Current Pharmaceutical Biotechnology - Online First
Description text for Online First listing goes here...
1 - 50 of 93 results
-
-
Towards Pharmaceutical Industry 5.0: Impact of Artificial Intelligence in Drug Discovery and Development
Available online: 03 November 2025More LessThe pharmaceutical industry is transforming with the advent of Industry 5.0, which is marked by integrating artificial intelligence (AI) into drug discovery and development. AI technologies, such as machine learning, deep learning, and natural language processing, revolutionize the traditional drug development pipeline by accelerating the identification of novel drug candidates, optimizing clinical trial designs, and personalizing therapies. Moreover, AI models enhance the prediction of drug efficacy, toxicity, and patient responses, minimizing the risk of failure of clinical trials. Nevertheless, despite these advancements, challenges remain in integrating AI into the pharmaceutical workflow, including data quality, regulatory concerns, and the need for interdisciplinary collaboration. This review explores the current state of AI applications in drug discovery, drug formulation and optimization, pharmacokinetics and pharmacodynamics, drug manufacturing and quality control, regulatory compliance and pharmacovigilance. Overall, AI is poised to redefine the landscape of drug discovery and development, fostering a new era of precision medicine and transforming patient outcomes globally, especially in the era of Industry 5.0.
-
-
-
-
Analysis of the Molecular Mechanism of Comorbidity Genes Between Breast Cancer and Depression
Authors: Hua Xie, Chenxiang Ding, Qianwen Li, Jie Xu, Wei Sheng, Renjian Feng and Huaidong ChengAvailable online: 17 October 2025More LessIntroductionBreast cancer and depression are both serious diseases that significantly impact women's physical health. The molecular mechanisms underlying their comorbidity remain elusive. This study aims to identify key genes and the molecular mechanisms associated with the comorbidity of breast cancer and depression using bioinformatics analysis methods.
MethodsData files for breast cancer and depression were obtained from the TCGA database and the NCBI GEO public database, respectively. The random survival forest algorithm was utilized to identify key genes co-expressed in both breast cancer and depression. Gene Set Variation Analysis (GSVA) and Gene Set Enrichment Analysis (GSEA) were employed to predict biological functions and signaling pathway differences influenced by these key genes in both diseases. The R package “RcisTarget” was utilized to predict molecular transcriptional regulatory relationships of the key genes. The CIBERSORT algorithm was applied for immune function correlation analysis of comorbid key genes. The differential expression of key genes was validated in breast cancer tissue and depression blood by qPCR.
ResultsThe TCGA database provided original mRNA expression data for breast cancer, while the NCBI GEO public database offered the dataset GSE58430 related to depression. Through functional enrichment and random survival forest analysis, CCNB1, MLPH, PSME1, and RACGAP1 were identified as four key genes. The specific signaling pathways、strong correlation with immune cells, and the potential molecular mechanisms of these four key genes were analyzed in breast cancer and depression. Their expression levels were verified in blood and tissue samples.
DiscussionThis study discovered the comorbidity genes of breast cancer and depression, providing a certain direction for the prevention and treatment of these two diseases. At present, breast cancer and depression are serious diseases that affect women's physical and mental health. The connection between the two is not very clear. This study proposes that these two diseases have comorbidity genes. The risk population of the disease can be detected early through testing, so as to intervene early and improve prognosis. However, the sample size of the database analyzed in this study was relatively small, and the sample size and methods for clinical validation were insufficient. Further in-depth research will be conducted in the future.
ConclusionThis study identified CCNB1, MLPH, PSME1, and RACGAP1 as key genes associated with the comorbidity of breast cancer and depression.
-
-
-
Clinicopathological and Molecular Comparative Analysis of Hereditary vs. Sporadic Fumarate Hydratase-deficient Leiomyomatosis and Renal Carcinoma
Authors: Qi Chen, Pairidaguli Naibijiang, Yuanjing Hu, Qiuyue Du and Nuermaimaiti KuyaxikeziAvailable online: 17 October 2025More LessIntroductionFLRCC is a rare renal carcinoma subtype caused by FH mutations, categorized into hereditary (germline mutations) and sporadic (somatic mutations) forms. These forms are clinically and pathologically similar, complicating differentiation without genetic testing. The aim of this study is to investigate the clinicopathological and molecular genetic differences between hereditary and sporadic fumarate hydratase (FH)-deficient leiomyomatosis and renal cell carcinoma (FLRCC) to improve diagnostic accuracy and clinical management.
MethodA retrospective analysis of 14 FLRCC patients was conducted(May 2020-August 2023). Immunohistochemistry (FH, 2SC, p16), HE staining, and next-generation sequencing (NGS) of tumor tissues and blood leukocytes were performed.
ResultsThe 14 patients with FH-deficient leiomyoma were 25-54 years old, with a mean age of 36.21 ± 8.16. 78.5% (11/14) had clinical symptoms and multiple, large-sized fibroids (median maximum volume was 75 mm). Patients with leiomyoma and FH deficiency were divided into hereditary and sporadic FLRCC based on FH gene sequencing. Patients with HLRCC had an earlier onset, and the serum tumor marker CA125 was more significant. Moreover, tumor tissues from patients with hereditary and sporadic FH-deficient LRCC differed in immunohistochemical and HE staining characteristics, including more positive p16 and greater susceptibility to invasion and metastasis in patients with HLRCC, as well as malignant proliferation in patients with sporadic FH-deficient LRCC.
DiscussionAlthough limited by sample size, our preliminary findings indicated subtle differences in the age of onset, as well as immunohistochemical and histopathological features of hereditary and sporadic FH-deficient LRCC, facilitating the understanding and clinical diagnosis of FLRCC.
ConclusionIn clinical diagnosis, all information should be fully integrated, and a comprehensive judgment should be made to make a correct pathological diagnosis and provide targeted treatment for patients with an FH gene mutation.
-
-
-
Discoidin Domain Receptor 1 in Colonic Epithelial Cells: A Paracrine Driver of Colonic Fibrosis
Authors: Hang Gong, Xiao-Li Li, Yao-Hui Ma and De-Kui ZhangAvailable online: 08 October 2025More LessIntroductionThis study investigated the role and potential mechanisms of discoidin domain receptor 1 (DDR1) in colon fibrogenesis.
MethodsWe employed the DSS-induced chronic colitis and fibrosis model to evaluate the therapeutic potential of DDR1 knockout on colonic fibrosis. In vitro experiments involved generating human normal colonic epithelial cells (HIEC line) with DDR1 overexpression by lentivirus transfection. Human colonic fibroblasts were exposed to conditioned medium (CM) from the stably transfected cells that had been treated with transforming growth factor-beta 1 (TGF-β1). The cells were collected for molecular and biochemical analyses.
ResultsOur proteomics analysis of DDR1 indicated significant enrichment of proteins involved in the extracellular matrix and fibrosis. In DSS-treated DDR1-KO mice, attenuation of colonic fibrosis and reduced activation of colonic fibroblasts were observed, contrasting significantly with their counterparts in DSS-treated WT mice. Colonic fibroblasts exhibited a marked increase in α-smooth muscle actin and type I collagen expression when exposed to CM from HIEC cells with DDR1 overexpression. Finally, overexpression of DDR1 markedly elevated the levels of p-PI3K, p-Akt, p-mTOR, p62, and LC3B in HIEC cells, resulting in enhanced secretion of TGF-β1.
DiscussionDDR1 in HIEC cells attenuates autophagy primarily by activating the PI3K/AKT/ mTOR signaling axis and concurrently increasing the autophagic markers LC3B and p62, thereby inducing paracrine secretion of TGF-β1, which drives the activation and proliferation of colonic fibroblasts and elicits a robust profibrotic response.
ConclusionOur study suggests that DDR1 may be a potential therapeutic target for colonic fibrosis.
-
-
-
Evaluating the Protective Immunity of 5’-Cap Altered Rabies mRNA Vaccines in a Mouse Model
Authors: Teng Zhang and Wen ZhangAvailable online: 30 September 2025More LessIntroductionRabies Virus (RV or RABV) is a neurophilic pathogen predominantly transmitted to humans through bites, scratches, or wounds. Upon entering the central nervous system, the virus can cause severe symptoms, including acute encephalitis and paralysis, ultimately leading to death with an almost 100% mortality rate. Hence, it is essential to develop an effective oral rabies vaccine.
MethodsWe designed and synthesized three modified 5'-cap mRNA vaccines (RV-01(CAP-01), RV-01(CAP-02) and RV-01(CAP-03)) encoding rabies virus glycoproteins in vitro and evaluated their immunogenicity and protective effect in mice.
ResultsThe modified 5'-cap vaccine was successfully constructed and could be effectively expressed in HEK293 cells. The antibody detection results revealed the abundance of RABV-G in RV-01(CAP-01), RV-01(CAP-02) and RV-01(CAP-03). ELISPOT assays indicated that these variants promoted the production of immune-related cytokines. Furthermore, the modified 5'-cap vaccines could reduce the rabies viral load of mice and effectively prolong their survival.
DiscussionThe rabies mRNA vaccine had high efficacy and safety in preventing rabies, suggesting the great potential of mRNA as a promising candidate for RABV vaccines. However, the potential causes of the differences in the performance of the three modified 5'-cap rabies mRNA vaccines and the clinical application of 5’-Cap altered rabies mRNA vaccines need to be explored.
ConclusionHence, these results demonstrated that the modified 5’-cap mRNA vaccine was effective in inducing immune responses, which might be considered a promising prophylactic strategy for rabies.
-
-
-
Understanding Antimicrobial Resistance: From Mechanisms to Public Health Implications
Available online: 12 September 2025More LessAntimicrobial resistance (AMR) is a global public health crisis driven by the overuse and misuse of antibiotics, inadequate infection control practices, and the evolution of microbes. It compromises the effective treatment of infections, posing severe implications for morbidity, mortality, and healthcare costs. Pathogens such as extended-spectrum β-lactamase (ESBL)-producing Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA) exemplify the growing threat of drug-resistant organisms. This review provides an in-depth analysis of the mechanisms underlying AMR, including enzymatic drug inactivation, efflux pump overexpression, target site modification, and biofilm formation. Additionally, it examines the clinical and economic implications of AMR and assesses emerging strategies for mitigation. Innovative solutions, such as bacteriophage therapy, CRISPR-based genome editing, and the One Health approach, offer promising avenues to address resistance across the human, animal, and environmental health sectors. Coordinated global efforts in surveillance, stewardship, and research are essential to curbing the spread and impact of AMR.
-
-
-
The Role of Pioglitazone as a Ferroptosis Inhibitor in Mitigating Radiation-induced Damage in Testicular Tissue of Mice
Available online: 29 August 2025More LessIntroductionRadiation targets cancer but risks causing infertility by damaging sensitive testes, especially spermatogonia. This study investigates IR-induced testicular damage and assesses PGZ's potential protective role as a ferroptosis inhibitor.
