Skip to content
2000
image of Oxazole-Based Molecules: Recent Advances on Biological Activities

Abstract

Background

In recent years, oxazoles' usefulness as an intermediate in the synthesis of novel chemical entities has grown in medicinal chemistry. Oxazole is a significant heterocyclic nucleus with a diverse range of biological activities, attracting the interest of researchers worldwide to synthesize numerous oxazole derivatives because of their notable biological potential. Owing to their distinctive physicochemical characteristics, these nuclei frequently have enhanced pharmacokinetic profiles and therapeutic effects relative to those of analogous heterocycles.

Objective

This evaluation presents an overview of the advancement in biological activities of oxazole derivatives (2009–2025). The review elucidates the mechanisms of action of these chemicals across numerous disorders, identifies the most effective ones along with their associated IC50/MIC values, and examines the models employed for assessing their activity.

Discussion

According to the review, oxazole and its derivatives have powerful anti-inflammatory, anticancer, antibacterial, and antitubercular effects, and SAR evidence shows that substituting phenyl, methoxy, halogen, or electron-withdrawing increases effectiveness. The scaffold's adaptability and translational ability are demonstrated by its broad activity spectrum, which includes repression of COX/LOX and tubulin polymerisation blockage. As a whole, oxazoles are great leads for potential new drugs because of their structural adaptations at C-2, C-4, and C-5.

Conclusion

The literature analysis indicates that the anticancer and anti-inflammatory efficacy of oxazole derivatives is especially significant among their many actions. The inclusion of phenyl, methoxyphenyl, or halogen-substituted phenyl groups markedly improves therapeutic efficacy relative to reference medications. The substitution versatility at three positions of oxazole derivatives enhances their range of pharmacological actions.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266419594251103103459
2026-01-09
2026-01-31
Loading full text...

Full text loading...

References

  1. Al-Mulla A. A review: Biological importance of heterocyclic compounds. Pharma Chem. 2017 9 141
    [Google Scholar]
  2. Dua R. Shrivastava S. Sonwane S.K. Srivastava S.K. Pharmacological significance of synthetic heterocycles scaffold: A review. Adv. Biol. Res. 2011 5 120
    [Google Scholar]
  3. Chand K. Rajeshwari; Hiremathad, A.; Singh, M.; Santos, M.A.; Keri, R.S. A review on antioxidant potential of bioactive heterocycle benzofuran: Natural and synthetic derivatives. Pharmacol. Rep 2017 69 2 281 295 10.1016/j.pharep.2016.11.007 28171830
    [Google Scholar]
  4. Dylan Turner C. Steven Liang H. Recent advances in the assembly of tri-substituted oxazoles. Curr. Org. Chem. 2011 15 16 2846 2870 10.2174/138527211796378442
    [Google Scholar]
  5. Joshi S. Bisht A.S. Juyal D. Systematic scientific study of 1, 3-oxazole derivatives as a useful lead for pharmaceuticals: A review. Pharma Innov. 2017 6 109
    [Google Scholar]
  6. Tomer I. Mishra R. Priyanka N.K. Jha K.K. Oxazole: The molecule of diverse biological and medicinal significance. J. Pharm. Res. 2011 4 2975 2980
    [Google Scholar]
  7. Neha K. Ali F. Haider K. Khasimbi S. Wakode S. Synthetic approaches for oxazole derivatives: A review. Synth. Commun. 2021 51 23 3501 3519 10.1080/00397911.2021.1986843
    [Google Scholar]
  8. Zeinali N. Oluwoye I. Altarawneh M. Dlugogorski B.Z. Kinetics of photo-oxidation of oxazole and its Substituents by Singlet oxygen. Sci. Rep 2020 10 1 3668 10.1038/s41598‑020‑59889‑1 32111853
    [Google Scholar]
  9. Muskan M. Chahar M. Talniya N.C. Exploring oxazole-derived heterocycles: Synthesis strategies and diverse biological activities for potential therapeutic applications. Camp 2024 28 1 1817 1827
    [Google Scholar]
  10. Kakkar S. Narasimhan B. A comprehensive review on biological activities of oxazole derivatives. BMC Chem. 2019 13 1 16 10.1186/s13065‑019‑0531‑9 31384765
