Skip to content
2000
image of Lactate as a Metabolic Regulator in the Tumor Microenvironment: Linking Immunosuppression to Epigenetic Reprogramming

Abstract

A defining characteristic of tumor cells is their preferential reliance on aerobic glycolysis for lactate production, even under oxygen-sufficient conditions - the well-known Warburg effect. Recent advances have revealed lactate to be far more than a metabolic waste product, establishing its role as a versatile signaling molecule with multiple functions in cancer progression. Acting simultaneously as a pro-inflammatory mediator, hypoxia surrogate, tumor burden indicator, and metastasis predictor, lactate exerts profound and wide-ranging effects on immune cell function within the tumor microenvironment (TME).

The immunomodulatory properties of lactate create a profoundly immunosuppressive milieu that facilitates tumor immune evasion. It achieves this through coordinated suppression of antitumor immune effectors, including natural killer cells, dendritic cells, and cytotoxic T lymphocytes, while simultaneously enhancing the immunosuppressive functions of regulatory T cells, tumor-associated macrophages, and endothelial cells. This dual mechanism of action promotes tumor progression and metastasis through multiple pathways.

The groundbreaking discovery of lysine lactylation (Kla) has further expanded our understanding of lactate's biological roles, revealing a direct molecular connection between tumor metabolism and epigenetic regulation. This review provides a comprehensive synthesis of current knowledge regarding lactate-mediated immune modulation in the TME, examines recent advances in our understanding of lactate-dependent tumor biology, and evaluates emerging therapeutic strategies that target lactate metabolism. By integrating these perspectives, we aim to offer both fundamental insights and practical guidance for the development of novel anticancer therapies that target metabolic-epigenetic crosstalk.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010415740251006000648
2025-10-16
2025-12-14
Loading full text...

Full text loading...

