Full text loading...
In recent years, oxazoles' usefulness as an intermediate in the synthesis of novel chemical entities has grown in medicinal chemistry. Oxazole is a significant heterocyclic nucleus with a diverse range of biological activities, attracting the interest of researchers worldwide to synthesize numerous oxazole derivatives because of their notable biological potential. Owing to their distinctive physicochemical characteristics, these nuclei frequently have enhanced pharmacokinetic profiles and therapeutic effects relative to those of analogous heterocycles.
This evaluation presents an overview of the advancement in biological activities of oxazole derivatives (2009–2025). The review elucidates the mechanisms of action of these chemicals across numerous disorders, identifies the most effective ones along with their associated IC50/MIC values, and examines the models employed for assessing their activity.
According to the review, oxazole and its derivatives have powerful anti-inflammatory, anticancer, antibacterial, and antitubercular effects, and SAR evidence shows that substituting phenyl, methoxy, halogen, or electron-withdrawing increases effectiveness. The scaffold's adaptability and translational ability are demonstrated by its broad activity spectrum, which includes repression of COX/LOX and tubulin polymerisation blockage. As a whole, oxazoles are great leads for potential new drugs because of their structural adaptations at C-2, C-4, and C-5.
The literature analysis indicates that the anticancer and anti-inflammatory efficacy of oxazole derivatives is especially significant among their many actions. The inclusion of phenyl, methoxyphenyl, or halogen-substituted phenyl groups markedly improves therapeutic efficacy relative to reference medications. The substitution versatility at three positions of oxazole derivatives enhances their range of pharmacological actions.
Article metrics loading...
Full text loading...
References
Data & Media loading...