Skip to content
2000
image of Ethyl Acetate Extract from Wenxia Formula (WFEA) Attenuates Immunosuppression in Lung Cancer by Inhibiting Treg Differentiation via Blockade of TGF-Β/Smad Signaling

Abstract

Introduction

The ethyl acetate extract of Wenxia Formula (WFEA) is the most effective antitumor component of the Wenxia formula. Its key active components, emodin and quercetin, exhibit unique advantages in targeting TGF-β1 and regulating the function of Tregs. This study explored the mechanism of WFEA in enhancing the immune environment in lung cancer by influencing immune cell balance and the level of cytokines.

Materials and Methods

Lewis lung cancer xenograft mouse models were established. WFEA was administered at low (100 mg/kg), medium (200 mg/kg), and high (400 mg/kg) doses, while a cisplatin (DDP) group served as the positive control. Tumor weight, spleen index, and serum cytokine levels (IL-10, TGF-β1) were measured. Flow cytometry, qPCR, and immunohistochemistry were employed to analyze the proportion of CD4+CD25+Foxp3+ Treg cells and Foxp3 expression in tumor and spleen tissues. The regulatory mechanism of WFEA on the TGF-β/Smads signaling pathway was investigated combined intervention with the TGF-β1 inhibitor halofuginone (HF), cell differentiation assays, and molecular docking analyses.

Results

WFEA inhibited tumor growth in a dose-dependent manner, with the 400 mg/kg group exhibiting a 60% tumor inhibition rate comparable to that of DDP. The agent significantly increased the spleen index by 106.42% and reduced serum levels of IL-10 and TGF-β1. Mechanistically, WFEA downregulated Foxp3 mRNA and protein expression in both tumor and spleen tissues, leading to a decrease in the proportion of Treg cells. It blocked the TGF-β/Smads pathway by downregulating TGF-β1, upregulating Smad4/Smad7, and inhibiting Smad2/3 phosphorylation. Cell-based experiments confirmed that WFEA-containing serum inhibited the differentiation of CD4+ T cells into Tregs, an effect enhanced by TGF-β1 interference. Molecular docking analyses revealed that the active components emodin and quercetin directly bound to TGF-β1 with binding energies of -5.4 kcal/mol and -5.1 kcal/mol, respectively.

Discussion

WFEA could serve as a new adjunct treatment for lung cancer; however, further clinical trials are required to evaluate its long-term safety and effectiveness across various treatment stages.

Conclusion

WFEA may regulate the growth of Tregs to modulate the immune microenvironment of the LLC model mice, indicating its potential as an anti-LLC agent.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266415173251010101905
2025-10-16
2025-11-08
Loading full text...

Full text loading...