Material & MethodsIn this study, Seventy-two BALB/c mice were randomly divided into eight groups: a control, PGZ (10, 20, and 30 mg/kg), IR (8 Gy), and IR+ PGZ (in three doses). PGZ was administered for 10 consecutive days, and mice were exposed to IR on the 11th day of the study. 24 h after RT, the mice's testis tissue was subjected to a series of evaluations to assess oxidative stress and antioxidant parameters, with histopathological analyses conducted one week after IR.
ResultsBiochemical analyses revealed that exposure to IR significantly increased ferroptosis markers, while concurrently decreasing intracellular antioxidants GSH. Histological examinations confirmed damage to spermatogenic cells, leading to detachment from the basement membrane and reduced sperm counts. Pre-treatment with PGZ at 30 mg/kg effectively reduced the levels of oxidative stress markers and improved antioxidant levels, demonstrating its potential protective effects against ferroptosis.
DiscussionThe results suggest PGZ can protect against radiation-induced testicular damage by inhibiting ferroptosis and promoting spermatogenesis recovery.
ConclusionThese results indicate that PGZ may act as a protective agent against radiation-induced testicular damage and support the recovery of spermatogenesis following IR exposure. Further research is warranted to explore the molecular mechanisms of PGZ's protective effects.
-
-
-
Research Progress on the Effects of Anthocyanins on Cognitive Function and Their Underlying Mechanisms
Authors: Wen-huan Dong, Ting Wang, Zi-ping Wang, Xin Wen, Qi-qi Huang and Zhang-e XiongAvailable online: 28 August 2025More LessintroductionThis review aims to systematically investigate the existing research on the effects of anthocyanins on cognitive functions and their underlying mechanisms involved. It provides detailed insights into their development and potential applications.
MethodAn extensive review and analysis of various animal experiments and human studies were performed using databases, such as Web of Science, Sci-Hub, EI, ScienceDirect, and PubMed. The keywords, titles, or abstracts searched included, but were not limited to, 'Anthocyanin', 'Cognition', 'Anti-inflammatory', 'Antioxidation', 'Autophagy', and 'Insulin resistance'. The search was conducted covering the period from January 2017 to November 2025. Our aim was to summarize the evidence concerning the impact of anthocyanins on cognitive functions and to explore their underlying mechanisms. We analyzed these mechanisms in terms of antioxidant activity, reduction of neuroinflammation, regulation of autophagy-related pathways, and central insulin sensitivity.
ResultA substantial body of research has indicated that anthocyanins exert beneficial effects on cognitive function. In models exhibiting cognitive impairment, supplementation with anthocyanins has been shown to significantly improve cognitive capabilities. The underlying mechanisms of action are primarily attributed to the following factors: the strong antioxidant properties of anthocyanins, which effectively neutralize free radicals in the brain, thereby diminishing oxidative stress and protecting neuronal integrity and functionality; the inhibition of neuroinflammatory responses, which alleviates the detrimental impact of inflammatory agents on neural tissues and contributes to the maintenance of the brain's homeostatic environment; and the regulation of autophagy-related pathways and central insulin sensitivity, which collectively reduce damage to proteins linked to cognitive function and enhance learning and memory processes.
DiscussionAs the global population ages rapidly and the prevalence of cognitive decline-related diseases, like Alzheimer's, increases, there is a pressing need to create medications that can improve cognitive abilities. Researchers are paying close attention to anthocyanins, natural substances found in plants such as blueberries and purple grapes, due to their significant potential to influence cognitive functions. Nonetheless, further clinical trials are necessary to validate the appropriate dosage and bioavailability of anthocyanins, and certain limitations must be acknowledged.
ConclusionIn the present study, it was found that anthocyanins can improve cognitive impairment in both humans and animals. Their mechanisms of action primarily involve anti-inflammatory effects, antioxidant activity, modulation of autophagy, and the reduction of central insulin resistance. This research lays the groundwork for future studies on the role of anthocyanins in cognitive function.
-
-
-
Taxifolin: Approaches to Increase Water Solubility and Bioavailability
Authors: Mark B. Plotnikov and Anna M. AnishchenkoAvailable online: 08 August 2025More LessTaxifolin (TAX) (5,7,3',4'-tetrahydroxyflavanol, dihydroquercetin) belongs to the flavonoid family. TAX elicits a wide range of pharmacological effects, and for this reason, it is of high commercial interest as a flavonoid. The widespread use of TAX in medical practice is limited by the physicochemical properties of the compound and, in part, the related features of its pharmacokinetics: absorption, distribution, metabolism, and excretion. The purpose of this review is to provide an overview of technological methods that can be utilized to enhance the solubility of TAX, potentially increasing its bioavailability. The review describes various technological approaches: micronization, crystal engineering, self-microemulsifying systems, liposomes and their modifications, microemulsifying systems, phospholipid nanoparticles, inclusion complexes (clathrate generation), and chemical modification. Most of the approaches described in the review for improving the solubility and bioavailability of TAX have proven to be successful. Nanotechnologies are the most efficient means for improving the solubility and bioavailability of TAX. Developing new TAX substances with improved solubility and bioavailability holds promise as a basis for the development of innovative drugs.
-
-
-
Critical Processes for Stability Enhancement of Phyto-ingredients: A Comprehensive Review
Authors: Evren Algin Yapar, Merve Nur Özdemir and Thanchanok SirirakAvailable online: 08 August 2025More LessPlants contain valuable phytochemicals with biological activity. However, factors such as instability, poor solubility, and bioavailability limit their use in the food, cosmetics, and pharmaceutical industries. In this context, a wide variety of strategies have been developed with the objective of improving the stability of herbal sources and bioactive compounds under processing, storage, or gastrointestinal digestion conditions. Moreover, these strategies seek to enhance solubility, mask undesirable flavors, and facilitate targeted delivery to specific tissues, thereby enabling the bioactive compounds to exert their biological activity and contribute to improved human health. It is of great importance to conduct studies on the stability of herbal medicines to identify the various factors, physical, chemical, and environmental, which may affect their stability. Also, such studies are essential for determining the shelf life of the products and always ensuring their quality during storage and use. This review presents the strategies and latest advances utilized to improve the stability of pure plant bioactive compounds, extracts, and essential oils to overcome the previously mentioned challenges. The information presented will assist in the production of safe, stable, and effective substances and products. Furthermore, a comprehensive overview of the various applications of these compounds is provided, along with an analysis of emerging trends.
-
-
-
Application of Mathematical Model in Basic Research and Product Manufacturing of Traditional Chinese Medicine
Authors: Nenghua Zhang, Xingying Chen, Simeng Li, Yaru Wang, Chuchu Shan, Jingmei Song and Yuyan ZhangAvailable online: 08 August 2025More LessIntroductionThe research on traditional Chinese medicine (TCM) has experienced the transition from qualitative research to quantitative study. The application of mathematical modeling for data processing and analysis offers a more efficient and precise approach compared to conventional methods, enabling the timely acquisition of key efficacy indicators for preliminary evaluation. Therefore, the concept of mathematical modeling has been proposed to form a systematic theoretical system of TCM and diseases.
MethodsThe article reviews the application of mathematical models in the research of traditional Chinese medicine in terms of compounding, extraction, optimization, quality evaluation, production, new drug development, pharmacokinetics, pharmacodynamics, and clinical symptom analysis. Relevant Chinese and English literature was obtained from PubMed, Cochrane Library, China Science and Technology Journal Database (VIP), Wanfang Data, CNKI and China Biomedical Literature Database (CBM).
ResultsWe have found that integrating the concept of mathematical modeling with TCM theory has shortened the cycle of extracting active ingredients in traditional Chinese medicine and the development of new drugs, while also accelerating the realization of maximum clinical efficacy.
DiscussionHowever, the comprehensiveness and precision of existing databases remain areas for improvement. In the future, further integration of multi-disciplinary technologies will be essential to advance the convergence of traditional medicine and modern science.
ConclusionThis review explores the application of mathematical models in the study of traditional Chinese medicine. It is evident that mathematical modeling has played a pivotal role in promoting fundamental research and the modernization of TCM.
-
-
-
Integrating IoMT and Federated Learning for Advanced Healthcare Monitoring in Healthcare 5.0
Authors: Bassam Almogadwy and Abdulrahman AlqarafiAvailable online: 08 August 2025More LessIntroductionThe Internet of Medical Things (IoMT) has made it possible to create advanced health monitoring systems. It allows the system to detect problems early, thereby mitigating long-term effects. This development will likely enhance the quality of healthcare professionals by reducing their workload and healthcare costs. The IoT in medical technology offers a wide range of information technology capabilities, including intelligent and collaborative healthcare solutions. Aggregating health data in a single repository raises security, copyright, and compliance issues when building a complex machine-learning model.
MethodFederated learning overcomes the above challenges by dispersing a global learning model through a central aggregate server. It retains mastery of patient data in a local participant who ensures data privacy and integrity. This research aims to develop an advanced healthcare monitoring system utilizing federated learning techniques. The system is designed to enable healthcare providers to effectively track patient health through medical sensors and respond promptly when necessary.
ResultsThe federated learning-based XGBoost model achieved a predictive accuracy of 97.2% in diagnosing Parkinson’s disease. Additionally, the system demonstrated improved privacy preservation, significantly reducing sensitive data exposure with minimal computational overhead, confirming its practical effectiveness in clinical scenarios.
DiscussionBy leveraging federated learning, the proposed approach seeks to enhance the efficiency and effectiveness of health monitoring in clinical settings. To achieve accurate classification and early detection of Parkinson's disease, the study employs two key machine learning algorithms: Support Vector Machine (SVM) and Extreme Gradient Boosting (XGBoost). These methods were selected for their statistical robustness and suitability for the task at hand.
ConclusionThe combination of federated learning, SVM, and XGBoost enhances healthcare monitoring and ensures patient data privacy and integrity.
-
-
-
The Effects of Rukangyin on the Biological Behavior and Hippo Signaling Pathway in MDA-MB-231 Breast Cancer Cells
Authors: Shi Qiu, Qinyu Han, Xian Zhao, Wenjing Li and Xiangqi LiAvailable online: 06 August 2025More LessIntroductionThis study aims to examine the impact of Rukangyin (RKY) and its components, LSQR and QTSS, on various cellular processes and signaling mechanisms in MDA-MB-231 triple-negative breast cancer (TNBC) cells.
MethodsTwenty-five Sprague-Dawley (SD) rats were randomly assigned to five groups according to the administered drugs, including the RKY group, LSQR group, QTSS group, fluorouracil group, and blank control group (n=5 in each group). The serum samples from each group were then used as a medicated medium for the culture of the TNBC cell line MDA-MB-231. Cell viability tests, apoptosis detection tests, and migration and invasion tests were used to evaluate the cytotoxicity of treated serum. YAP, TAZ, MST1, and LATS1 protein expression and phosphorylation were examined using conventional western blotting methods.
ResultsRKY and its QTSS and LSQR components significantly inhibited cell growth and promoted apoptosis in MDA-MB-231 cells. RKY also significantly blocked cell motility with a comparable effect to that of fluorouracil. All serum groups suppressed YAP and TAZ expressions while increasing p-YAP, p-TAZ, MST1, and LATS1 levels, with RKY showing superior efficacy.
