Sci. Rep. 2024 14 1 31761 10.1038/s41598‑024‑82765‑1 39738505
    [Google Scholar]
  28. Zhang X. Li G. Wu D. Yu Y. Hu N. Wang H. Li X. Wu Y. Emerging strategies for the activity assay and inhibitor screening of alpha-glucosidase. Food Funct. 2020 11 1 66 82 10.1039/C9FO01590F 31844870
    [Google Scholar]
  29. Chen L.H. Leung P.S. Inhibition of the sodium glucose co‐transporter‐2: Its beneficial action and potential combination therapy for type 2 diabetes mellitus. Diabetes Obes. Metab. 2013 15 5 392 402 10.1111/dom.12064 23331516
    [Google Scholar]
  30. Sadegh-Nejadi S. Aberomand M. Ghaffari M.A. Mohammadzadeh G. Siahpoosh A. Afrisham R. Inhibitory effect of ziziphus jujuba and heracleum persicum on the activity of partial purified rat intestinal alpha glucosidase enzyme. J. Mazandaran Univ. Med. Sci. 2016 25 135 146
    [Google Scholar]
  31. Pan G. Lu Y. Wei Z. Li Y. Li L. Pan X. A review on the in vitro and in vivo screening of α-glucosidase inhibitors. Heliyon 2024 10 18 37467 10.1016/j.heliyon.2024.e37467 39309836
    [Google Scholar]
  32. Kaneko S. Tirzepatide: A novel, once-weekly dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes. TouchREV. Endocrinol. 2022 18 1 10 19 10.17925/EE.2022.18.1.10 35949358
    [Google Scholar]
  33. Sztanek F. Tóth L.I. Pető A. Hernyák M. Diószegi Á. Harangi M. New developments in pharmacological treatment of obesity and type 2 diabetes—beyond and within GLP-1 receptor agonists. Biomedicines 2024 12 6 1320 10.3390/biomedicines12061320 38927527
    [Google Scholar]
  34. Dhanya R. Quercetin for managing type 2 diabetes and its complications, an insight into multitarget therapy. Biomed. Pharmacother. 2022 146 112560 10.1016/j.biopha.2021.112560 34953390
    [Google Scholar]
  35. Hong S.W. Lee J. Cho J.H. Kwon H. Park S.E. Rhee E.J. Park C.Y. Oh K.W. Park S.W. Lee W.Y. Pioglitazone attenuates palmitate-induced inflammation and endoplasmic reticulum stress in pancreatic β-cells. Endocrinol. Metab. 2018 33 1 105 113 10.3803/EnM.2018.33.1.105 29589392
    [Google Scholar]
  36. Guo F. Xu S. Zhu Y. Zheng X. Lu Y. Tu J. He Y. Jin L. Li Y. PPARγ transcription deficiency exacerbates high-fat diet-induced adipocyte hypertrophy and insulin resistance in mice. Front. Pharmacol. 2020 11 1285 10.3389/fphar.2020.01285 32973516
    [Google Scholar]
  37. Elaidy S.M. Hussain M.A. El-Kherbetawy M.K. Time-dependent therapeutic roles of nitazoxanide on high-fat diet/streptozotocin-induced diabetes in rats: Effects on hepatic peroxisome proliferator-activated receptor-gamma receptors. Can. J. Physiol. Pharmacol. 2018 96 5 485 497 10.1139/cjpp‑2017‑0533 29244961
    [Google Scholar]
  38. Haider S. Shafiq M. Siddiqui A.R. Sardar M. Mushtaq M. Shafeeq S. Nur-e-Alam M. Ahmad A. Ul-Haq Z. Uncovering PPAR-γ agonists: An integrated computational approach driven by machine learning. J. Mol. Graph. Model. 2024 129 108742 10.1016/j.jmgm.2024.108742 38422823
    [Google Scholar]
  39. Aledavood E. Moraes G. Lameira J. Castro A. Luque F.J. Estarellas C. Understanding the mechanism of direct activation of AMP-kinase: Toward a fine allosteric tuning of the kinase activity. J. Chem. Inf. Model. 2019 59 6 2859 2870 10.1021/acs.jcim.8b00890 30924649
    [Google Scholar]
  40. Fayyad A.M. Khan A.A. Abdallah S.H. Alomran S.S. Bajou K. Khattak M.N.K. Rosiglitazone enhances browning adipocytes in association with mapk and pi3-k pathways during the differentiation of telomerase-transformed mesenchymal stromal cells into adipocytes. Int. J. Mol. Sci. 2019 20 7 1618 10.3390/ijms20071618 30939750