References

  1. Qian X.J. Wang J.W. Liu J.B. Yu X. The mediating role of miR-451/ETV4/MMP13 signaling axis on epithelialmesenchymal transition in promoting non-small cell lung cancer progression. Curr. Mol. Pharmacol. 2023 17 e210723218988 10.2174/1874467217666230721123554 37489792
    [Google Scholar]
  2. Bray F. Laversanne M. Sung H. Ferlay J. Siegel R.L. Soerjomataram I. Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  3. Mansouri S. Heylmann D. Stiewe T. Kracht M. Savai R. Cancer genome and tumor microenvironment: Reciprocal crosstalk shapes lung cancer plasticity. eLife 2022 11 e79895 10.7554/eLife.79895 36074553
    [Google Scholar]
  4. Budisan L. Zanoaga O. Braicu C. Pirlog R. Covaliu B. Esanu V. Korban S. Berindan-Neagoe I. Links between infections, lung cancer, and the immune system. Int. J. Mol. Sci. 2021 22 17 9394 10.3390/ijms22179394 34502312
    [Google Scholar]
  5. Exposito F. Redrado M. Houry M. Hastings K. Molero-Abraham M. Lozano T. Solorzano J.L. Sanz-Ortega J. Adradas V. Amat R. Redin E. Leon S. Legarra N. Garcia J. Serrano D. Valencia K. Robles-Oteiza C. Foggetti G. Otegui N. Felip E. Lasarte J.J. Paz-Ares L. Zugazagoitia J. Politi K. Montuenga L. Calvo A. PTEN loss confers resistance to Anti-PD-1 therapy in non-small cell lung cancer by increasing tumor infiltration of regulatory T cells. Cancer Res. 2023 83 15 2513 2526 10.1158/0008‑5472.CAN‑22‑3023 37311042
    [Google Scholar]
  6. Lim J.U. Lee E. Lee S.Y. Cho H.J. Ahn D.H. Hwang Y. Choi J.Y. Yeo C.D. Park C.K. Kim S.J. Current literature review on the tumor immune micro-environment, its heterogeneity and future perspectives in treatment of advanced non-small cell lung cancer. Transl. Lung Cancer Res. 2023 12 4 857 876 10.21037/tlcr‑22‑633 37197639
    [Google Scholar]
  7. Liang J. Bi G. Shan G. Jin X. Bian Y. Wang Q. Tumor-associated regulatory t cells in non-small-cell lung cancer: Current advances and future perspectives. J. Immunol. Res. 2022 2022 1 8 10.1155/2022/4355386 35497874
    [Google Scholar]
  8. Dikiy S. Li J. Bai L. Jiang M. Janke L. Zong X. Hao X. Hoyos B. Wang Z.M. Xu B. Fan Y. Rudensky A.Y. Feng Y. A distal Foxp3 enhancer enables interleukin-2 dependent thymic Treg cell lineage commitment for robust immune tolerance. Immunity 2021 54 5 931 946.e11 10.1016/j.immuni.2021.03.020 33838102
    [Google Scholar]
  9. Sakaguchi S. Mikami N. Wing J.B. Tanaka A. Ichiyama K. Ohkura N. Regulatory T. Regulatory T cells and human disease. Annu. Rev. Immunol. 2020 38 1 541 566 10.1146/annurev‑immunol‑042718‑041717 32017635
    [Google Scholar]
  10. Večurkovská I. Stupák M. Kaťuchová J. Bohuš P. Hostačná L. Mareková M. Mašlanková J. Expression of individual members of the TGF-β/SMAD signalling pathway in the progression and survival of patients with colorectal carcinoma. Sci. Rep. 2024 14 1 27442 10.1038/s41598‑024‑79463‑3 39523401
    [Google Scholar]
  11. Xue V.W. Chung J.Y.F. Córdoba C.A.G. Cheung A.H.K. Kang W. Lam E.W.F. Leung K.T. To K.F. Lan H.Y. Tang P.M.K. Transforming growth factor-β: A multifunctional regulator of cancer immunity. Cancers 2020 12 11 3099 10.3390/cancers12113099 33114183
    [Google Scholar]
  12. Liu S. Deng Z. Chen K. Jian S. Zhou F. Yang Y. Fu Z. Xie H. Xiong J. Zhu W. Cartilage tissue engineering: From proinflammatory and anti inflammatory cytokines to osteoarthritis treatments. (Review) Mol. Med. Rep. 2022 25 3 99 10.3892/mmr.2022.12615 35088882
    [Google Scholar]