DiscussionIn TNBC cells, RKY appears to enhance the tumor-suppressing signals of the Hippo signaling pathway via MST1, LATS1 activation, while restricting its pro-oncogenic action via YAP and TAZ blockade. However, in vivo and animal model experiments are required to confirm these findings.
ConclusionRKY-medicated serum effectively inhibits growth, induces apoptosis, and reduces motility in the MDA-MB-231 cell line of breast cancer. This therapeutic potential of RKY on TNBC cells draws attention to the need for more investigations.
-
-
-
A Comprehensive Mini-Review on the Understanding of Electrotherapy for Pain Management: An Introduction to ABMMA-BMT
Authors: Praveen Mallari, Tracy Taulier and Mohammad Amjad KamalAvailable online: 04 August 2025More LessABMMA-BMT is a modality that combines innovative complementary and alternative medicine techniques with low-voltage electrical energy, applying it to acupuncture points and meridians to bridge traditional Chinese medicine with modern bioelectric science. This involves the application of microcurrents (10–1000 µA) at acupoints to assess and correct for disrupted energy flow, as determined by electrical resistance measurements. Treatment involves the delivery of weak direct currents, which remove blockages in meridian channels, thereby promoting local blood circulation and tissue repair. Recent research suggests that pulsed electromagnetic fields (PEMFs) and microcurrent stimulation can influence neural signaling, gene expression, and redox balance, thereby benefiting conditions such as chronic pain, soft tissue injury, and functional dysregulation of the immune and endocrine systems. These results suggest that integrating bioelectric principles with traditional acupuncture concepts will support the hypothesis that ABMMA-BMT has the potential to regulate cellular processes and accelerate healing while avoiding invasive procedures. The mechanisms are still not well understood, but preliminary clinical data and experimental studies are good indicators of its therapeutic effect. Future research is needed to standardize treatment parameters and to clinically verify the efficacy of this modality, so that it can be incorporated as a conventional component of healthcare practice.
-
-
-
Proteolytic Profiles of Aspergillus caespitosus, A. jensenii and A. neotritici, and a Novel Peptidase with Plasmin-like Activity for Biomedicine and Pharmacology
Available online: 04 August 2025More LessIntroductionCardiovascular diseases (CVDs) are the leading cause of death globally, often complicated by thromboembolic events. Plasmin, a key enzyme in fibrinolysis, is crucial for managing these conditions. Elevated or reduced plasmin levels can indicate thrombotic risks, making it a valuable diagnostic marker. Recent biotechnological advances have developed diagnostic kits to measure plasmin activity, aiding early detection and intervention. Fungal proteases, particularly from micromycetes, are emerging as promising agents in anticoagulant therapy. This study investigates three Aspergillus species — A. caespitosus, A. jensenii and A. neotritici for their potential to produce novel biomedical components.
MethodsThe fungi were cultured, and their proteolytic profiles were analyzed. Key findings include the identification of specific proteases with plasmin-like and protein C-activating activities. These enzymes were purified using isoelectric focusing and characterized through SDS-PAGE and zymography.
ResultsThe study confirmed that A. jensenii, and A. neotritici produce proteases with plasmin-like activity, with A. neotritici showing a single 35 kDa non-specific protease, and A. jensenii exhibiting two proteases (33 kDa and 100 kDa) in the acidic zone and one (110 kDa) in the neutral zone, the latter exhibiting specific chymotrypsin and plasmin-like activity.
DiscussionAmong the studied strains, A. neotritici exhibited the fastest secretion of proteases with plasmin-like activity, making it a promising source of enzymes with potential clinical applications. In contrast, A. caespitosus and A. jensenii displayed more complex protease compositions, featuring multiple active enzymes. Notably, one of the A. jensenii proteases showed pronounced specificity toward chymotrypsin and fibrinolytic substrates, indicating its suitability for the development of targeted therapeutic agents.
ConclusionThese findings suggest the potential of these fungal proteases for developing novel anticoagulant therapies and diagnostic tools.
-
-
-
Genetic Evidence for Causal Effects of Lipid-lowering Drug Targets on Primary Sjögren's Syndrome Risk: A Mendelian Randomization Study
Authors: Yuying Li, Weiquan Liao, Ying’ao Guo, Lijuan Xiao, Zaixing Qiu, Jingjing Xie and Jianyong ZhangAvailable online: 04 August 2025More LessIntroductionPrimary Sjögren's Syndrome (pSS) is a chronic autoimmune condition affecting lacrimal and salivary glands. While previous studies suggest potential associations between dyslipidemia and autoimmune diseases, the causal relationship between lipid-lowering medications and pSS remains unclear.
MethodsThis study employed drug-targeted Mendelian randomization (MR) analysis to assess the impact of lipid-lowering drugs on pSS risk, focusing on genetic targets including HMGCR, PCSK9, NPC1L1, APOB, CETP, and LDLR. Data were sourced from the Global Lipids Genetics Consortium and UK Biobank. Significant single-nucleotide polymorphisms linked to LDL cholesterol were utilized as instrumental variables. Causal effects were estimated using Inverse Variance Weighted, Weighted Median, MR Egger, Simple Mode, and Weighted Mode methods. Robustness was ensured through heterogeneity and sensitivity analyses.
ResultsThe inhibition of HMGCR and CETP genes was found to be significantly associated with an increased risk of developing pSS (HMGCR: OR = 3.602, 95% CI [1.051, 12.344], p = 0.041; CETP: OR = 12.251, 95% CI [2.599, 57.743], p = 0.002).
DiscussionHMGCR and CETP may affect pSS risk via non-lipid pathways, suggesting distinct mechanisms among different lipid-lowering drug targets.
ConclusionThis study provides compelling evidence suggesting that lipid-lowering drugs may contribute to the risk of pSS, thus offering new insights for clinical intervention strategies.
-
-
-
Spray Drying: A Promising Technique for Inhalable Vaccine Development
Available online: 29 July 2025More LessIn the pursuit of innovative vaccine delivery methods, this review explores the potential of spray drying for formulating inhalable vaccines. Traditional vaccine approaches face challenges in administration, storage, and accessibility, especially in resource-limited settings. Inhalable vaccines, utilizing techniques like spray drying, offer a promising solution. By bypassing systemic circulation and directly targeting the respiratory mucosa, inhalable vaccines can induce robust mucosal and systemic immune responses. Spray drying, a versatile technique, is particularly well-suited for formulating inhalable vaccines. It transforms liquid vaccine formulations into finely dispersed powders, enabling efficient delivery to the lungs. This review delves into the unique characteristics of spray-dried particles, their impact on immune system activation, and their role in overcoming traditional vaccine limitations. The exploration emphasizes the potential for spray drying to revolutionize vaccine development, providing a comprehensive overview of its applications and contributions to improving global public health.
-
-
-
Emerging Protein Therapeutics as a Strategy for Cervical Cancer Treatment
Available online: 25 July 2025More LessCervical cancer continues to be a critical public health concern globally, with increasing mortality rates, particularly in Low- and Middle-Income Countries (LMICs) where healthcare resources remain limited. With more than 300,000 fatalities each year, it is the fourth most frequent cancer in women globally. Long-term infection with carcinogenic Human Papillomavirus (HPV) variants, which cause cancer through viral proteins including E5, E6, and E7, is the leading cause of cervical cancer. These proteins interfere with host cellular functions, which promote the development and spread of cancer. Conventional treatment strategies, including chemotherapeutics and immunotherapies, have achieved varying degrees of success. However, protein-based therapeutics have recently emerged as a promising class of agents in oncology due to their ability to modulate specific molecular targets with high precision and specificity. These biologics interact with cell surface receptors and orchestrate essential signalling cascades, such as the NF-κB, MAPK, and PI3K/AKT pathways. Notably, new classes of protein therapeutics, such as toxin-based agents and Bromodomain and Extra-Terminal (BET) domain inhibitors, have shown effectiveness in disrupting tumor-promoting pathways. In addition to their direct antitumor activities, protein therapeutics also modify the tumor microenvironment, affecting stromal elements and lymphatic architecture, and ultimately promoting apoptosis. This review critically examines the landscape of protein-based therapeutic approaches for cervical cancer, delineating their mechanisms of action and highlighting their role in targeting inflammatory pathways—such as inflammasomes and cytokine networks—that contribute to tumor progression and immune modulation.
-
-
-
Advances in the Mechanism and Applications of Stimulus-responsive DNA Hydrogels
Authors: Yifan He, Zhaohe Huang, Xiaojing Pei, Yinmao Dong and Xiangliang YangAvailable online: 24 July 2025More LessDNA hydrogels possess numerous unique and attractive features, including excellent biocompatibility and biodegradability, as well as inherent programmability, catalytic functionality, therapeutic potential, and precise molecular recognition and bonding capabilities. Furthermore, intelligent DNA hydrogels exhibit stimuli-responsive behaviors, transitioning between gel and sol states in response to various stimuli, including pH, temperature, enzymes, and others. Through intelligent, rational design and controlled preparation of DNA nanostructures, a broad spectrum of advanced applications has been realized. In this mini-review, we focus on recent developments in the construction strategies, molecular structures, and functional mechanisms of DNA hydrogels. Additionally, representative applications of stimuli-responsive DNA hydrogels are discussed. Finally, challenges and the future outlook of DNA hydrogels are proposed.
-
-
-
Formulation and Assessment of Broccoli Extract-infused Hydrogel for Targeted Breast Cancer Therapy
Authors: Kajal Parashar, Mohammad Rashid Khan, Minhaj Ahmad Khan, Pratibha Pandey and Fahad KhanAvailable online: 21 July 2025More LessIntroductionThe most prevalent kind of cancer among women is breast cancer. Consequently, the development of novel, potent medications with fewer adverse effects is required to treat it. Breast cancer is frequently treated clinically with chemotherapy and surgery. However, there are still significant challenges to be addressed in the treatment of breast cancer, including inadequate therapeutic results, inevitable side effects, and the surgical excision of breast tissue. The objective of the study is to develop broccoli extract-based Hydrogel to overcome the challenges in breast cancer treatment.
MethodsThe developed Hydrogel was characterized by certain techniques to check its stability and drug release abilities. Swelling studies and drug release behavior were checked; the porosity of Hydrogel was checked by SEM EDX Analysis. Furthermore, in vitro studies were done to check the anti-breast cancer activity of the developed Hydrogel.
ResultsThe hydrogel was a highly porous structure with and compressive modulus, which makes it good for biological use in drug delivery. The in vitro studies showed that, developed Hydrogel inhibits the growth of breast cancer cells (MCF-7) at different concentrations and time intervals of 24 and 48 Hrs and was compatible with the non-cancerous cell line 3T3-L1. The results indicate the tolerability of Hydrogel at the level of cells.