    [Google Scholar]
  11. Joshi S. Mehra M. Singh R. Kakar S. Review on chemistry of oxazole derivatives: Current to future therapeutic prospective. Egypt. J. Basic Appl. Sci. 2023 10 1 218 239
    [Google Scholar]
  12. Rauf A. Farshori N.N. Chapter 2, 9-14 Microwave-Induced Synthesis of Aromatic Heterocycles. Dordrecht Springer 2012 10.1007/978‑94‑007‑1485‑4
    [Google Scholar]
  13. a Knox C. Wilson M. Klinger C.M. Franklin M. Oler E. Wilson A. Pon A. Cox J. Chin N.E. Strawbridge S.A. Garcia-Patino M. DrugBank 6.0: The DrugBank Knowledgebase for 2024. Nucleic Acids Res. 2024 52 D1 D1265 D1275
    [Google Scholar]
  14. b Rymbai E.M. Chakraborty A. Choudhury R. Verma N. De B. Review on chemistry and therapeutic activity of the derivatives of furan and oxazole: The oxygen containing heterocycles. Der Pharma Chem. 2019 11 20 41
    [Google Scholar]
  15. Zhang H.Z. Zhao Z.L. Zhou C.H. Recent advance in oxazole-based medicinal chemistry. Eur. J. Med. Chem. 2018 144 444 492 10.1016/j.ejmech.2017.12.044 29288945
    [Google Scholar]
  16. De A. Majee A. Synthesis of various functionalized 2 H ‐azirines: An updated library. J. Heterocycl. Chem. 2022 59 3 422 448 10.1002/jhet.4415
    [Google Scholar]
  17. Palmer D.C. Venkatraman S. Synthesis and reactions of oxazoles. Hoboken, New Jersey Wiley Online Library 2003 10.1002/0471428035.ch1
    [Google Scholar]
  18. Bąchor U. Mączyński M. Sochacka-Ćwikła A. Therapeutic potential of isoxazole–(Iso)oxazole hybrids: Three decades of research. Int. J. Mol. Sci. 2025 26 15 7082 10.3390/ijms26157082 40806215
    [Google Scholar]
  19. Scarpellini C. Klejborowska G. Lanthier C. Toye A. Musiałek K. Van San E. Walravens M. Berg M. Hassannia B. Van der Veken P. De Winter H. Vanden Berghe T. Augustyns K. Oxazole-based ferroptosis inhibitors with promising properties to treat central nervous system diseases. J. Med. Chem. 2025 68 4 4908 4928 10.1021/acs.jmedchem.4c03149 39913870
    [Google Scholar]
  20. Wan B.W. Liu W. Xiao Y. Lv L. Li X. Lin F. Zhao Y. He Y. Nie S. Yang X. Yuan H.X. Discovery of novel benzo[b][1,4]oxazine derivatives as ferroptosis inhibitors. Bioorg. Chem. 2025 156 108201 10.1016/j.bioorg.2025.108201 39864374
    [Google Scholar]
  21. Pilo F. Angelucci E. Vamifeport: Monography of the first oral ferroportin inhibitor. J. Clin. Med. 2024 13 18 5524 10.3390/jcm13185524 39337010
    [Google Scholar]
  22. Saleem Naz Babari I. Islam M. Saeed H. Nadeem H. Anwer Rathore H. Pharmacological investigations of newly synthesized oxazolones and imidazolones as COX-2 inhibitors. Saudi Pharm. J. 2024 32 11 102191 10.1016/j.jsps.2024.102191 39507051
    [Google Scholar]
  23. Stokes N.R. Baker N. Bennett J.M. Chauhan P.K. Collins I. Davies D.T. Gavade M. Kumar D. Lancett P. Macdonald R. MacLeod L. Mahajan A. Mitchell J.P. Nayal N. Nayal Y.N. Pitt G.R.W. Singh M. Yadav A. Srivastava A. Czaplewski L.G. Haydon D.J. Design, synthesis and structure–activity relationships of substituted oxazole–benzamide antibacterial inhibitors of FtsZ. Bioorg. Med. Chem. Lett. 2014 24 1 353 359 10.1016/j.bmcl.2013.11.002 24287381
    [Google Scholar]
  24. Kumar G. Singh N.P. Synthesis, anti-inflammatory and analgesic evaluation of thiazole/oxazole substituted benzothiazole derivatives. Bioorg. Chem. 2021 107 104608 10.1016/j.bioorg.2020.104608 33465668
    [Google Scholar]
  25. Shinde Y. Khairnar B. Bangale S. Exploring the diverse biological frontiers of isoxazole: A comprehensive review of its pharmacological significance. ChemistrySelect 2024 9 32 202401423 10.1002/slct.202401423
    [Google Scholar]
  26. Gujjarappa R. Sravani S. Kabi A.K. Garg A. Vodnala N. Tyagi U. Kaldhi D. Singh V. Gupta S. Malakar C.C. Nanostructured biomaterials. Materials Horizons: From Nature to Nanomaterials. Swain B.P. Singapore Springer 2022 379 400 10.1007/978‑981‑16‑8399‑2_10
    [Google Scholar]
  27. Hernández D. Riego E. Albericio F. Álvarez M. Synthesis of natural product derivatives containing 2,4‐concatenated oxazoles. Eur. J. Org. Chem. 2008 2008 19 3389 3396 10.1002/ejoc.200800111
    [Google Scholar]