  13. Deng Z. Fan T. Xiao C. Tian H. Zheng Y. Li C. He J. TGF-β signaling in health, disease and therapeutics. Signal Transduct. Target. Ther. 2024 9 1 61 10.1038/s41392‑024‑01764‑w 38514615
    [Google Scholar]
  14. Sun Z. Su Z. Zhou Z. Wang S. Wang Z. Tong X. Li C. Wang Y. Chen X. Lei Z. Zhang H.T. RNA demethylase ALKBH5 inhibits TGF‐β‐induced EMT by regulating TGF‐β/SMAD signaling in non‐small cell lung cancer. FASEB J. 2022 36 5 e22283 10.1096/fj.202200005RR 35344216
    [Google Scholar]
  15. Guan L. Zhang L. Wang T. Jia L. Zhang N. Yan H. Zhao K. POM121 promotes proliferation and metastasis in non-small-cell lung cancer through TGF-β/SMAD and PI3K/AKT pathways. Cancer Biomark. 2021 32 3 293 302 10.3233/CBM‑210001 34151840
    [Google Scholar]
  16. Jiang H. Tang W. Song Y. Jin W. Du Q. Induction of apoptosis by metabolites of rhei radix et rhizoma (da huang): A review of the potential mechanism in hepatocellular carcinoma. Front. Pharmacol. 2022 13 806175 10.3389/fphar.2022.806175 35308206
    [Google Scholar]
  17. Liao K.F. Chiu T.L. Huang S.Y. Hsieh T.F. Chang S.F. Ruan J.W. Anti-cancer effects of Radix Angelica Sinensis (Danggui) and N-Butylidenephthalide on gastric cancer: Implications for REDD1 activation and mTOR inhibition. Cell. Physiol. Biochem. 2018 48 6 2231 2246
    [Google Scholar]
  18. Yu S. Wang S. Huang S. Wang W. Wei Z. Ding Y. Wang A. Huang S. Chen W. Lu Y. Radix et Rhizoma Ginseng chemoprevents both initiation and promotion of cutaneous carcinoma by enhancing cell-mediated immunity and maintaining redox homeostasis. J. Ginseng Res. 2020 44 4 580 592 10.1016/j.jgr.2019.05.004 32617038
    [Google Scholar]
  19. Zhang W. Cai S. Qin L. Feng Y. Ding M. Luo Z. Shan J. Di L. Alkaloids of Aconiti Lateralis Radix Praeparata inhibit growth of non-small cell lung cancer by regulating PI3K/Akt-mTOR signaling and glycolysis. Commun. Biol. 2024 7 1 1118 10.1038/s42003‑024‑06801‑6 39261597
    [Google Scholar]
  20. Wang M. Bi Q. Ji X. Mechanism of ethyl acetate extract from Wenxia Formula on regulating Hedgehog-Gli1 signaling pathway mediated by cancer associated fibroblasts for inhibiting anti-A549 transplanted tumor. J. Tradit. Chin. Med. 2021 9 36 5499 5504
    [Google Scholar]
  21. Hu N. Liu J. Xue X. Li Y. The effect of emodin on liver disease - Comprehensive advances in molecular mechanisms. Eur. J. Pharmacol. 2020 882 173269 10.1016/j.ejphar.2020.173269 32553811
    [Google Scholar]
  22. Lu Q. Xu J. Jiang H. Wei Q. Huang R. Huang G. The bone-protective mechanisms of active components from TCM drugs in rheumatoid arthritis treatment. Front. Pharmacol. 2022 13 1000865 10.3389/fphar.2022.1000865 36386147
    [Google Scholar]
  23. Yang Z. Zhou E. Wei D. Li D. Wei Z. Zhang W. Zhang X. Emodin inhibits LPS-induced inflammatory response by activating PPAR-γ in mouse mammary epithelial cells. Int. Immunopharmacol. 2014 21 2 354 360 10.1016/j.intimp.2014.05.019 24874440
    [Google Scholar]
  24. Tsai C.F. Chen G.W. Chen Y.C. Shen C.K. Lu D.Y. Yang L.Y. Chen J.H. Yeh W.L. Regulatory effects of quercetin on M1/M2 macrophage polarization and oxidative/antioxidative balance. Nutrients 2021 14 1 67 10.3390/nu14010067 35010945
    [Google Scholar]
  25. Zhang H. Yang L. Han Q. Xu W. Antifibrotic effects of quercetin on TGF-β1-induced vocal fold fibroblasts. Am. J. Transl. Res. 2022 14 12 8552 8561 36628236
    [Google Scholar]
  26. Zhang J. Qi J. Wei H. Lei Y. Yu H. Liu N. Zhao L. Wang P. TGFβ1 in cancer-associated fibroblasts is associated with progression and radiosensitivity in small-cell lung cancer. Front. Cell Dev. Biol. 2021 9 667645 10.3389/fcell.2021.667645 34095135