DiscussionsNumerous investigations have demonstrated the anticancer effects of SFN by influencing the various biological processes that tumor cells engage in. In breast cancer cell lines, SFN functions as an HDAC inhibitor and reduces the expression of ER, EGFR, & HER-2 proteins. SFN also triggers apoptosis and cell cycle halt. Both Hydrogel and SFN inhibit the cells growth in MCF-7 breast cancer cells and agree with the previous studies.
ConclusionIn conclusion, we synthesized a hydrogel using broccoli extract to treat breast cancer with better stability, tolerance, and effectiveness through sustained local drug delivery. It was determined that this new hydrogel was a simple and affordable way to accomplish the continuous gene release feature, which would enhance the therapeutic efficacy in anti-cancer treatment while reducing the likelihood of potentially fatal side effects.
-
-
-
Ethanolic Extract of Cyperus rotundus Augments Chemosensitivity to Docetaxel and Suppresses Autophagic Flux in HER2-Positive Breast Cancer Cells
Authors: Xiaoli Bian, Chao Li, Xiaoyu Liu, Zhaoyun Liu, Xiang Song, Fukai Wang, Xinzhao Wang, Wenna Shao, Haiyin Sun and Zhiyong YuAvailable online: 21 July 2025More LessIntroductionBreast cancer (BC) represents a malignancy affecting populations globally. Its incidence is on the rise. The ethanolic extract of Cyperus rotundus (EECR) has demonstrated potent anticancer activities against multiple human cancer types, inducing apoptosis in BC cells. Autophagic flux protects HER2+ cancer cells from trastuzumab-induced cytotoxicity, so inhibiting it undermines the resistance phenotype. This study aimed to elucidate the therapeutic potential of EECR in trastuzumab-resistant HER2-positive BC and decipher its underlying mechanisms.
MethodsColony formation assay and Cell Counting Kit-8 (CCK-8) assessed cell viability. Flow cytometry was used for cell cycle analysis and apoptosis detection. Western blotting quantified relevant protein expressions. Nude mice were euthanized prior to tissue harvest. Tumor tissues were excised and processed for histological examination, with 5 μm paraffin sections prepared on glass slides for hematoxylin and eosin (H&E) staining. An orthotopic JIMT-1 cell transplantation tumor model was established, and immunohistochemistry was conducted.
ResultsEECR demonstrated a dose-dependent suppressive effect on HER2-positive BC cells, inducing apoptosis and G2-M phase cell cycle arrest. It inhibited autophagic flux, as evidenced by LC3 and p62/SQSTM1 accumulation, and upregulated raptor and phosphorylated Mitogen-Activated Protein Kinase (MAPK) in trastuzumab-resistant JIMT-1 cells. Phosphorylated ERK (pERK)/total ERK and Raptor levels were significantly elevated in EECR-treated JIMT-1 cells compared to other treatment groups. Furthermore, EECR significantly inhibited tumorigenic growth in JIMT-1 cells.
ConclusionThis study reveals that EECR effectively impedes autophagic flux in trastuzumab-resistant HER2-positive breast cancer cells, a mechanism increasingly recognized as central to therapeutic resistance. By promoting LC3B and p62 accumulation and modulating the MAPK/mTOR signaling axis, EECR not only disrupts a key survival pathway in resistant cells but also enhances the efficacy of standard chemotherapeutic agents like docetaxel. These dual effects—autophagy inhibition and chemosensitization—underscore EECR’s therapeutic potential as an adjuvant strategy to overcome trastuzumab resistance. Given its multi-target nature and favorable safety profile, EECR represents a promising candidate for future combination therapy in refractory HER2-positive breast cancer.
-
-
-
Exploring Immunogenetic Mechanisms in Parkinson’s Disease Using Single-cell Transcriptomics and Mendelian Randomization
Authors: Dongyuan Xu, Yu Lei, Ji Wu, Keyu Chen, Songshan Chai and Nanxiang XiongAvailable online: 21 July 2025More LessIntroductionParkinson’s disease (PD) is a prevalent neurodegenerative disorder characterized by the progressive loss of dopaminergic neuron. Although the role of immunity in PD has been increasingly recognized, the immunogenetic mechanisms underpinning its progression remain largely unresolved.
MethodsWe employed an integrative approach combining Mendelian randomization (MR), expression quantitative trait loci analysis, and single-cell RNA sequencing to investigate immune cell infiltration and transcriptional regulation in PD. Immune cell composition, pathway activation, and gene regulatory networks were assessed through single-cell gene set enrichment analysis and transcriptional correlation analyses.
ResultsImmune profiling revealed significant increases in naive B cells (1.22-fold), plasma cells (3.00-fold), switched memory B cells (2.85-fold), and unswitched memory B cells (6.70-fold) in PD patients compared to controls (p < 0.001). MR analysis identified five causal genes- CYTH4, FGR, LRRK2, RIN3, and SAT1- associated with monocyte, neutrophil, and B cell infiltration. SAT1 (OR: 1.529; 95% CI: 1.018–2.297) and RIN3 (OR: 1.222; 95% CI: 1.039–1.437) showed strong associations with PD risk (p < 0.01). SAT1 positively correlated with PARK7 and regulated reactive oxygen species signaling, while FGR negatively correlated with ABCA4, influencing lipid metabolism and immune responses.
DiscussionThese findings highlight distinct immunogenetic mechanisms driving PD progression. The SAT1-PARK7 axis appears to modulate oxidative stress and neuroinflammation, whereas the FGR-ABCA4 interaction may affect metabolic and immune pathways. While the study is limited by population heterogeneity and the challenges of inferring causality, it provides mechanistic insights into immune contributions to PD.
ConclusionOur integrative genomic analysis identified novel regulatory networks involving immune-related genes in PD, offering potential targets for mechanistic understanding and therapeutic development.
-
-
-
Potential of the β-Myrcene Rich Essential Oil from Astronium Urundeuva (M.Allemão) Engl. (Anacardiaceae) to Potentiate Fluconazole Activity and Inhibit Morphological Transition in Candida Species
Authors: José Thyálisson da Costa Silva, Saulo Almeida Menezes, Maria Hellena Garcia Novais, Naiza Saraiva Farias, Adrielle Rodrigues Costa, Francisco Sydney Henrique Félix, Ademar Maia Filho, Murilo Felipe Felício, Nadilânia Oliveira da Silva, Ginna Gonçalves Pereira, Cicero dos Santos Leandro, Alison Honorio de Oliveira, Lariza Leisla Leandro Nascimento, Luiz Filipi Teles Feitosa, Julimery Gonçalves Ferreira Macedo, Maria Flaviana Bezerra Morais-Braga, Henrique Douglas Melo Coutinho, Natália Cruz-Martins and José Weverton Almeida-BezerraAvailable online: 11 July 2025More LessBackgroundIn view of the increasing resistance of Candida species, it is necessary to explore alternative strategies. In this context, essential oils have emerged as promising options, among which the essential oil of Astronium urundeuva (M. Allemão) Engl. has shown potential, as it is traditionally used in folk medicine for the treatment of inflammation and multiple infections. Thus, the aim of this study was to evaluate the chemical profile, anti-Candida activity, and Fluconazole (FCZ) potentiating effect of the essential oil extracted from the leaves of A. urundeuva (EOAU) and its ability to inhibit the virulence mechanism in Candida species.
MethodsThe essential oil was obtained via hydrodistillation and characterized using gas chromatography-mass spectrometry. To evaluate the antifungal effects and the modulating activity of Fluconazole (FCZ), the essential oil was diluted in DMSO (1 mL) and SDB medium (9 mL) and tested on 3 Candida strains using the serial microdilution method. In addition, a morphological transition assay was used to evaluate its capacity to inhibit fungal virulence.
ResultsThe major constituent of EOAU was the monoterpene β-myrcene (71.07%). The results indicate that the essential oil exhibits an antifungal effect, with C. tropicalis being the most susceptible species. At subinhibitory concentrations (MC/8), the EOAU enhanced the action of fluconazole against C. krusei and C. tropicalis. The EOAU strongly inhibited the morphological transition in C. tropicalis.
ConclusionEOAU is rich in β-myrcene and exhibits an interesting fungistatic effect, making it a great natural candidate for inhibiting Candida spp. virulence.
-
-
-
Advances in Polymer-based Nanoparticles for Biomedical and Industrial Applications
Available online: 11 July 2025More LessPolymeric nanoparticles (PNPs) are considered to be a revolutionary method for drug delivery and offer significantly more advantages than conventional drug delivery systems. This review synthesizes recent research on biodegradable polymers in drug delivery, emphasizing their properties, modifications, toxicity, and applications in drug absorption. It consolidates key insights from 193 research papers to offer a comprehensive overview of the field, addressing existing research gaps and highlighting various applications. Polymers can be classified based on their structure, source, and biodegradability, which are crucial for assessing their environmental impact and suitability for various applications. Polymers are categorized into two main groups based on biodegradability: biodegradable and non-biodegrad-able. The primary aim of this review is to elucidate the diverse applications of natural and synthetic biodegradable polymeric nanoparticles, which include cancer treatment, diabetes management, pulmonary drug delivery, and the treatment of ocular infections, all of which are thoroughly explored in this review. Additionally, the role of polymer-based hydrogels is explored as a promising solution in drug delivery. These hydrogels address issues such as poor stability and enhance treatment efficacy by ensuring the sustained release of drugs.
-
-
-
Growth of Chloroquine Crystals and Their Properties as a Beta-hematin Inhibitor
Available online: 10 July 2025More LessIntroductionThe crystallization of heme into β-hematin and its subsequent conversion to hemozoin has garnered significant interest as a promising target for the development of novel antimalarial therapies, particularly through the heme detoxification pathway. Furthermore, the therapeutic efficacy of chloroquine (CQ) has been widely recognized, with several studies highlighting its role as an inhibitor of β-hematin and hemozoin formation.
Materials and MethodsThis study reports the synthesis of two novel CQ-derived compounds, 7-chloroquinolin-4-amine (CQC1) and 7-chloro-4-(1-oxidaneyl)-3,4-dihydroquinoline (CQC2), and evaluates their individual inhibitory effects on β-hematin formation.
ResultsNotably, comparative analysis of the experimental data revealed significant variability in the IC50 values for these compounds, which correspond to the concentration required to inhibit 50% of β-hematin synthesis. The impact of incubation time and compound concentration on IC50 values was also investigated.
ConclusionThe findings suggest that increasing the concentration and incubation time of both CQ derivatives led to a reduction in their IC50 values, with both compounds demonstrating enhanced inhibitory activity relative to commercial chloroquine (CQ).
-
-
-
Unveiling the Influence of Culture Conditions on Mesenchymal Stem Cells: A Transcriptome Sequencing Study
Authors: Bin Wang, Jiang Xie, Bo Pang, Fang Dong, Junna Zhou and Huanzhang ZhuAvailable online: 10 July 2025More LessAimsTo optimize the culture process of Mesenchymal Stem Cells (MSCs) and enhance their biological functions.
BackgroundMSCs have shown great potential in treating various diseases due to their low immunogenicity and potent paracrine effects. However, the inherent heterogeneity of MSC populations, which can vary depending on the culture conditions, may challenge large-scale clinical application.