  28. Davyt D. Serra G. Thiazole and oxazole alkaloids: Isolation and synthesis. Mar. Drugs 2010 8 11 2755 2780 10.3390/md8112755 21139843
    [Google Scholar]
  29. Li X. Li J.R. Chen K. Zhu H.L. A functional scaffold in marine alkaloid: An anticancer moiety for human. Curr. Med. Chem. 2013 20 31 3903 3922 10.2174/09298673113209990186 23895689
    [Google Scholar]
  30. Jensen P.R. Fenical W. Marine microorganisms and drug discovery: current status and future potential. Drugs from the Sea. Basel Karger Publishers 2000 6 29 10.1159/000062490
    [Google Scholar]
  31. Newman D.J. Hill R.T. New drugs from marine microbes: The tide is turning. J. Ind. Microbiol. Biotechnol. 2006 33 7 539 544 10.1007/s10295‑006‑0115‑2 16598493
    [Google Scholar]
  32. Mhlongo J.T. Brasil E. de la Torre B.G. Albericio F. Naturally occurring oxazole-containing peptides. Mar. Drugs 2020 18 4 203 10.3390/md18040203 32290087
    [Google Scholar]
  33. Chbel A. Delgado A.S. Soukri A. El Khalfi B. Marine biomolecules: A promising approach in therapy and biotechnology. Eur. J. Biol. Res. 2021 11 122 133 10.5281/zenodo.4384158
    [Google Scholar]
  34. Bull J.A. Balskus E.P. Horan R.A.J. Langner M. Ley S.V. Total synthesis of potent antifungal marine bisoxazole natural products bengazoles A and B. Chemistry 2007 13 19 5515 5538 10.1002/chem.200700033 17440905
    [Google Scholar]
  35. Bream R.N. Clark H. Edney D. Harsanyi A. Hayler J. Ironmonger A. Mc Cleary N. Phillips N. Priestley C. Roberts A. Rushworth P. Szeto P. Webb M.R. Wheelhouse K. Application of C–H functionalization in the development of a concise and convergent route to the phosphatidylinositol-3-kinase delta inhibitor nemiralisib. Org Process Res. Dev. 2021 25 3 529 540 10.1021/acs.oprd.0c00486
    [Google Scholar]
  36. Li K. Wang Y. Chen L. Li L. Jia Y. Synthesis of benzofuro[3,2-b]indolines via regioselective electrooxidative coupling of indoles and phenols. Tetrahedron Lett. 2021 63 152603 10.1016/j.tetlet.2020.152603
    [Google Scholar]
  37. Brachmann A.O. Probst S.I. Rüthi J. Dudko D. Bode H.B. Piel J. A desaturase‐like enzyme catalyzes oxazole formation in Pseudomonas indolyloxazole alkaloids. Angew. Chem. Int. Ed. 2021 60 16 8781 8785 10.1002/anie.202014491 33460275
    [Google Scholar]
  38. Pattenden G. Ashweek N.J. Baker-Glenn C.A.G. Kempson J. Walker G.M. Yee J.G.K. Total synthesis of (−)-ulapualide A, a novel tris-oxazole macrolide from marine nudibranchs, based on some biosynthesis speculation. Org Biomol. Chem. 2008 6 8 1478 1497 10.1039/b801036f 18385855
    [Google Scholar]
  39. Tilvi S. Singh K.S. Synthesis of oxazole, oxazoline and isoxazoline derived marine natural products: A review. Curr. Org. Chem. 2016 20 898 929 10.2174/1385272819666150804000046
    [Google Scholar]
  40. Pei Z.F. Yang M.J. Zhang K. Jian X.H. Tang G.L. Heterologous characterization of mechercharmycin A biosynthesis reveals alternative insights into post-translational modifications for RiPPs. Cell Chem. Biol. 2022 29 4 650 659.e5 10.1016/j.chembiol.2021.08.005 34474009
    [Google Scholar]
  41. Shin Y. Kim G. Jeon J. Shin J. Lee S. Antimetastatic effect of halichondramide, a trisoxazole macrolide from the marine sponge Chondrosia corticata, on human prostate cancer cells via modulation of epithelial-to-mesenchymal transition. Mar. Drugs 2013 11 7 2472 2485 10.3390/md11072472 23860239
    [Google Scholar]
  42. Wakimoto T. Egami Y. Nakashima Y. Wakimoto Y. Mori T. Awakawa T. Ito T. Kenmoku H. Asakawa Y. Piel J. Abe I. Calyculin biogenesis from a pyrophosphate protoxin produced by a sponge symbiont. Nat. Chem. Biol. 2014 10 8 648 655 10.1038/nchembio.1573 24974231
    [Google Scholar]
  43. Martín J. da S Sousa, T.; Crespo, G.; Palomo, S.; González, I.; Tormo, J.R.; de la Cruz, M.; Anderson, M.; Hill, R.T.; Vicente, F.; Genilloud, O.; Reyes, F.; Reyes, F. Kocurin, the true structure of PM181104, an anti-methicillin-resistant Staphylococcus aureus (MRSA) thiazolyl peptide from the marine-derived bacterium Kocuria palustris. Mar. Drugs 2013 11 2 387 398 10.3390/md11020387 23380989
    [Google Scholar]