    [Google Scholar]
  27. Alzoubi K.H. Fahmawi A. Khalifeh M.S. Rababa’h A.M. The effects of acute and chronic sleep deprivation on the immune profile in the rat. Curr. Mol. Pharmacol. 2023 16 1 101 108 10.2174/1874467215666220316104321 35297357
    [Google Scholar]
  28. Xie Y. Tao S. Pan B. Yang W. Shao W. Fang X. Han D. Li J. Zhang Y. Chen R. Li W. Xu Y. Kan H. Cholinergic anti-inflammatory pathway mediates diesel exhaust PM2.5-induced pulmonary and systemic inflammation. J. Hazard. Mater. 2023 458 131951 10.1016/j.jhazmat.2023.131951 37392642
    [Google Scholar]
  29. Tian X. He X. Qian S. Zou R. Chen K. Zhu C. Yin Z. Immunoregulatory effects of human amniotic mesenchymal stem cells and their exosomes on human peripheral blood mononuclear cells. Biocell 2023 47 5 1085 1093 10.32604/biocell.2023.027090
    [Google Scholar]
  30. Liu C.H. Chang S.J. Yang S.F. Tsai M.J. Tsai K.B. An optimized melanin depigmentation method for histopathological and immunohistochemical staining of formalin-fixed paraffin-embedded tissues. Int. J. Surg. Pathol. 2024 32 4 679 683 10.1177/10668969231188892 37525545
    [Google Scholar]
  31. Zhao X. Zhang Y. Hao P. Zhao M. Shen X. The Warthin-like variant of papillary thyroid carcinomas: A clinicopathologic analysis report of two cases. Oncologie 2023 25 5 581 587 10.1515/oncologie‑2023‑0150
    [Google Scholar]
  32. Sun J. Liu B. Yuan Y. Zhang L. Wang J. Disease markers and therapeutic targets for rheumatoid arthritis identified by integrating bioinformatics analysis with virtual screening of traditional chinese medicine. Front Biosci-Landmark 2022 27 9 267 10.31083/j.fbl2709267 36224010
    [Google Scholar]
  33. Lin H. Wang X. Liu M. Huang M. Shen Z. Feng J. Yang H. Li Z. Gao J. Ye X. Exploring the treatment of COVID ‐19 with Yinqiao powder based on network pharmacology. Phytother. Res. 2021 35 5 2651 2664 10.1002/ptr.7012 33452734
    [Google Scholar]
  34. Xiao X. Liu Y. Huang Y. Zeng W. Luo Z. Identification of the NF-κB inhibition peptides in asthma from pheretima aspergillum decoction and formula granules using molecular docking and dynamics simulations. Curr. Pharm. Anal. 2024 20 3 202 211 10.2174/0115734129298587240322073956
    [Google Scholar]
  35. Qiu Y. Ke S. Chen J. Qin Z. Zhang W. Yuan Y. Meng D. Zhao G. Wu K. Li B. Li D. FOXP3+ regulatory T cells and the immune escape in solid tumours. Front. Immunol. 2022 13 982986 10.3389/fimmu.2022.982986 36569832
    [Google Scholar]
  36. Attias M. Al-Aubodah T. Piccirillo C.A. Mechanisms of human FoxP3+ Treg cell development and function in health and disease. Clin. Exp. Immunol. 2019 197 1 36 51 10.1111/cei.13290 30864147
    [Google Scholar]
  37. Ke X. Zhang S. Xu J. Liu G. Zhang L. Xie E. Gao L. Li D. Sun R. Wang F. Pan S. Non-small-cell lung cancer-induced immunosuppression by increased human regulatory T cells via Foxp3 promoter demethylation. Cancer Immunol. Immunother. 2016 65 5 587 599 10.1007/s00262‑016‑1825‑6 27000869
    [Google Scholar]
  38. Ji X.M. Wu Z.C. Liu G.W. Yu H.Y. Liu H. Wang Z.T. Wei X.H. Ouyang B. Wenxia changfu formula () induces apoptosis of lung adenocarcinoma in a transplanted tumor model of drug-resistance nude mice. Chin. J. Integr. Med. 2016 22 10 752 758 10.1007/s11655‑015‑2087‑4 26666762
    [Google Scholar]
  39. Liu Y. Li G. Ning J. Zhao Y. Unveiling the experimental proof of the anticancer potential of ginsenoside Rg3 (Review). Oncol. Lett. 2024 27 4 182 10.3892/ol.2024.14315 38476209