ObjectiveThis study investigates the inconsistency of MSCs cultured in different media, from the transcriptional level to biological functions.
MethodRNA sequencing was used to identify different expressed genes of MSCs separated and expanded in three media, which were then validated with qPCR. In vitro assays, including proliferation, tube formation, wound healing, multilineage differentiation, paracrine secretome and injured hepatocyte protection assay, were performed to verify the potential differences among three groups.
ResultMSCs cultured in platelet lysate-containing medium exhibited high expression of genes involved in extracellular matrix regulation, collagen metabolic processes, and angiogenesis, whereas those cultured in serum-free medium demonstrated high expression of genes associated with DNA replication and chromosome segregation. MSCs cultured under serum-containing medium indicated high levels of genes associated with extracellular matrix regulation, cartilage development, and chemotaxis. The results of functional comparative experiments were consistent with the differences in their gene expression patterns. Notably, MSCs cultured in the serum-containing system exhibited greater protective effect against hepatocyte activity.
ConclusionDifferent culture conditions affect the biological functions of MSCs. Optimal conditions should be investigated for applications. Next, an in vivo model should be established to evaluate differences in MSC tissue repair function under various culture conditions.
-
-
-
Wound Dressing Potential of Bacterial Cellulose Produced by Acetobacter tropicalis NBRC 16470 Strain Isolated from Rotten Fruits
By Halil BalAvailable online: 08 July 2025More LessBackgroundBacterial cellulose, which is used in many fields from biomedicine to electronics, is promising as an alternative wound dressing instead of traditional gauze in wound treatment.
ObjectivesThe objective of this study was to evaluate the potential use of cellulose produced by acetic acid bacteria isolated from rotten fruits as a wound dressing.
MethodsIn our study, rotten fruit samples were incubated in Hestrin-Schramm (HS) Broth medium. Then, a loopful of the pellicle-forming samples was taken and inoculated onto Hestrin-Schramm (HS) agar using the streak culture method and bacteria were isolated. Identification of bacteria was performed using the BLAST program after 16S rRNA sequence analysis. Physicochemical properties and morphological characterization of bacterial cellulose produced by static culture were examined using Fourier transform infrared (FTIR) and scanning electron microscopy (SEM), respectively, and the swelling ratio was investigated. Antibiotic susceptibilities of bacterial cellulose membranes impregnated with different concentrations of gentamicin (50 µg/mL, 100 µg/mL, 200 µg/mL) against Staphylococcus aureus ATCC 29213 and Escherichia coli ATCC 25922 were determined by the disk diffusion method.
ResultsThe bacteria isolated from rotten fruits were identified as Acetobacter tropicalis NBRC 16470. The structure of cellulose produced by static culture was confirmed by a peak at 3,240 cm−1 in FTIR analysis and fibril structures in SEM analysis. Bacterial cellulose had a swelling ratio of 27.37± 2 .99 fold. The zone diameters formed by bacterial cellulose disk (50 µg/mL gentamicin) and gentamicin (10 µg) disk against Staphylococcus aureus ATCC 29213 and Escherichia coli ATCC 25922 were almost the same.
ConclusionThe production of bacterial cellulose, which has the potential to be used as a wound dressing from rotten fruits, is important in terms of recycling and low cost.
-
-
-
Flavonoids as Antimicrobial Agents: A Comprehensive Review of Mechanisms and Therapeutic Potential
Available online: 03 July 2025More LessFlavonoids, plant-derived polyphenolic compounds, have garnered significant attention for their broad-spectrum antimicrobial potential, encompassing antibacterial, antifungal, and antiviral activities. These bioactive molecules exert their effects through multiple mechanisms, including disruption of microbial cell membranes, inhibition of nucleic acid synthesis, suppression of biofilm formation, and interference with key bacterial enzymes. Notable flavonoids such as quercetin, apigenin, and kaempferol exhibit potent activity against bacterial pathogens like Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa, as well as fungal pathogens such as Aspergillus fumigatus and Candida albicans. Furthermore, flavonoids can potentiate the efficacy of conventional antibiotics by inhibiting bacterial efflux pumps, a critical mechanism contributing to antibiotic resistance. Recent advancements in structure-activity relationship (SAR) studies have underscored the influence of structural modifications—such as prenylation, hydroxylation, and methoxylation—on the antimicrobial potency of flavonoids. By highlighting these insights, this review provides a unique perspective on flavonoid-based antimicrobial strategies, particularly their synergistic potential with existing antibiotics. These findings position flavonoids as promising candidates for novel antimicrobial therapies, particularly in the face of increasing antibiotic-resistant pathogens. However, further research is needed to elucidate their precise mechanisms and optimize their therapeutic applications.
-
-
-
Green Synthesis of Silver Nanoparticles Using Grewia tiliaefolia Vahl Leaf Extract: Characterisation, Process Optimisation, and Hepatoprotective Activity Against Paracetamol-induced Liver Toxicity in Rats
Available online: 02 July 2025More LessIntroductionScientists around the world are focusing on ‘green,’ environment-friendly, and cost-effective green synthesis of nanometals using various plant extracts to combat various ailments. Among nanometals, Silver (Ag) is one of the most commercialised nano-materials due to its wide applications in biotechnology and biomedical fields. The present study reports the first facile synthesis, characterization, and process optimisation of Ag nanoparticles (NPs) using aqueous Grewia tiliaefolia leaf extract (Gt) as a reducing and surface functionalising agent.
MethodsCharacterisation of Gt-mediated Ag-NPs was performed using FTIR. The morphology and microstructures of Gt-derived Ag-NPs were analysed using TEM and FE-SEM. In vitro, antioxidant activity was evaluated against DPPH radicals, hydrogen peroxide radicals, and ferric ions. In vitro, anticancer activity was assessed on MCF-7 and HepG2 cell lines. In vivo, hepatoprotective activity was tested against paracetamol-induced liver toxicity in rats.
ResultsFTIR analysis confirmed the interaction between Ag-NPs and Gt. The optimal conditions for Gt-derived Ag-NPs were found to be 4 mM AgNO3, 5% Gt, at 90°C for 60 minutes, at pH 9. UV-Visible spectroscopy, XRD, FE-SEM, and TEM revealed the phase formation, spherical morphology, and surface functionalisation of Gt-derived Ag-NPs, which were stable (-28.3 mV) with an average particle size of 14.5±0.05 nm. The Gt-derived Ag-NPs were found to be highly effective in significantly inhibiting DPPH radical, ferric ions, and hydroxyl radicals. Additionally, the cytotoxicity of Gt-derived Ag-NPs was more effective against MCF-7 cells compared to HepG2 cells. They also exhibited dose-dependent protection against hepatoprotective activity in albino rats.
DiscussionThe hepatoprotective effects of Gt-mediated Ag-NPs likely result from the combined action of bioactive phytochemicals (such as α/β-amyrin, γ-lactones, betulin, and lupeol), and their ability to scavenge ROS, reduce oxidative stress, and modulate inflammatory pathways. These mechanisms, supported by reduced lipid peroxidation and increased antioxidant activity in paracetamol-induced hepatotoxicity, suggest their therapeutic potential in liver protection and regeneration.
ConclusionOverall, Gt proves to be an eco-friendly and non-toxic source for synthesizing bioactive Ag-NPs at optimal conditions.
-
-
-
HIV Co-infected with Asymptomatic Visceral Leishmaniasis Exhibited a High Prevalence of the B type HBV Genotype
Authors: Shiril Kumar, Ganesh Chandra Sahoo, Krishna Pandey and Ashish KumarAvailable online: 23 June 2025More LessBackgroundMultiple organisms infect the host simultaneously in the case of co-infection. This study intended to determine the prevalence of viral hepatitis B in HIV/Asymptomatic VL co-infected patients and to identify the HBV genotype circulating in these patients in Bihar, India.
MethodsThere were 96 archived samples with co-infection with HIV and asymptomatic VL-positivity included in this study. A real-time PCR test was performed to measure the load of HBV DNA, and a chemiluminescent immunoassay was performed to determine the level of HBsAg.
ResultsOur study evaluated HIV and AVL co-infected patients with two coexisting genotypes of HBV and observed the expression of the B, C, and D genotypes. HBsAg levels correlated directly with HBV DNA levels in almost every case.
ConclusionFor a better understanding of this disease, authors need approaches and strategies for improving the current diagnostic techniques, as well as studies focusing on vector control procedures and other operational tools.
-
-
-
Elucidating the Role of Gardeniae Fructus and Scutellariae Radix Herb Pair in Alzheimer’s Disease via Network Pharmacology: Emphasis on Oxidative Stress, and the PI3K/Akt Pathway
Authors: Jia Xi Ye, Jia Ying Wu, Min Zhu, Liang Ai and Qihui HuangAvailable online: 23 June 2025More LessBackgroundThe combination of Gardeniae Fructus (ZZ) and Scutellariae Radix (HQ) is a traditional Chinese medicine used for Alzheimer’s disease (AD). However, the molecular mechanisms underlying its anti-dementia effects, particularly its multi-component synergy and pathway modulation, remain poorly understood.
ObjectiveOur study employed an integrated systems pharmacology approach to mechanistically decode the anti-AD properties of ZZ-HQ, combining network pharmacology predictions, molecular docking simulations, and experimental validation to identify critical bioactive components, molecular targets, and therapeutic pathways.
MethodsA comprehensive network pharmacology analysis was performed to identify bioactive compounds within the ZZ-HQ complex and their potential protein targets associated with AD. Molecular docking was utilized to predict and assess the binding interactions between key bioactive compounds and AD-related protein targets. Experimental validation focused on baicalin, a major active compound in the ZZ-HQ complex, evaluating its effects on cell viability, apoptosis regulation, oxidative stress reduction, and the activation of the PI3K/Akt signaling pathway.
ResultsFifty-four bioactive compounds were identified in the ZZ-HQ complex, interacting with 258 AD-associated proteins. Key compounds, such as baicalein and norwogonin, demonstrated strong binding affinities with pivotal proteins, including SRC and PIK3R1. Experimental studies further confirmed that baicalin significantly improved cell viability by activating the PI3K/Akt pathway, reducing apoptosis, and alleviating oxidative stress.
ConclusionOur study uncovered the therapeutic potential of the ZZ-HQ combination in addressing AD through multi-target mechanisms, particularly via modulation of the PI3K/Akt pathway and oxidative stress. These findings provide a scientific basis for the pharmacological effects of ZZ-HQ and offer valuable insights for further research on its potential application in AD treatment.