    [Google Scholar]
  41. Kakoti B.B. Alom S. Deka K. Halder R.K. AMPK pathway: An emerging target to control diabetes mellitus and its related complications. J. Diabetes Metab. Disord. 2024 23 1 441 459 10.1007/s40200‑024‑01420‑8 38932895
    [Google Scholar]
  42. Ribeiro Filho H.V. Bernardi Videira N. Bridi A.V. Tittanegro T.H. Helena Batista F.A. de Carvalho Pereira J.G. de Oliveira P.S.L. Bajgelman M.C. Le Maire A. Figueira A.C.M. Screening for PPAR Non-agonist ligands followed by characterization of a hit, AM-879, with additional no-adipogenic and cdk5-mediated phosphorylation inhibition properties. Front. Endocrinol. 2018 9 11 10.3389/fendo.2018.00011 29449830
    [Google Scholar]
  43. Behl T. Kaur I. Goel H. Kotwani A. Implications of the endogenous PPAR-gamma ligand, 15-deoxy-delta-12, 14-prostaglandin J2, in diabetic retinopathy. Life Sci. 2016 153 93 99 10.1016/j.lfs.2016.03.054 27060220
    [Google Scholar]
  44. Shrikanth C.B. Chilkunda N.D. Zerumbone ameliorates high glucose-induced reduction in AMP-activated protein kinase phosphorylation in tubular kidney cells. J. Agric. Food Chem. 2017 65 42 9208 9216 10.1021/acs.jafc.7b02379 28971677
    [Google Scholar]
  45. You B. Dun Y. Zhang W. Jiang L. Li H. Xie M. Liu Y. Liu S. Anti-insulin resistance effects of salidroside through mitochondrial quality control. J. Endocrinol. 2020 244 2 383 393 10.1530/JOE‑19‑0393 31794423
    [Google Scholar]
  46. Zhao Z. Yan J. Huang L. Yang X. Phytochemicals targeting Alzheimer’s disease via the AMP-activated protein kinase pathway, effects, and mechanisms of action. Biomed. Pharmacother. 2024 173 116373 10.1016/j.biopha.2024.116373 38442672
    [Google Scholar]
  47. Katwan O.J. Alghamdi F. Almabrouk T.A. Mancini S.J. Kennedy S. Oakhill J.S. Scott J.W. Salt I.P. AMP-activated protein kinase complexes containing the β2 regulatory subunit are up-regulated during and contribute to adipogenesis. Biochem. J. 2019 476 12 1725 1740 10.1042/BCJ20180714 31189568
    [Google Scholar]
  48. Chandra M. Miriyala S. Panchatcharam M. PPAR γ and its role in cardiovascular diseases. PPAR Res. 2017 2017 1 10 10.1155/2017/6404638 28243251
    [Google Scholar]
  49. Wang Q. Imam M.U. Yida Z. Wang F. Peroxisome proliferator-activated receptor gamma (PPARγ) as a target for concurrent management of diabetes and obesity-related cancer. Curr. Pharm. Des. 2017 23 25 3677 3688 10.2174/1381612823666170704125104 28677503
    [Google Scholar]
  50. Umezawa S. Higurashi T. Nakajima A. AMPK: Therapeutic target for diabetes and cancer prevention. Curr. Pharm. Des. 2017 23 25 3629 3644 10.2174/0929867324666170713150440 28714409
    [Google Scholar]
  51. Alghamdi F. Alshuweishi Y. Salt I.P. Regulation of nutrient uptake by AMP-activated protein kinase. Cell. Signal. 2020 76 109807 10.1016/j.cellsig.2020.109807 33038517
    [Google Scholar]
  52. Mahabaleshwarkar R. DeSantis A. Metformin dosage patterns in type 2 diabetes patients in a real-world setting in the United States. Diabetes Res. Clin. Pract. 2021 172 108531 10.1016/j.diabres.2020.108531 33157115
    [Google Scholar]
  53. Mody R. Desai K. Teng C.C. Reznor G. Stockbower G. Grabner M. Benneyworth B.D. Characteristics and dosing patterns of tirzepatide users with type 2 diabetes in the united states. Diabetes Ther. 2025 16 2 307 327 10.1007/s13300‑024‑01684‑6 39794609
    [Google Scholar]