  44. Rodríguez I.I. Rodríguez A.D. Homopseudopteroxazole, a new antimycobacterial diterpene alkaloid from Pseudopterogorgia elisabethae. J. Nat. Prod. 2003 66 6 855 857 10.1021/np030052c 12828474
    [Google Scholar]
  45. Andryukov B. Mikhailov V. Besednova N. The biotechnological potential of secondary metabolites from marine bacteria. J. Mar. Sci. Eng. 2019 7 6 176 10.3390/jmse7060176
    [Google Scholar]
  46. Bone Relat R.M. Winder P.L. Bowden G.D. Guzmán E.A. Peterson T.A. Pomponi S.A. Roberts J.C. Wright A.E. O’Connor R.M. High-throughput screening of a marine compound library identifies anti-Cryptosporidium activity of leiodolide A. Mar. Drugs 2022 20 4 240 10.3390/md20040240 35447913
    [Google Scholar]
  47. Caso A. da Silva F.B. Esposito G. Teta R. Sala G.D. Cavalcanti L.P.A.N. Valverde A.L. Martins R.C.C. Costantino V. Exploring chemical diversity of Phorbas sponges as a source of novel lead compounds in drug discovery. Mar. Drugs 2021 19 12 667 10.3390/md19120667 34940666
    [Google Scholar]
  48. Suh J.H. Yum E.K. Cho Y.S. Synthesis and biological evaluation of N-Aryl-5-aryloxazol-2-amine derivatives as 5-lipoxygenase inhibitors. Chem. Pharm. Bull 2015 63 8 573 578 10.1248/cpb.c15‑00033 26040270
    [Google Scholar]
  49. Rai G. Joshi N. Perry S. Yasgar A. Schultz L. Jung J.E. Liu Y. Terasaki Y. Diaz G. Kenyon V. Jadhav A. Probe Reports from the NIH Molecular Libraries Program. Bethesda, MD National Center for Biotechnology Information 2014
    [Google Scholar]
  50. Song H. Oh S.R. Lee H.K. Han G. Kim J.H. Chang H.W. Doh K.E. Rhee H.K. Choo H.Y.P. Synthesis and evaluation of benzoxazole derivatives as 5-lipoxygenase inhibitors. Bioorg. Med. Chem. 2010 18 21 7580 7585 10.1016/j.bmc.2010.08.047 20870413
    [Google Scholar]
  51. Ahmad H. Ullah S. Rahman F. Saeed A. Pelletier J. Sévigny J. Hassan A. Iqbal J. Synthesis of biphenyl oxazole derivatives via Suzuki coupling and biological evaluations as nucleotide pyrophosphatase/phosphodiesterase-1 and -3 inhibitors. Eur. J. Med. Chem. 2020 208 112759 10.1016/j.ejmech.2020.112759 32883636
    [Google Scholar]
  52. Lin Y. Ahmed W. He M. Xiang X. Tang R. Cui Z.N. Synthesis and bioactivity of phenyl substituted furan and oxazole carboxylic acid derivatives as potential PDE4 inhibitors. Eur. J. Med. Chem. 2020 207 112795 10.1016/j.ejmech.2020.112795 33002845
    [Google Scholar]
  53. Abdellatif K.R.A. Amin N.H. Mohammed A.A. Synthesis of some benzoxazole derivatives and their anti-inflammatory evaluation. J. Chem. Pharm. Res. 2016 8 1253 1261
    [Google Scholar]
  54. Abraham E. Chandewar A.V. Synthesis of novel 2-phenyl-1,3-oxazole derivatives as non-acidic antiinflammatory agent and evaluation by in silico, in vitro and in vivo methods. Indo American J. Pharma Res. 2014 4 5 631 633 10.5281/zenodo.1471294
    [Google Scholar]
  55. Lamie P.F. Philoppes J.N. Rárová L. Design, synthesis, and biological evaluation of novel 1,2‐diaryl‐4‐substituted‐benzylidene‐5(4 H)‐imidazolone derivatives as cytotoxic agents and COX‐2/LOX inhibitors. Arch. Pharm. (Weinheim) 2018 351 3-4 1700311 10.1002/ardp.201700311 29400411
    [Google Scholar]
  56. Özadalı K. Özkanlı F. Jain S. Rao P.P.N. Velázquez-Martínez C.A. Synthesis and biological evaluation of isoxazolo[4,5-d]pyridazin-4-(5H)-one analogues as potent anti-inflammatory agents. Bioorg. Med. Chem. 2012 20 9 2912 2922 10.1016/j.bmc.2012.03.021 22475926
    [Google Scholar]
  57. Seth K. Garg S.K. Kumar R. Purohit P. Meena V.S. Goyal R. Banerjee U.C. Chakraborti A.K. 2-(2-Arylphenyl) benzoxazole as a novel anti-inflammatory scaffold: Synthesis and biological evaluation. ACS Med. Chem. Lett. 2014 5 5 512 516 10.1021/ml400500e 24900871
    [Google Scholar]
  58. Mohamed L.W. El-Badry O.M. El-Ansary A.K. Ismael A. Design & synthesis of novel oxazolone & triazinone derivatives and their biological evaluation as COX-2 inhibitors. Bioorg. Chem. 2017 72 308 314 10.1016/j.bioorg.2017.04.012 28500957
    [Google Scholar]
  59. Kaur A. Pathak D.P. Sharma V. Narasimhan B. Sharma P. Mathur R. Wakode S. Synthesis, biological evaluation and docking study of N-(2-(3,4,5-trimethoxybenzyl)benzoxazole-5-yl) benzamide derivatives as selective COX-2 inhibitor and anti-inflammatory agents. Bioorg. Chem. 2018 81 191 202 10.1016/j.bioorg.2018.07.007 30138907