-
-
-
Challenges and Progress of Orphan Drug Development for Rare Diseases
Authors: Abhijit Debnath, Rupa Mazumder, Avijit Mazumder, Pankaj Kumar Tyagi and Rajesh Kumar SinghAvailable online: 23 June 2025More LessRare diseases, defined as conditions affecting fewer than 200,000 people in the United States or less than 1 in 2,000 people in Europe, pose significant challenges for healthcare systems and pharmaceutical research. This comprehensive review examines the evolving landscape of orphan drug development, analyzing scientific, economic, and regulatory challenges while highlighting recent technological breakthroughs and innovative approaches. We explore how artificial intelligence, next-generation sequencing, and personalized medicine are revolutionizing rare disease research and treatment development. The review details key advances in therapeutic approaches, including gene therapy, cell-based treatments, and drug repurposing strategies, which have led to breakthrough treatments for previously untreatable conditions. We analyze the impact of international collaborations, such as the International Rare Diseases Research Consortium, and discuss how regulatory frameworks worldwide have evolved to accelerate orphan drug development. The paper highlights the growing market for orphan drugs, projected to reach $242 billion by 2024 while examining the complex challenges of ensuring treatment accessibility and economic sustainability. We assess innovative clinical trial designs, patient registry development, and emerging strategies in personalized medicine that are transforming the field. Despite notable advancements, significant gaps remain in diagnosis, treatment accessibility, and sustainable funding for rare disease research. The review concludes by proposing specific actions for enhancing international collaboration, improving patient registries, and aligning incentives to address the unmet medical needs of rare disease patients, emphasizing the critical role of continued public-private partnerships and technological innovation in advancing orphan drug development.
-
-
-
A Multidisciplinary Approach for Developing a Natural Antifungal Formulation Targeting Oropharyngeal Candidiasis: A Mini-review
Available online: 23 June 2025More LessBackgroundOropharyngeal candidiasis (OPC), a fungal infection affecting the mouth and throat, imposes a substantial burden on vulnerable populations such as HIV/AIDS patients, cancer treatment recipients, and the elderly. Conventional antifungal medications are encountering increasing resistance and side effects, necessitating the exploration of novel therapeutic approaches.
ObjectivesThis review proposes a comprehensive strategy for developing a novel natural product-based antifungal formulation targeting OPC. The approach involves harnessing promising natural compounds with established antifungal properties and employing advanced delivery systems like mucoadhesive microemulsions to improve efficacy and minimize adverse effects. Additionally, the review explores the integration of computational methods to expedite the identification and development of potent antifungal agents.
MethodsA comprehensive literature review was conducted using databases such as PubMed, Scopus, and Web of Science. Search terms included combinations of “oropharyngeal candidiasis,” “natural antifungal agents,” “flavonoids,” “mucoadhesive microemulsions,” “computational drug discovery,” and “in vitro/in vivo studies.” Priority was given to studies published within the last ten years.
ResultsThe review identifies promising natural compounds with antifungal activity against Candida species commonly associated with OPC. Additionally, several studies highlight the potential of computational tools such as molecular docking and in silico ADMET for rapidly identifying natural compounds with potent antifungal activity and favorable pharmacokinetic and safety profiles. A brief overview of in vitro and in vivo experiments is provided, emphasizing their role in validating the safety and efficacy of the proposed natural product-based antifungal formulation. Formulation and analytical aspects are also discussed.
ConclusionThe multidisciplinary approach outlined, incorporating natural products, computational methods, advanced preclinical in vitro and in vivo experiments, and advanced delivery systems, offers promise for the rapid, cost-effective development of safe and effective optimized formulations to address the growing challenge of OPC, particularly in vulnerable populations.
-
-
-
A Novel Weight Loss Mechanism of Hydroxysafflor Yellow A in Obese Mice: Involvement of Immune Inflammation via Prkcd, Btk, and Vav1 Genes in Adipose Tissue
Authors: Ruizhen Hou, Wenjing Hu, Kemin Yan, Xiaorui Lyu, Yuchen Jiang, Xiaonan Guo, Yuxing Zhao, Linjie Wang, Hongbo Yang, Huijuan Zhu, Hui Pan and Fengying GongAvailable online: 22 May 2025More LessIntroductionHydroxysafflor Yellow A (HSYA), known for its anti-inflammatory effects in cardiovascular diseases, has also been shown to reduce adiposity and improve metabolic disorders in diet-induced obese (DIO) mice. However, the molecular mechanisms underlying its anti-obesity effects, particularly whether they are mediated through immune-inflammatory pathways, remain unclear. This study aims to identify the key molecular mechanisms involved in HSYA's anti-obesity action.
MethodsMale C57BL/6J mice were divided into three groups: Standard Feed (SF), High-Fat Diet (HFD), and HFD with HSYA treatment (250 mg/kg/day for 9 weeks). Whole transcriptome sequencing of White Adipose Tissue (WAT) identified Differentially Expressed Genes (DEGs), which were integrated with network pharmacology predictions to identify key molecular targets of HSYA. RT-qPCR in WAT, 3T3-L1 adipocytes, and RAW264.7 macrophages validated the core genes, and molecular docking assessed HSYA’s binding affinity with these targets.
ResultsHSYA treatment significantly reduced body weight (35.27 ± 1.27g vs. 45.46 ± 1.68g, p < 0.05) and WAT mass (3.38±0.21g vs. 1.86±0.27g, p < 0.05) in DIO mice and ameliorated glucose and lipid metabolism abnormalities. Transcriptome analysis revealed 739 DEGs, with 21 overlapping genes identified between sequencing and network pharmacology analyses. Experimental validation highlighted Prkcd, Btk, and Vav1 as core genes within immune-inflammatory pathways, including chemokine and B cell receptor signaling, which are implicated in obesity-related inflammation. RT-qPCR confirmed the downregulation of Prkcd, Btk, and Vav1 after HSYA treatment, consistent with transcriptomic findings. Molecular docking analysis demonstrated strong binding affinities between HSYA and VAV1 (-8.5 kcal/mol), BTK (-6.9 kcal/mol), and PRKCD (-6.6 kcal/mol).
ConclusionHSYA demonstrates the therapeutic potential for obesity by modulating immune-inflammatory pathways in WAT, specifically targeting Prkcd, Btk, and Vav1 in mice. Given its clinical use in cardiovascular disease, these findings suggest that HSYA may offer broader therapeutic benefits, including obesity management, though further studies are needed to clarify the mechanisms and assess its applicability to humans.
-
-
-
Naringin Alleviates Digoxin-induced Nephrotoxicity via Regulating Nrf2/ HO-1 and PI3K/ AKT/TGF-β Cascades in Rats’ Renal Tissues
Available online: 20 May 2025More LessBackgroundNephrotoxicity limits the clinical application of digoxin. One area that might be useful is the mechanical knowledge of altered renal function and renal impairment. We hypothesized that co-administration of naringin would affect digoxin nephrotoxicity by alleviating the altered renal oxidative/ antioxidant redox and apoptotic cascade.
Method40 male Wistar Albino rats (200 ± 50 g) were grouped into 4, every group included (n= 7), control, Nar., Dig. and Nar. + dig. Groups. Colorimetric estimation of kidney functions and renal oxidative/ antioxidant redox were done.
ResultsComparing digoxin alone, the concomitant administration of digoxin and naringin restored renal antioxidant/ oxidative redox, redistributed Nrf2, HO-1 mRNA exposure with a concomitant down-regulation of NF-κB, AKT and PI3K mRNA expressions. Moreover, a significant decrease of Smad3 and transforming growth factor-β (TGF- β) protein concentrations with a simultaneous rise of Smad7 were noticed in Nar. + dig. Arm when compared to Dig. group.
ConclusionThe co-administration of naringin and digoxin can mitigate digoxin-mediated nephrotoxicity by introducing antioxidant action. This is done by maintaining effects on renal oxidative/antioxidant cycle and lethality via regulating AKT/ PI3k/ Smad3/ Smad7 signaling pathways.
-
-
-
Causal Relationships Between Specific Gut Microbiota Taxa, Plasma Metabolites, and Cerebral Small Vessel Disease Risk: A Mendelian Randomization Analysis
Available online: 20 May 2025More LessAimsThis study investigates causal relationships between gut microbiota (GM), plasma metabolites, and cerebral small vessel disease (CSVD), with a focus on identifying GM taxa and metabolites that mediate disease risk.
MethodsSummary data from genome-wide association studies on GM (MiBioGen), 1,400 plasma metabolites, and CSVD were analyzed using a two-step Mendelian randomization (MR) approach. The primary analysis utilized inverse-variance weighting, complemented by weighted median, weighted mode, and MR-Egger methods for robustness.
ResultsThe MR analysis identified 12 GM taxa associated with CSVD risk, including 7 taxa linked to increased risk (Veillonellaceae, Hungatella, Ruminococcus2, Lachnospiraceae UCG010, Streptococcus, Cyanobacteria, Verrucomicrobia) and 5 taxa linked to decreased risk (Faecalibacterium, Alphaproteobacteria, Eubacterium nodatum group, Fusicatenibacter, Rhodospirillales). Additionally, 10 plasma metabolites were causally associated with CSVD risk, with sphingomyelin (d18:2/14:0, d18:1/14:1), nicotinamide, 3-ethylcatechol sulfate (2), sphingosine, and phenylpyruvate-to-4 hydroxyphenylpyruvate ratio linked to increased risk, while phosphate-to-uridine ratio, adenosine 5'-diphosphate (ADP)-toflavin adenine dinucleotide (FAD) ratio, arginine, caffeine-to-theobromine ratio and N-succinylphenylalanine were linked to decreased risk. Mediation analysis identified 8 causal pathways through which plasma metabolites connect GM taxa to CSVD.
ConclusionThese findings underscore the substantial influence of GM and plasma metabolites on CSVD risk, highlighting potential therapeutic targets. Further investigation is needed to elucidate the biological mechanisms underlying these associations.
-
-
-
Analysis of the Mechanism of PGLP-1 Inhibiting Gluconeogenesis Based on Whole Transcriptome Sequencing
Authors: Huashan Gao, Hao Yu, Weishuang Tong, Weiwei Fan, Yanqun Mai, Wenpo Feng and Yuanhao QiuAvailable online: 16 May 2025More LessObjectiveThrough comprehensive transcriptome sequencing of liver RNA in mice induced with streptozotocin (STZ) to develop hyperglycemia, we uncovered crucial genes associated with hyperglycemic processes, shedding light on their respective functions. Furthermore, we delved deeply into a discussion surrounding the mechanism behind plasma glucagon-like peptide 1 (PGLP-1) and its role in inhibiting gluconeogenesis.
MethodsLiver tissues from mice induced with STZ to develop hyperglycemia (M group), as well as those treated with PGLP-1 (P11 group) and Exendin-4 (E group), were collected. RNA extraction was performed for comprehensive transcriptome sequencing. Differentially expressed mRNA, microRNA (miRNA), and long-chain non-coding RNA (lncRNA) were identified and subjected to analysis of their respective GO and KEGG pathways. An association network involving mRNA-miRNA-lncRNA was constructed to pinpoint target molecules associated with gluconeogenesis. Furthermore, personalized analysis focused on eight gluconeogenesis-related signal pathways obtained from KEGG.