  54. Rubaiy H.N. The therapeutic agents that target ATP-sensitive potassium channels. Acta Pharm. 2016 66 1 23 34 10.1515/acph‑2016‑0006 27029082
    [Google Scholar]
  55. Barchetta I. Cimini F.A. Dule S. Cavallo M.G. Dipeptidyl peptidase 4 (DPP4) as A novel adipokine: Role in metabolism and fat homeostasis. Biomedicines 2022 10 9 2306 10.3390/biomedicines10092306 36140405
    [Google Scholar]
  56. Mulvihill E.E. Dipeptidyl peptidase inhibitor therapy in type 2 diabetes: Control of the incretin axis and regulation of postprandial glucose and lipid metabolism. Peptides 2018 100 158 164 10.1016/j.peptides.2017.11.023 29412815
    [Google Scholar]
  57. Hager M.V. Clydesdale L. Gellman S.H. Sexton P.M. Wootten D. Characterization of signal bias at the GLP-1 receptor induced by backbone modification of GLP-1. Biochem. Pharmacol. 2017 136 99 108 10.1016/j.bcp.2017.03.018 28363772
    [Google Scholar]
  58. Ahrén B. Glucose‐lowering action through targeting islet dysfunction in type 2 diabetes: Focus on dipeptidyl peptidase‐4 inhibition. J. Diabetes Investig. 2021 12 7 1128 1135 10.1111/jdi.13564 33949781
    [Google Scholar]
  59. Kharade S.V. Nichols C. Denton J.S. The shifting landscape of KATP channelopathies and the need for ‘sharper’ therapeutics. Future Med. Chem. 2016 8 7 789 802 10.4155/fmc‑2016‑0005 27161588
    [Google Scholar]
  60. Fletcher M.M. Halls M.L. Christopoulos A. Sexton P.M. Wootten D. The complexity of signalling mediated by the glucagon-like peptide-1 receptor. Biochem. Soc. Trans. 2016 44 2 582 588 10.1042/BST20150244 27068973
    [Google Scholar]
  61. Guyton J. Jeon M. Brooks A. Glucagon-like peptide 1 receptor agonists in type 1 diabetes mellitus. Am. J. Health Syst. Pharm. 2019 76 21 1739 1748 10.1093/ajhp/zxz179 31612934
    [Google Scholar]
  62. Kumar N. D’Alessio D.A. Slow and Steady Wins the Race: 25 Years Developing the GLP-1 Receptor as an Effective Target for Weight Loss. J. Clin. Endocrinol. Metab. 2022 107 8 2148 2153 10.1210/clinem/dgac276 35536590
    [Google Scholar]
  63. Zhao Y. Yang L. Wang X. Zhou Z. The New insights from DPP‐4 inhibitors: Their potential immune modulatory function in autoimmune diabetes. Diabetes Metab. Res. Rev. 2014 30 8 646 653 10.1002/dmrr.2530 24446278
    [Google Scholar]
  64. Tschöp M. Nogueiras R. Ahrén B. Gut hormone-based pharmacology: Novel formulations and future possibilities for metabolic disease therapy. Diabetologia 2023 66 10 1796 1808 10.1007/s00125‑023‑05929‑0 37209227
    [Google Scholar]
  65. Jiang S. Wu X. Wang Y. Zou J. Zhao X. The potential DPP-4 inhibitors from Xiao-Ke-An improve the glucolipid metabolism via the activation of AKT/GSK-3β pathway. Eur. J. Pharmacol. 2020 882 173272 10.1016/j.ejphar.2020.173272 32535096
    [Google Scholar]
  66. Wan W. Qin Q. Xie L. Zhang H. Wu F. Stevens R.C. Liu Y. GLP-1R signaling and functional molecules in incretin therapy. Molecules 2023 28 2 751 10.3390/molecules28020751 36677809
    [Google Scholar]
  67. Cruz-Cruz I. Bernate-Obando G. Larqué C. Escalona R. Pinto-Almazán R. Velasco M. Early effects of metabolic syndrome on ATP-sensitive potassium channels from rat pancreatic beta cells. Metabolites 2022 12 4 365 10.3390/metabo12040365 35448552
    [Google Scholar]
  68. Klen J. Dolžan V. Glucagon-like peptide-1 receptor agonists in the management of type 2 diabetes mellitus and obesity: The impact of pharmacological properties and genetic factors. Int. J. Mol. Sci. 2022 23 7 3451 10.3390/ijms23073451 35408810