    [Google Scholar]
  60. Babu H.R. Ravinder M. Narsimha S. Synthesis and biological evaluation of new 1, 2, 3-triazole based 2-sulfonylbenzoxazoles as potent anti-inflammatory and antibacterial agents. Indian J. Heterocycl. Chem. 2019 29 389 395
    [Google Scholar]
  61. Peesa J.P. Atmakuri L.R. Yalavarthi P.R. Mandava Venkata B.R. Rasheed A. Pachava V. Oxaprozin prodrug as safer nonsteroidal anti‐inflammatory drug: Synthesis and pharmacological evaluation. Arch. Pharm. 2018 351 2 1700256 10.1002/ardp.201700256 29283449
    [Google Scholar]
  62. Tantray M.A. Khan I. Hamid H. Alam M.S. Dhulap A. Ganai A.A. Oxazolo[4,5‐b]pyridine‐based piperazinamides as GSK‐3β inhibitors with potential for attenuating inflammation and suppression of pro‐inflammatory mediators. Arch. Pharm. 2017 350 8 1700022 10.1002/ardp.201700022 28543747
    [Google Scholar]
  63. Zhou X. Zhang M. Sun W. Yang X. Wang G. Sui D. Yu X. Qu S. Design, synthesis, and in-vivo evaluation of 4,5-diaryloxazole as novel nonsteroidal anti-inflammatory drug. Biol. Pharm. Bull. 2009 32 12 1986 1990 10.1248/bpb.32.1986 19952416
    [Google Scholar]
  64. Sarkate A.P. Shinde D.B. Synthesis and docking studies of 2-(nitrooxy)-ethyl-2-(substituted-2, 5-diphenyl-oxazole)-acetate as anti-inflammatory, analgesic and nitric oxide releasing agents. Int. J. Pharm. Pharm. Sci. 2015 7 128 135
    [Google Scholar]
  65. Shakya A.K. Kaur A. Al-Najjar B.O. Naik R.R. Molecular modeling, synthesis, characterization and pharmacological evaluation of benzo[d]oxazole derivatives as non-steroidal anti-inflammatory agents. Saudi Pharm. J. 2016 24 5 616 624 10.1016/j.jsps.2015.03.018 27829803
    [Google Scholar]
  66. Garg A.K. Singh R.K. Saxena V. Sinha S.K. Rao S. Synthesis, characterization, and anti-inflammatory activity of some novel oxazole derivatives. J. Drug Deliv. Ther. 2023 13 1 26 28 10.22270/jddt.v13i1.5719
    [Google Scholar]
  67. Mathew B. Hobrath J.V. Connelly M.C. Guy R.K. Reynolds R.C. Oxazole and thiazole analogs of sulindac for cancer prevention. Future Med. Chem. 2018 10 7 743 753 10.4155/fmc‑2017‑0182 29671617
    [Google Scholar]
  68. Pattabi V. Raju Veeraboina M. Eppakayala L. Navuluri S. Mulakayala N. Design, synthesis and biological evaluation of aryl urea derivatives of oxazole-pyrimidine as anticancer agents. Results Chem. 2024 7 101442 10.1016/j.rechem.2024.101442
    [Google Scholar]
  69. Asiri Y.I. Syed T. Maringanti T.C. Eppakayala L. Puli V.S. Synthesis and biological evaluation of tetrazole ring incorporated oxazole-pyrimidine derivatives as anticancer agents. Synth. Commun. 2024 54 10 802 814 10.1080/00397911.2024.2331922
    [Google Scholar]
  70. Kachaeva M.V. Pilyo S.G. Zhirnov B.V. Oxazole-5-sulfonamides as Novel Promising Anticancer lead Compounds. Int. J. Curr. Res. 2018 10 5 69410 69425
    [Google Scholar]
  71. Biersack B. Effenberger K. Schobert R. Ocker M. Oxazole-bridged combretastatin A analogues with improved anticancer properties. ChemMedChem 2010 5 3 420 427 10.1002/cmdc.200900477 20112324
    [Google Scholar]
  72. Katariya K.D. Vennapu D.R. Shah S.R. Synthesis and molecular docking study of new 1,3-oxazole clubbed pyridyl-pyrazolines as anticancer and antimicrobial agents. J. Mol. Struct. 2021 1232 130036 10.1016/j.molstruc.2021.130036
    [Google Scholar]
  73. Pilyo S. Kozachenko O Zhirnov V. Kachaeva M. Kobzar O. Vovk A. Brovarets V. Synthesis and anticancer activity of 5-sulfonyl derivatives of 1,3-oxazole-4-carboxylates. Ukr. Bioorg. Acta 2020 15 2 13 21 10.15407/bioorganica2020.02.013
    [Google Scholar]
  74. Kachaeva M.V. Hodyna D.M. Obernikhina N.V. Pilyo S.G. Kovalenko Y.S. Prokopenko V.M. Kachkovsky O.D. Brovarets V.S. Dependence of the anticancer activity of 1,3‐oxazole derivatives on the donor/acceptor nature of his substitues. J. Heterocycl. Chem. 2019 56 11 3122 3134 10.1002/jhet.3711
    [Google Scholar]