ResultsA total of 289 differentially expressed mRNA (dif-mRNA), 21 differentially expressed miRNA (dif-miRNA), and 463 differentially expressed lncRNA (dif-lncRNA) were screened from the M group and P11 group. 182 dif-mRNA, 239 dif-miRNA, and 384 dif-lncRNA were screened from the M group and E group. A total of 427 dif-mRNA, 261 dif-miRNA, and 525 dif-lncRNA were screened from the E group and the P11 group. Among them, mRNA was enriched to the PI3K-Akt signaling pathway, Type ll diabetes mellitus, the Insulin signaling pathway, and the PPAR signaling pathway, while lncRNA was mainly enriched in PI3K-Akt signaling pathway. Similar to the whole transcriptome sequencing, the results of gluconeogenesis personalized analysis showed that the PI3K-Akt signaling pathway was the key pathway, and Gck and Cyp7a1 were highly expressed after PGLP-1 was administered.
ConclusionAccording to our findings, we believe that PGLP-1 is a potential regulator of non-coding RNAs, including miRNAs and lncRNAs. Additionally, it modulates the PI3K-Akt signaling pathway, resulting in the upregulation of GcK and Cyp7a1. In this way, it effectively inhibits gluconeogenesis.
-
-
-
Trojan Horses: A Secret Route for Nanomedicines
Authors: Zoya Amin, Daniya Nadeem, Huzaifa Shakil, Munsif Ali Jatoi, Rabail Baloch and Raahim AliAvailable online: 16 May 2025More LessThe nanoparticles are widely used in various drug delivery applications due to their versatility to encapsulate cargo loading and transport of therapeutic agents. Numerous studies have explored the use of nanomedicine-based drug delivery systems for treating various diseases. This research provides a smart and precise review of one of the nanoparticles-based drug delivery approaches i.e. the Trojan horse strategy which is employed for delivering the drug to the target efficiently and reliably. Furthermore the applicability of nanomedicines to cancer treatment is discussed with examples drawn from various systematic studies. The use of different nanomedicine platforms such as liposomes nanoparticles spherical nucleic acids extracellular vesicles and immune cells acting as Trojan horses is also explored in the context of cancer therapy. Finally a precise conclusion and future recommendations are provided for future researchers in the field of applied nanotechnology for the pharmaceutical domain.
-
-
-
Circ-LRP6 Inhibits the Development and Progression of AAA Via miR-29a-3p/HIF-1α Axis
Authors: Fang Wang, Zhijian Sun, Wenke Yan and Haiqing WangAvailable online: 12 May 2025More LessBackgroundAt present, the research on the potential molecular mechanism of abdominal aortic aneurysm (AAA) is limited, which hinders the treatment of aneurysm and the development of drugs. CircRNA has been identified as a potential therapeutic target for diagnostic biomarkers in a variety of diseases. The purpose of this study was to explore the molecular mechanism of circLRP6 in AAA and to provide a theoretical basis for further clinical optimization of treatment.
MethodsThe animal model and cell model of AAA were constructed, and the circLRP6 expression was verified by in situ hybridization and qRT-PCR. The effect of circLRP6 on cell viability was determined using CCK-8 and BrdU. The effects of circLRP6 on the cell cycle and apoptosis were determined by flow cytometry. In addition, the interaction of circLRP6 with miR-29a-3p and HIF-1α was verified by the luciferase reporter gene and RIP. HIF-1α or caspase 3 expression was detected by immunofluorescence or western blot analysis.
ResultsOur previous results showed that the circLRP6 had reduced expression in AAA, and its overexpression significantly inhibited AngII-induced hAoSMC cell viability. In addition, bioinformatics prediction showed that there was a binding site between miR-29a-3p and circLRP6, showing a negative regulatory relationship in hAoSMC. In addition, the results of the luciferase reporter gene and RIP showed that the circLRP6 interacted with HIF-1α, and achieved effective treatment of AAA by inhibiting the miR-29a-3p/HIF-1α.
ConclusionCircLRP6 effectively inhibited the development of AAA by inhibiting the miR-29a-3p/HIF-1α, providing a theoretical basis for further clinical optimization of treatment.
-
-
-
Antifungal Resistance in Vaginal Candidiasis Among Reproductive-age Women: A Review
Available online: 08 May 2025More LessCandida is a type of fungus that can cause infections in humans. Sometimes, these infections become tough to treat because the Candida fungus resists antifungal drugs. This resistance depends on both the specific type of Candida and how it interacts with the human body. For instance, Candida can change its genetic makeup or produce proteins that pump out the drugs, making them less effective. Additionally, Candida can form a protective layer called a biofilm, which shields it from the drugs. Candida can cause a variety of diseases, and vaginal candidiasis is among the most troublesome. Nearly every woman experiences this infection at least once in her lifetime. Higher rates of treatment failures and recurrent infections result from the developing issue of antifungal resistance, underscoring the need for a more thorough understanding of resistance mechanisms. Changes in hormonal levels and immune responses can significantly influence the effectiveness of antifungal treatments. Hormonal fluctuations can alter vaginal pH and immune functions, which in turn affects Candida colonization and persistence. Moreover, an imbalance in the vaginal microbiome can lead to an overgrowth of Candida and lead to the drug resistance candidiasis. This review delves into the molecular pathways that contribute to the resistance of vaginal candidiasis to antifungal treatments, focusing on both acquired and intrinsic resistance mechanisms. Acquired resistance develops due to genetic alterations following antifungal exposure, including mutations in genes encoding drug targets, overexpression of efflux pumps, and increased biofilm formation. In contrast, intrinsic resistance refers to the innate traits of the Candida species that inherently reduce the efficacy of antifungal agents. These characteristics include changes in membrane sterols, genetic mutations in target enzymes, and the presence of efflux pumps that remove antifungal medications. Understanding these complex mechanisms can inform future therapeutic strategies and improve clinical outcomes.
-
-
-
Optimization and Characterization of Khellin Loaded Nanogels for the Potential Use in Psoriasis Management
Available online: 05 May 2025More LessBackgroundPsoriasis is a chronic skin disease that affects patients' quality of life. Treating psoriasis remains a significant challenge due to various factors, including individual response variability, drug resistance, and the range of side effects associated with currently available medications. Nowadays, numerous research efforts are being made aiming at overcoming the obstacles of the available psoriasis treatments are still taking place.
ObjectiveThis research aims to develop and evaluate a nanogel formulation loaded with khellin for the effective treatment of psoriasis.
MethodsKhellin nanogel was prepared using the self-assembly method with a synthesized gelatin-pluronic copolymer. The novel formulation was characterized via size, size distribution, encapsulation efficiency, in vitro release, and ex vivo skin deposition.
ResultsThe final nanogel formulation had an average size of 119.6 nm, a polydispersity index of 0.248 and an excellent encapsulation efficiency of 88%. In vitro drug release study demonstrated that nanogels showed a great accelerated drug release profile by releasing khellin within 2 hours, which is suitable for photochemotherapy applications. In addition, khellin-loaded nanogel formulation had 1.7 times better skin deposition potential than the control gel formulation.
ConclusionThe prepared nanogel formulation provides a high potential to be an ideal drug delivery system of khellin in combination with phototherapy for more efficient psoriasis treatment.
-
-
-
The Biological Effects of Nano-curcumins against Drugs and Chemicals-Induced Nephrotoxicity: A Systematic Review
Available online: 30 April 2025More LessIntroduction/ObjectiveDrug and chemical nephrotoxicity is a common cause of kidney disorders. This systematic review aimed to evaluate the recent progress in applying nano-curcumins (nano-CURs) to prevent and mitigate drug and chemical-induced nephrotoxicity, highlighting their underlying protective mechanisms and therapeutic potential.
MethodsA comprehensive search of experimental and clinical studies was conducted in various databases, including Web of Science, PubMed/MEDLINE, Scopus, Embase, and Cochrane Library. The studies were analyzed for improvements in bioavailability, mechanisms of action, and outcomes in reducing kidney damage. After extracting the data and entering it into an Excel sheet, the essential information and the related knowledge on consequences and mechanisms were collected. The collected information was discussed and analyzed.
ResultsThe antioxidant property of nano-CURs in dealing with nephrotoxicity is one of their most critical nephroprotective properties. They also exhibit potent anti-inflammatory, anti-apoptotic, and anti-pyroptotic effects. Moreover, nano-CURs improve mitochondrial function, modulate kidney biochemical markers, modulate electrolyte imbalance, reduce endoplasmic reticulum (ER) stress, and improve kidney histopathological changes and autophagy, offering protection against nephrotoxicity induced by various drugs and chemicals. Nano-CURs significantly improve histopathological changes. Animal models have demonstrated reduced oxidative stress, inflammation, and apoptosis, causing improved renal function and histological outcomes.
ConclusionNano-CURs have shown promising nephroprotective effects in experimental studies. However, these results have not been significant in clinical trial studies. Future research should focus on clinical trials and optimizing formulations for broader therapeutic applications.
-
-
-
Clinical Diagnosis and Treatment System for Neurological Psychological Gastrointestinal Diseases Based on Multimodal Artificial Intelligence and Immunology
Authors: Liangyu Li, Jun Jiang, Lizhong Guo, Javier Santos, Ana María González, Siyi Li and Yi QinAvailable online: 29 April 2025More LessObjectiveTo predict and assist in the treatment of colorectal cancer.
BackgroundPrecision medicine systems can provide strategy optimization for the diagnosis and treatment of colorectal cancer to meet the needs of clinical pricing institutions.
AimTo design an artificial intelligence multimodal gastrointestinal disease clinical information system based on neuroimmune gene regulation.
MethodsThe system includes the use of cell gene expression levels to predict the 5-year survival rate of cancer patients, and the development of disease incidence rate prediction models based on immune cell status and living habits in somatic cell testing. The biological mechanism of feature selection in survival prediction systems was elucidated using single-cell sequencing technology, and this mechanism was analyzed in depth using molecular simulation techniques. Based on NCAM1 and CADM1 genes, biological activation pathway analysis was conducted to explore the biological mechanism of their synergistic immune genome regulation of gastrointestinal tumor proliferation.
ResultsThe accuracy of each model is higher than 0.70. The experimental credibility is high.
ConclusionThe research team conducted a detailed analysis of the biological characteristics of AI algorithms and reached a consensus with clinical experts. The ethical approval number of Chifeng Cancer Hospital is 202401, which has been reported by the World Health Organization.
-
-
-
Essential Oils from Olea europaea and Cyperus esculentus Exhibit Promising Therapeutic Effect against Alzheimer's Disease in a Rat Model
Available online: 25 April 2025More LessBackgroundAlzheimer's disease poses a major challenge as a widespread and fatal neurodegenerative disorder, primarily affecting the elderly population worldwide.
ObjectiveThis study aimed to assess the potential protective and therapeutic effects of virgin olive oil and tiger nut essential oil on Alzheimer's dementia in male rats while also analyzing serum biomarker gene expression profiles in both Alzheimer's and control groups.