    [Google Scholar]
  69. Pechmann L.M. Pinheiro F.I. Andrade V.F.C. Moreira C.A. The multiple actions of dipeptidyl peptidase 4 (DPP-4) and its pharmacological inhibition on bone metabolism: A review. Diabetol. Metab. Syndr. 2024 16 1 175 10.1186/s13098‑024‑01412‑x 39054499
    [Google Scholar]
  70. Hasan A.A. Hocher B. Role of soluble and membrane-bound dipeptidyl peptidase-4 in diabetic nephropathy. J. Mol. Endocrinol. 2017 59 1 R1 R10 10.1530/JME‑17‑0005 28420715
    [Google Scholar]
  71. Xie X. Wu C. Hao Y. Wang T. Yang Y. Cai P. Zhang Y. Huang J. Deng K. Yan D. Lin H. Benefits and risks of drug combination therapy for diabetes mellitus and its complications: A comprehensive review. Front. Endocrinol. 2023 14 1301093 10.3389/fendo.2023.1301093 38179301
    [Google Scholar]
  72. Lillich F.F. Imig J.D. Proschak E. Multi-target approaches in metabolic syndrome. Front. Pharmacol. 2021 11 554961 10.3389/fphar.2020.554961 33776749
    [Google Scholar]
  73. Cardoso P. Young K.G. Nair A.T.N. Hopkins R. McGovern A.P. Haider E. Karunaratne P. Donnelly L. Mateen B.A. Sattar N. Holman R.R. Bowden J. Hattersley A.T. Pearson E.R. Jones A.G. Shields B.M. McKinley T.J. Dennis J.M. Phenotype-based targeted treatment of SGLT2 inhibitors and GLP-1 receptor agonists in type 2 diabetes. Diabetologia 2024 67 5 822 836 10.1007/s00125‑024‑06099‑3 38388753
    [Google Scholar]
  74. Khobarkar P. Gulhane J. Nakanekar A. ‘Vidangadi Lauha’ for obese type 2 diabetes mellitus patients - An open-label randomized controlled clinical trial. J. Ayurveda Integr. Med. 2024 15 1 100878 10.1016/j.jaim.2023.100878 38271769
    [Google Scholar]
  75. Rashid R.S.M. Temurlu S. Abourajab A. Karsili P. Dinleyici M. Al-Khateeb B. Icil H. Drug repurposing of FDA compounds against α-glucosidase for the treatment of type 2 diabetes: Insights from molecular docking and molecular dynamics simulations. Pharmaceuticals 2023 16 4 555 10.3390/ph16040555 37111312
    [Google Scholar]
  76. Thabah D. Syiem D. Pakyntein C.L. Banerjee S. Kharshiing C.E. Bhattacharjee A. Potentilla fulgens upregulate GLUT4, AMPK, AKT and insulin in alloxan-induced diabetic mice: An in vivo and in silico study. Arch. Physiol. Biochem. 2023 129 5 1071 1083 10.1080/13813455.2021.1897145 33733926
    [Google Scholar]
  77. Deng S. Li A. Zhang Y. Discovery of the new alpha-glucosidase inhibitor with therapeutic potential in type 2 diabetes mellitus by a novel high-throughput virtual screening and free energy evaluation. J. Mol. Graph. Model. 2023 121 108447 10.1016/j.jmgm.2023.108447 36913808
    [Google Scholar]
  78. Chu L. Terasaki M. Mattsson C.L. Teinturier R. Charbord J. Dirice E. Liu K.C. Miskelly M.G. Zhou Q. Wierup N. Kulkarni R.N. Andersson O. In vivo drug discovery for increasing incretin-expressing cells identifies DYRK inhibitors that reinforce the enteroendocrine system. Cell Chem. Biol. 2022 29 9 1368 1380.e5 10.1016/j.chembiol.2022.08.001 35998625
    [Google Scholar]
  79. Stitziel N.O. Kanter J.E. Bornfeldt K.E. Emerging targets for cardiovascular disease prevention in diabetes. Trends Mol. Med. 2020 26 8 744 757 10.1016/j.molmed.2020.03.011 32423639
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266429073251122045133
Loading
/content/journals/ctmc/10.2174/0115680266429073251122045133
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Therapeutic targets ; Diabetes mellitus ; Multi-target ; Receptor ; Agonist
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test