  75. Vanam N.R. Gadipelli P. Anireddy J.S. Synthesis and biological evaluation of aryl amide derivatives of pyridine-imidazo[1,2-a]pyrazine-oxazole as anticancer agents. Chem. Data Collect 2025 55 101176 10.1016/j.cdc.2024.101176
    [Google Scholar]
  76. Earati U. Gangarapu K. Porika M. Design, synthesis and biological evaluation of thiazolidine-2,4-dione-biphenyl derivatives as anticancer agents. Asian Pac. J. Cancer Prev. 2025 26 1 101 108 10.31557/APJCP.2025.26.1.101 39873991
    [Google Scholar]
  77. Carrizales-Castillo J.J. del Rayo Camacho-Corona M. Hernández-Fernández E. Heredia-Núñez L.A. Lagunas-Rivera S. Gomez M.Y.R. Arredondo-Espinoza E. Avalos-Alanís F.G. Synthesis of oxazoline hydroxamates α,β-unsaturated: Cytotoxic evaluation and inhibitory activity in vitro of histone deacetylases. Res. Chem. 2025 14 102117 10.1016/j.rechem.2025.102117
    [Google Scholar]
  78. Komirishetti D. Mittapelli V. Synthesis and biological evaluation of 4-(1H-imidazol-2-yl)-2-(pyrimidin-5-yl)oxazoles as potent anticancer agents. Results Chem. 2025 13 101938 10.1016/j.rechem.2024.101938
    [Google Scholar]
  79. Romagnoli R. Baraldi P.G. Prencipe F. Oliva P. Baraldi S. Salvador M.K. Lopez-Cara L.C. Brancale A. Ferla S. Hamel E. Ronca R. Bortolozzi R. Mariotto E. Porcù E. Basso G. Viola G. Synthesis and biological evaluation of 2-methyl-4, 5-disubstituted oxazoles as a novel class of highly potent antitubulin agents. Sci. Rep 2017 7 1 46356 10.1038/srep46356 28406191
    [Google Scholar]
  80. Kachaeva M.V. Hodyna D.M. Semenyuta I.V. Pilyo S.G. Prokopenko V.M. Kovalishyn V.V. Metelytsia L.O. Brovarets V.S. Design, synthesis and evaluation of novel sulfonamides as potential anticancer agents. Comput. Biol. Chem. 2018 74 294 303 10.1016/j.compbiolchem.2018.04.006 29698921
    [Google Scholar]
  81. Semenyuta I. Kovalishyn V. Tanchuk V. Pilyo S. Zyabrev V. Blagodatnyy V. Trokhimenko O. Brovarets V. Metelytsia L. 1,3-Oxazole derivatives as potential anticancer agents: Computer modeling and experimental study. Comput. Biol. Chem. 2016 65 8 15 10.1016/j.compbiolchem.2016.09.012 27684433
    [Google Scholar]
  82. Zhou J. Jin J. Zhang Y. Yin Y. Chen X. Xu B. Synthesis and antiproliferative evaluation of novel benzoimidazole-contained oxazole-bridged analogs of combretastatin A-4. Eur. J. Med. Chem. 2013 68 222 232 10.1016/j.ejmech.2013.08.006 23981529
    [Google Scholar]
  83. Kuş C. Uğurlu E. Özdamar E.D. Can-Eke B. Synthesis and antioxidant properties of new oxazole-5 (4H)-one derivatives. Turk. J. Pharm. Sci. 2017 14 2 174 178 10.4274/tjps.70299 32454610
    [Google Scholar]
  84. Mathew J.E. Divya G. Vachala S.D. Mathew J.A. Jeyaprakash R.S. Synthesis and characterisation of novel 2,4-diphenyloxazole derivatives and evaluation of their in vitro antioxidant and anticancer activity. J. Pharm. Res. 2013 6 1 210 213 10.1016/j.jopr.2012.12.001
    [Google Scholar]
  85. Stankova I. Spasova M. Hydroxycinnamic acid amides with oxazole-containing amino acid: Synthesis and antioxidant activity. Z. Naturforsch. C J. Biosci. 2009 64 3-4 176 178 10.1515/znc‑2009‑3‑404 19526708
    [Google Scholar]
  86. Padmaja A. Rajasekhar C. Muralikrishna A. Padmavathi V. Synthesis and antioxidant activity of oxazolyl/thiazolylsulfonylmethyl pyrazoles and isoxazoles. Eur. J. Med. Chem. 2011 46 10 5034 5038 10.1016/j.ejmech.2011.08.010 21864949
    [Google Scholar]
  87. Abdolmohammadi S. Hossaini Z. Fe3O4 MNPs as a green catalyst for syntheses of functionalized [1,3]-oxazole and 1H-pyrrolo-[1,3]-oxazole derivatives and evaluation of their antioxidant activity. Mol. Divers. 2019 23 4 885 896 10.1007/s11030‑019‑09916‑9 30656505
    [Google Scholar]
  88. Abhale Y.K. Sasane A.V. Chavan A.P. Shekh S.H. Deshmukh K.K. Bhansali S. Nawale L. Sarkar D. Mhaske P.C. Synthesis and antimycobacterial screening of new thiazolyl-oxazole derivatives. Eur. J. Med. Chem. 2017 132 333 340 10.1016/j.ejmech.2017.03.065 28411559
    [Google Scholar]
  89. Tomi I.H.R. Tomma J.H. Al-Daraji A.H.R. Al-Dujaili A.H. Synthesis, characterization and comparative study the microbial activity of some heterocyclic compounds containing oxazole and benzothiazole moieties. J. Saudi Chem. Soc. 2015 19 4 392 398 10.1016/j.jscs.2012.04.010