MethodsRats were fed basal diets supplemented with 5% virgin olive oil or tiger nut essential oil, along with high-fat meals containing trans fats, butter (25%), margarine (25%), and hydrogenated shorten oils (25%) to evaluate lipid profiles and serum biomarkers. Gene expression analysis revealed a significant upregulation of acetylcholinesterase, P53, BCL2, Mouse ICAM-1, PSEN, and BACE genes in the Alzheimer's disease group compared to controls. Real-time PCR analysis also identified inflammatory biomarkers and Alzheimer's disease-associated risk factors in high-fat diet-treated, virgin olive oil-treated, and control samples.
ResultsThe study found significant correlations between serum biomarker levels, lipid profiles, and dietary treatments. The activities of acetylcholinesterase, glutathione, catalase, and superoxide dismutase differed notably between virgin olive oil and tiger nut essential oil treatments. High-fat dietary treatments resulted in substantial increases in serum lipid profiles due to trans-fat intake compared to the control group. Overall, both virgin olive oil and tiger nut essential oil demonstrated cognitive enhancement and potential therapeutic effects against Alzheimer's disease symptoms induced by trans-fat feeding, including inhibition of acetylcholines-terase activity, reduction of amyloid-beta accumulation, and mitigation of inflammation.
ConclusionThe study suggests that serum biomarker gene expression profiles could serve as valuable indicators for differentiating between Alzheimer’s disease, virgin olive oil, and dietary treatments. Both virgin olive oil and tiger nut essential oil demonstrated protective effects, enhancing cognitive function and offering therapeutic potential against AD symptoms. These effects were achieved through the reduction of inflammation, the inhibition of AChE activity, and the reduction of amyloid-beta accumulation.
-
-
-
Sirtuins in Osteosarcoma: Cracking the Code and Opening Up New Treatment Options
Authors: Yushi Zhao, Yong Han, Baichuan Wang and Ting WangAvailable online: 25 April 2025More LessOsteosarcoma (OS) is a frequent primary malignant bone tumor that primarily affects adolescents and the elderly, and it is prone to metastasis and recurrence. The prognostic status of metastatic and recurrent OS has remained stagnant over the past decades despite the availability of an extensive range of chemotherapy drugs in the clinic. To increase the overall survival and quality of life of patients with osteosarcoma, new therapeutic approaches must be developed immediately. In recent years, sirtuins (SIRT1–7) have garnered a lot of attention as researchers investigate the mechanisms underlying OS development and look for efficient treatment approaches. The nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylases (HDACs) that make up the sirtuin family are engaged in several biologically controlled processes, including proliferation, invasion, metastasis, apoptosis, autophagy, and chemotherapy resistance. Despite their significance in cancer having been avidly studied for decades, their specific functions and mechanisms of action are not yet clear due to limited reports. This review will summarize the current research status and look forward to the directions and prospects of its application in osteosarcoma research, aiming to open up new avenues for the treatment and study of osteosarcoma.
-
-
-
A Baicalin-targeted ZHX2/MMP14 Axis Attenuates Cirrhotic Portal
Authors: Hui Wang, Jiawei Ma, Jinghe Liu, Xiao Liu, Xiao Cai and Yufei ChangAvailable online: 24 April 2025More LessBackgroundGiven the high mortality associated with Cirrhotic Portal Hypertension (CPH) worldwide, this study investigates the mechanism by which baicalin (BA), known for its beneficial effects on cirrhosis, alleviates CPH.
MethodsThe CPH model was established in Sprague-Dawley (SD) rats, followed by 4-week oral administration of 30 and 60 mg/kg/day BA. SD rats were randomly assigned to four groups (n=6/group): Con, Model, BA-30, and BA-60. Portal vein smooth muscle cells (PVSMCs, extracted from SD rats, n=6) were incubated with 5, 10 and 20 μmol/L BA. The levels of liver function indicators and von Willebrand factor (vWF) were determined by biochemical and immunohistochemical analyses, respectively. The portal pressure (PP) was examined. The liver fibrosis was detected by Sirius red staining. The levels of fibrosis-, angiogenesis- and proliferation-related indicators, zinc fingers and homeoboxes 2 (ZHX2), and matrix metallopeptidase 14 (MMP14) were quantified by Western blot. The levels of and interaction between ZHX2 and MMP14 were separately measured by quantitative real-time polymerase chain reaction (qRT-PCR) and luciferase reporter assay. The proliferation and migration of PVSMCs were assessed by EdU staining and scratch test, respectively.
ResultsBA up-regulated ZHX2 and down-regulated MMP14 (P<0.001). BA concentration-dependently suppressed liver fibrosis, PP, and angiogenesis in the liver tissue, as well as PVSMC proliferation and migration, while enhancing liver function (P<0.05). Further, according to the GRNdb database and luciferase reporter assay, ZHX2 is bound with the promoter of MMP14. ZHX2 could suppress the MMP14 level (P<0.001). ZHX2 silencing reversed the effects of BA treatment on the proliferation and migration of PVSMCs, whereas MMP14 silencing could further offset the role of ZHX2 silencing in the BA-treated PVSMCs (P<0.05).
ConclusionBA up-regulates ZHX2 to reduce the level of MMP14 and alleviate CPH. Understanding the mechanisms of BA in CPH may provide a foundation for novel interventions to attenuate CPH.
-
-
-
Anti-Cancer Properties and Mechanistic Insights of Dihydroquercetin
Authors: Cheng Zhang, Yuqiao Zeng, Bing Wu, Li Wang, Pengfei Wu, Ao Shen and Likun WangAvailable online: 24 April 2025More LessDihydroquercetin (DHQ), also known as taxifolin, is a naturally occurring flavonoid compound that serves as an active pharmaceutical ingredient. It is commercially available in the form of dietary supplements. As the reduced form of quercetin, DHQ contains five phenolic hydroxyl groups. This compound is capable of chelating transition metal ions, thereby effectively scavenging free radicals and detoxifying harmful substances while modulating enzyme activities. Consequently, DHQ exhibits potent antioxidant, anti-inflammatory, antiviral, and antibacterial properties. Given its significant pharmacological potential, DHQ exhibits anti-tumor activity against various malignant tumors, including breast cancer, gastric cancer, hepatocellular carcinoma, colonic neoplasms, melanoma, and prostate cancer. DHQ inhibits tumor occurrence and progression by regulating multiple signaling pathways, such as wnt/β-catenin, phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt), mammalian target of rapamycin (mTOR), transforming growth factor-beta (TGF-β), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and mitogen-activated protein kinase (MAPK). The anti-tumor mechanisms of DHQ include inhibition of cell proliferation, invasion, and migration; induction of cell cycle arrest, activation of autophagy, apoptosis, epigenetic modification, suppression of epithelial-mesenchymal transition (EMT), enhancement of chemotherapy efficacy, and augmentation of immune function. In particular, DHQ potentiates the efficacy of chemotherapy drugs and augments immune function. Based on a systematic review of the pharmacological properties and anti-tumor mechanisms of DHQ across multiple malignant tumors, we conclude DHQ to be a promising natural compound with significant potential for anti-tumor therapy.
-
-
-
Selenium Alleviates Oxidative Stress and Inflammation to Promote Postpartum Uterine Recovery via GPX1/GPX4/NRF2 Pathway in Mice
Authors: Xiangping Li, Peng Li and Pingzhi WangAvailable online: 24 April 2025More LessBackgroundSelenium is an important trace element that plays crucial roles in metabolism, immune function, and antioxidant defense. As an antioxidant, selenium helps to alleviate postpartum uterine inflammation and promotes uterine recovery. However, the exact mechanism underlying the role of selenium in postpartum uterine recovery is not fully understood.
ObjectiveThis study aimed to identify the underlying mechanism and examine how selenium enhances postpartum uterine healing.
MethodsFemale ICR mice aged 8 weeks were classified into five groups: control, postpartum model, low-dose selenium (100 nm), medium-dose selenium (200 nm), and high-dose selenium (400 nm). Endometrial morphology was evaluated by hematoxylin and eosin (H&E) staining. Oxidative stress markers, including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), and malondialdehyde (MDA), and inflammatory factors, including tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β), were measured using commercially available kits. GPX1, GPX4, and nuclear factor erythroid 2-related factor 2 (NRF2) expression were determined using real-time PCR and WB.
ResultsWe found damage and bleeding points in the endometrium and destruction of the ultrastructure of endometrial cells in the postpartum model group; however, mice treated with a high dose (400 nm) of selenium showed alleviated levels of pathological alteration in the endometrium. In addition, the levels of MDA in the postpartum mice group increased, while the SOD, CAT, and GPX levels decreased; however, changes in these oxidative stress markers were reversed after selenium treatment. For inflammatory factors, high levels of TNF-α and IL-1β were observed in postpartum mice, whereas they were decreased in selenium-treated groups. GPX1, GPX4, and NRF2 expression were reduced in postpartum model mice, but upregulated in selenium-treated mice.
ConclusionSelenium supplementation ameliorated postpartum uterine oxidative stress and inflammation and promoted uterine recovery via the GPX1/GPX4/NRF2 pathway in mice.
-
-
-
Challenges and Pathways in Regulating Next-Gen Biological Therapies
Authors: Surendra Agrawal, Sunita Vaidya, Jitendra Patel, Pranita Jirvankar and Pravina GurjarAvailable online: 23 April 2025More LessBackgroundCurrent medicine could benefit from gene and cell therapies for genetic defects, cancer, and degenerative disorders. These therapies modify genetic material or biological components. CRISPR-Cas9 gene editing, stem cell, and CAR-T treatments are examples. Complex products need rigorous regulations to ensure quality, efficacy, and patient safety.
ObjectivesThis paper discusses international gene and cell-based treatment regulatory regimes, highlighting key issues and recent developments. It also includes gene and cell-based therapy classes and mechanisms.
MethodsThe publications on gene and cell therapy challenges and their regulatory approvals in the US, Europe, Japan, Australia, Brazil, Canada, and China were collected over the last 20 years from PubMed, Scopus, and Google Scholar and analyzed to determine the differences.
ResultsGene treatments correct genetic defects or disease processes by adding, removing, or changing cell genetic information. In contrast, cell-based therapies restore damaged tissues with modified or unmodified cells. Highly customized and patient-specific drugs make regulatory monitoring challenging. US FDA CBER controls gene and cell-based therapies. Before clinical trials, these biologic drugs must file BLAs for market approval and INDs.
DiscussionFDA's Breakthrough Therapy and Regenerative Medicine Advanced Therapy (RMAT) designations accelerate biological development. The EMA oversees EU Advanced Therapy Medicinal Products. ATMP quality, safety, and efficacy are CAT's top priorities. The Conditional Marketing Authorization process expedites access to life-threatening disease medicines while the MAA regulates them. Japan's PMDA's Conditional Time-Limited Approval for regenerative medicines provides early commercialization and rigorous post-market supervision. Similarly, each country has adopted some ways to expedite the approval of biologicals. Gene-editing drugs require specialized methods, long-term follow-up, and better safety to avoid off-target effects. GMPs ensure production uniformity, sterility, and safety, complicating manufacturing and quality control.
ConclusionThe review concludes that there is a need for worldwide regulatory harmonization and regulatory framework developments, including R.W.E., adaptive pathways, and personalization of biologics.
-