    [Google Scholar]
  40. Li H. Li L. Mei H. Pan G. Wang X. Huang X. Wang T. Jiang Z. Zhang L. Sun L. Antitumor properties of triptolide: Phenotype regulation of macrophage differentiation. Cancer Biol. Ther. 2020 21 2 178 188 10.1080/15384047.2019.1679555 31663424
    [Google Scholar]
  41. van der Veeken J. Glasner A. Zhong Y. Hu W. Wang Z.M. Bou-Puerto R. Charbonnier L.M. Chatila T.A. Leslie C.S. Rudensky A.Y. The transcription factor Foxp3 shapes regulatory T Cell identity by tuning the activity of trans-acting intermediaries. Immunity 2020 53 5 971 984.e5 10.1016/j.immuni.2020.10.010 33176163
    [Google Scholar]
  42. Wang Y. Lu J. Jiang B. Guo J. The roles of curcumin in regulating the tumor immunosuppressive microenvironment. Oncol. Lett. 2020 19 4 3059 3070 10.3892/ol.2020.11437 32256807
    [Google Scholar]
  43. Wardell C.M. Boardman D.A. Levings M.K. Harnessing the biology of regulatory T cells to treat disease. Nat. Rev. Drug Discov. 2025 24 2 93 111 10.1038/s41573‑024‑01089‑x 39681737
    [Google Scholar]
  44. Huang Z. Wen J. Yu J. Liao J. Liu S. Cai N. Liang H. Chen X. Ding Z. Zhang B. MicroRNA-148a-3p inhibits progression of hepatocelluar carcimoma by repressing SMAD2 expression in an Ago2 dependent manner. J. Exp. Clin. Cancer Res. 2020 39 1 150 10.1186/s13046‑020‑01649‑0 32746934
    [Google Scholar]
  45. Yin Z. Ma T. Huang B. Lin L. Zhou Y. Yan J. Zou Y. Chen S. Macrophage-derived exosomal microRNA-501-3p promotes progression of pancreatic ductal adenocarcinoma through the TGFBR3-mediated TGF-β signaling pathway. J. Exp. Clin. Cancer Res. 2019 38 1 310 10.1186/s13046‑019‑1313‑x 31307515
    [Google Scholar]
  46. Guo H. Hu Z. Yang X. Yuan Z. Wang M. Chen C. Xie L. Gao Y. Li W. Bai Y. Lin C. Smad4 regulates TGF-β1-mediated hedgehog activation to promote epithelial-to-mesenchymal transition in pancreatic cancer cells by suppressing Gli1 activity. Comput. Struct. Biotechnol. J. 2024 23 1189 1200 10.1016/j.csbj.2024.03.010 38525105
    [Google Scholar]
  47. Nong J. Shen S. Hong F. Xiao F. Meng L. Li P. Lei X. Chen Y.G. Verteporfin inhibits TGF-β signaling by disrupting the Smad2/3-Smad4 interaction. Mol. Biol. Cell 2024 35 7 ar95 10.1091/mbc.E24‑02‑0073 38696259
    [Google Scholar]
  48. Tang F. Gong H. Ke T. Yang W. Yang Y. Liu Z. USP7 promotes TGF-β1 signaling by De-Ubiquitinating Smad2/Smad3 in pulmonary fibrosis. Discov. Med. 2024 36 187 1616 1626 10.24976/Discov.Med.202436187.148 39190377
    [Google Scholar]
  49. Tewari D. Priya A. Bishayee A. Bishayee A. Targeting transforming growth factor‐ß signalling for cancer prevention and intervention: Recent advances in developing small molecules of natural origin. Clin. Transl. Med. 2022 12 4 e795 10.1002/ctm2.795 35384373
    [Google Scholar]
  50. Cosio T. Costanza G. Coniglione F. Romeo A. Iacovelli F. Diluvio L. Dika E. Shumak R.G. Rossi P. Bianchi L. Falconi M. Campione E. From in silico simulation between TGF-β receptors and quercetin to clinical insight of a medical device containing allium cepa: its efficacy and tolerability on post-surgical scars. Life (Basel) 2023 13 8 1781 10.3390/life13081781 37629638
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266415173251010101905
Loading
/content/journals/ctmc/10.2174/0115680266415173251010101905
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Lewis lung cancer ; Antitumor ; Wenxia formula ; CD4+ CD25+ Foxp3+ ; Cytokines ; Ethyl acetate extract
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test