    [Google Scholar]
  90. Reddy A.B. Hymavathi R.V. Swamy G.N. A new class of multi-substituted oxazole derivatives: Synthesis and antimicrobial activity. J. Chem. Sci. 2013 125 3 495 509 10.1007/s12039‑013‑0417‑7
    [Google Scholar]
  91. Fernández L.R. Svetaz L. Butassi E. Zacchino S.A. Palermo J.A. Sánchez M. Synthesis and antifungal activity of bile acid-derived oxazoles. Steroids 2016 108 68 76 10.1016/j.steroids.2016.01.014 26827629
    [Google Scholar]
  92. Tlapale-Lara N. López J. Gómez E. Villa-Tanaca L. Barrera E. Escalante C.H. Tamariz J. Delgado F. Andrade-Pavón D. Gómez-García O. Synthesis, in silico study, and in vitro antifungal activity of new 5-(1,3-diphenyl-1H-Pyrazol-4-yl)-4-Tosyl-4,5-dihydrooxazoles. Int. J. Mol. Sci. 2024 25 10 5091 10.3390/ijms25105091 38791130
    [Google Scholar]
  93. Kachaeva M. Pilyo S. Kornienko A. Prokopenko V. Zhirnov V. Prichard M. Keith K. Yang G. Wang H.K. Banerjee N. Chow L. Broker T. Brovarets V. In vitro activity of novel 1,3-oxazole derivatives against human papillomavirus. Ibnosina J. Med. Biomed. Sci. 2017 9 4 111 118 10.4103/ijmbs.ijmbs_9_17
    [Google Scholar]
  94. Shah S.R. Katariya K.D. 1,3‐Oxazole‐isoniazid hybrids: Synthesis, antitubercular activity, and their docking studies. J. Heterocycl. Chem. 2020 57 4 1682 1691 10.1002/jhet.3893
    [Google Scholar]
  95. Singagari S. Sundararajan R. Novel pyrazole substituted oxazole derivatives: Design, insilico studies, synthesis & biological activities. Journal of Research in Pharmacy 2022 26 3 625 640 10.29228/jrp.160
    [Google Scholar]
  96. Moraski G.C. Chang M. Villegas-Estrada A. Franzblau S.G. Möllmann U. Miller M.J. Structure–activity relationship of new anti-tuberculosis agents derived from oxazoline and oxazole benzyl esters. Eur. J. Med. Chem. 2010 45 5 1703 1716 10.1016/j.ejmech.2009.12.074 20116900
    [Google Scholar]
  97. Shinde S.R. Inamdar S.N. Obakachi V.A. Shinde M. Kajee A. Ghai M. Karpoormath R. Discovery of oxazole-dehydrozingerone based hybrid molecules as potential anti-tubercular agents and their docking for Mtb DNA gyrase. Results Chem. 2022 4 100374 10.1016/j.rechem.2022.100374
    [Google Scholar]
  98. Moraski G.C. Franzblau S.G. Miller M.J. Utilization of the suzuki coupling to enhance the antituberculosis activity of aryl oxazoles. Heterocycles 2010 80 2 977 988 10.3987/COM‑09‑S(S)69 22003265
    [Google Scholar]
  99. Morishita K. Ito Y. Otake K. Takahashi K. Yamamoto M. Kitao T. Ozawa S. Hirono S. Shirahase H. Synthesis and evaluation of a novel series of 2, 7-substituted-6-tetrazolyl-1, 2, 3, 4-tetrahydroisoquinoline derivatives as selective peroxisome proliferator-activated receptor γ partial agonists. Chem. Pharm. Bull 2021 69 4 333 351 10.1248/cpb.c20‑00841 33790079
    [Google Scholar]
  100. Raval P. Jain M. Goswami A. Basu S. Gite A. Godha A. Pingali H. Raval S. Giri S. Suthar D. Shah M. Patel P. Revisiting glitazars: Thiophene substituted oxazole containing α-ethoxy phenylpropanoic acid derivatives as highly potent PPARα/γ dual agonists devoid of adverse effects in rodents. Bioorg. Med. Chem. Lett. 2011 21 10 3103 3109 10.1016/j.bmcl.2011.03.020 21450468
    [Google Scholar]
  101. Rahim F. Tariq S. Taha M. Ullah H. Zaman K. Uddin I. Wadood A. Khan A.A. Rehman A.U. Uddin N. Zafar S. Shah S.A.A. New triazinoindole bearing thiazole/oxazole analogues: Synthesis, α-amylase inhibitory potential and molecular docking study. Bioorg. Chem. 2019 92 103284 10.1016/j.bioorg.2019.103284 31546207
    [Google Scholar]
  102. Joshi S. Bisht A.S. Synthesis and characterization of novel 1, 3-oxazole derivatives and study of their in-vitro antidiabetic and antioxidant activity. Int. J. Pharma Bio Sci. 2019 2 879 887 10.21276/ijpbs.2019.9.2.104
    [Google Scholar]
  103. Kumar A. Ahmad P. Maurya R.A. Singh A.B. Srivastava A.K. Novel 2-aryl-naphtho[1,2-d]oxazole derivatives as potential PTP-1B inhibitors showing antihyperglycemic activities. Eur. J. Med. Chem. 2009 44 1 109 116 10.1016/j.ejmech.2008.03.009 18436346
    [Google Scholar]
  104. El-Subbagh H.I. Hassan G.S. El-Azab A.S. Abdel-Aziz A.A.M. Kadi A.A. Al-Obaid A.M. Al-Shabanah O.A. Sayed-Ahmed M.M. Synthesis and anticonvulsant activity of some new thiazolo[3,2-a][1,3]diazepine, benzo[d]thiazolo[5,2-a][12,6]diazepine and benzo[d]oxazolo[5,2-a][12,6]diazepine analogues. Eur. J. Med. Chem. 2011 46 11 5567 5572 10.1016/j.ejmech.2011.09.021 21963116
    [Google Scholar]
  105. Srilakshmi S. Sundararajan R. Design, in-silico studies, synthesis, characterization, and anticonvulsant activities of novel thiazole substituted oxazole derivatives. Rasayan J. Chem. 2022 15 1 711 725 10.31788/RJC.2022.1516762
    [Google Scholar]
  106. Song M.X. Wang Z.Y. He S.H. Yu S.W. Chen S.L. Guo D.F. Zhao W.H. Deng X.Q. Synthesis and evaluation of the anticonvulsant activities of 4-(2-(Alkylthio)benzo[d]oxazol-5-yl)-2,4-dihydro-3H-1,2,4-triazol-3-ones. Molecules 2018 23 4 756 10.3390/molecules23040756 29587394
    [Google Scholar]
  107. Wei C.X. Guan L.P. Jia J.H. Chai K.Y. Quan Z.S. Synthesis of 2-substituted-6-(4H-1,2,4-triazol-4-yl)benzo[d]oxazoles as potential anticonvulsant agents. Arch. Pharm. Res. 2009 32 1 23 31 10.1007/s12272‑009‑1114‑4 19183873
    [Google Scholar]
  108. Hari Narayana Moorthy N.S. Saxena V. Karthikeyan C. Trivedi P. Synthesis, in silico metabolic and toxicity prediction of some novel imidazolinones derivatives as potent anticonvulsant agents. J. Enzyme Inhib. Med. Chem. 2012 27 2 201 207 10.3109/14756366.2011.584191 21635210
    [Google Scholar]
  109. Sydorenko I.A. Mishchenko M.V. Shtrygol’ S.Y. Lozynskyy A.V. Soronovych I.I. Holota S.M. Lesyk R.B. The synthesis and the anticonvulsant activity screening of new 5-substituted 2-imino-4-thiazolidinone derivatives. J. Org Pharma Chem. 2022 20 1(77) 12 20 10.24959/ophcj.22.248784
    [Google Scholar]
  110. Das Mahapatra A. Queen A. Yousuf M. Khan P. Hussain A. Rehman M.T. Alajmi M.F. Datta B. Hassan M.I. Design and development of 5-(4H)-oxazolones as potential inhibitors of human carbonic anhydrase VA: Towards therapeutic management of diabetes and obesity. J. Biomol. Struct. Dyn. 2022 40 7 3144 3154 10.1080/07391102.2020.1845803 33183174
    [Google Scholar]
  111. Cuffaro D. Di Leo R. Ciccone L. Nocentini A. Supuran C.T. Nuti E. Rossello A. New isoxazolidinyl-based N -alkylethanolamines as new activators of human brain carbonic anhydrases. J. Enzyme Inhib. Med. Chem. 2023 38 1 2164574 10.1080/14756366.2022.2164574 36630083
    [Google Scholar]
  112. Kwak H.J. Pyun Y.M. Kim J.Y. Pagire H.S. Kim K.Y. Kim K.R. Rhee S.D. Jung W.H. Song J.S. Bae M.A. Lee D.H. Ahn J.H. Synthesis and biological evaluation of aminobenzimidazole derivatives with a phenylcyclohexyl acetic acid group as anti-obesity and anti-diabetic agents. Bioorg. Med. Chem. Lett. 2013 23 16 4713 4718 10.1016/j.bmcl.2013.05.081 23810496
    [Google Scholar]
  113. Jadhav R.D. Kadam K.S. Kandre S. Guha T. Reddy M.M.K. Brahma M.K. Deshmukh N.J. Dixit A. Doshi L. Potdar N. Enose A.A. Vishwakarma R.A. Sivaramakrishnan H. Srinivasan S. Nemmani K.V.S. Gupte A. Gangopadhyay A.K. Sharma R. Synthesis and biological evaluation of isoxazole, oxazole, and oxadiazole containing heteroaryl analogs of biaryl ureas as DGAT1 inhibitors. Eur. J. Med. Chem. 2012 54 324 342 10.1016/j.ejmech.2012.05.016 22683241
    [Google Scholar]
  114. Jung H.J. Park H.S. Park H.S. Kim H.J. Yoon D. Park Y. Chun P. Chung H.Y. Moon H.R. Exploration of compounds with 2-phenylbenzo[d]oxazole scaffold as potential skin-lightening agents through inhibition of melanin biosynthesis and tyrosinase activity. Molecules 2024 29 17 4162 10.3390/molecules29174162 39275009
    [Google Scholar]
  115. Adhikary S. Mukherjee K. Banerji B. Cell-imaging studies of highly substituted oxazole derivatives as organelle targeting fluorophores (OTFPs). Sci. Rep 2022 12 1 16555 10.1038/s41598‑022‑20112‑y 36192545
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266419594251103103459
Loading
/content/journals/ctmc/10.2174/0115680266419594251103103459
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Anticancer ; Heterocyclic ; Anti-inflammatory ; Marine ; Cell ; Oxazole
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test