References

  1. Warburg O. Wind F. Negelein E. The metabolism of tumors in the body. J. Gen. Physiol. 1927 8 6 519 530 10.1085/jgp.8.6.519 19872213
    [Google Scholar]
  2. Racker E. Bioenergetics and the problem of tumor growth. Am. Sci. 1972 60 1 56 63 [PMID: 4332766
    [Google Scholar]
  3. Shime H. Yabu M. Akazawa T. Kodama K. Matsumoto M. Seya T. Inoue N. Tumor-secreted lactic acid promotes IL-23/IL-17 proinflammatory pathway. J. Immunol. 2008 180 11 7175 7183 10.4049/jimmunol.180.11.7175 18490716
    [Google Scholar]
  4. Haas R. Smith J. Rocher-Ros V. Nadkarni S. Montero-Melendez T. D’Acquisto F. Bland E.J. Bombardieri M. Pitzalis C. Perretti M. Marelli-Berg F.M. Mauro C. Lactate regulates metabolic and pro-inflammatory circuits in control of T cell migration and effector functions. PLoS Biol. 2015 13 7 e1002202 10.1371/journal.pbio.1002202 26181372
    [Google Scholar]
  5. Colegio O.R. Chu N.Q. Szabo A.L. Chu T. Rhebergen A.M. Jairam V. Cyrus N. Brokowski C.E. Eisenbarth S.C. Phillips G.M. Cline G.W. Phillips A.J. Medzhitov R. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 2014 513 7519 559 563 10.1038/nature13490 25043024
    [Google Scholar]
  6. Goetze K. Walenta S. Ksiazkiewicz M. Kunz-Schughart L.A. Mueller-Klieser W. Lactate enhances motility of tumor cells and inhibits monocyte migration and cytokine release. Int. J. Oncol. 2011 39 2 453 463 10.3892/ijo.2011.1055 21617859
    [Google Scholar]
  7. Fischer K. Hoffmann P. Voelkl S. Meidenbauer N. Ammer J. Edinger M. Gottfried E. Schwarz S. Rothe G. Hoves S. Renner K. Timischl B. Mackensen A. Kunz-Schughart L. Andreesen R. Krause S.W. Kreutz M. Inhibitory effect of tumor cell–derived lactic acid on human T cells. Blood 2007 109 9 3812 3819 10.1182/blood‑2006‑07‑035972 17255361
    [Google Scholar]
  8. Rabinovich G.A. Gabrilovich D. Sotomayor E.M. Immunosuppressive strategies that are mediated by tumor cells. Annu. Rev. Immunol. 2007 25 1 267 296 10.1146/annurev.immunol.25.022106.141609 17134371
    [Google Scholar]
  9. de la Cruz-López K.G. Castro-Muñoz L.J. Reyes-Hernández D.O. García-Carrancá A. Manzo-Merino J. Lactate in the regulation of tumor microenvironment and therapeutic approaches. Front. Oncol. 2019 9 1143 10.3389/fonc.2019.01143 31737570
    [Google Scholar]
  10. Fu Y. Lan T. Cai H. Lu A. Yu W. Meta-analysis of serum lactate dehydrogenase and prognosis for osteosarcoma. Medicine 2018 97 19 e0741 10.1097/MD.0000000000010741 29742740
    [Google Scholar]
  11. Gan J. Wang W. Yang Z. Pan J. Zheng L. Yin L. Prognostic value of pretreatment serum lactate dehydrogenase level in pancreatic cancer patients. Medicine 2018 97 46 e13151 10.1097/MD.0000000000013151 30431587
    [Google Scholar]
  12. Zhang Z. Li Y. Yan X. Song Q. Wang G. Hu Y. Jiao S. Wang J. Pretreatment lactate dehydrogenase may predict outcome of advanced non small cell lung cancer patients treated with immune checkpoint inhibitors: A meta analysis. Cancer Med. 2019 8 4 1467 1473 10.1002/cam4.2024 30848091
    [Google Scholar]
  13. Hou X. Yuan S. Zhao D. Liu X. Wu X. LDH-A promotes malignant behavior via activation of epithelial-to-mesenchymal transition in lung adenocarcinoma. Biosci. Rep. 2019 39 1 BSR20181476 10.1042/BSR20181476 30509961
    [Google Scholar]
  14. Kumar R. Mendonca J. Owoyemi O. Boyapati K. Thomas N. Kanacharoen S. Coffey M. Topiwala D. Gomes C. Ozbek B. Jones T. Rosen M. Dong L. Wiens S. Brennen W.N. Isaacs J.T. De Marzo A.M. Markowski M.C. Antonarakis E.S. Qian D.Z. Pienta K.J. Pardoll D.M. Carducci M.A. Denmeade S.R. Kachhap S.K. Supraphysiologic testosterone induces ferroptosis and activates immune pathways through nucleophagy in prostate cancer. Cancer Res. 2021 81 23 5948 5962 10.1158/0008‑5472.CAN‑20‑3607 34645612
    [Google Scholar]
  15. Zhang D. Tang Z. Huang H. Zhou G. Cui C. Weng Y. Liu W. Kim S. Lee S. Perez-Neut M. Ding J. Czyz D. Hu R. Ye Z. He M. Zheng Y.G. Shuman H.A. Dai L. Ren B. Roeder R.G. Becker L. Zhao Y. Metabolic regulation of gene expression by histone lactylation. Nature 2019 574 7779 575 580 10.1038/s41586‑019‑1678‑1 31645732
    [Google Scholar]
  16. Lyssiotis C.A. Kimmelman A.C. Metabolic interactions in the tumor microenvironment. Trends Cell Biol. 2017 27 11 863 875 10.1016/j.tcb.2017.06.003 28734735
    [Google Scholar]
  17. Certo M. Tsai C.H. Pucino V. Ho P.C. Mauro C. Lactate modulation of immune responses in inflammatory versus tumour microenvironments. Nat. Rev. Immunol. 2021 21 3 151 161 10.1038/s41577‑020‑0406‑2 32839570
    [Google Scholar]
  18. Brown T.P. Ganapathy V. Lactate/GPR81 signaling and proton motive force in cancer: Role in angiogenesis, immune escape, nutrition, and Warburg phenomenon. Pharmacol. Ther. 2020 206 107451 10.1016/j.pharmthera.2019.107451 31836453
    [Google Scholar]
  19. Seth P. Csizmadia E. Hedblom A. Vuerich M. Xie H. Li M. Longhi M.S. Wegiel B. Deletion of lactate dehydrogenase-a in myeloid cells triggers antitumor immunity. Cancer Res. 2017 77 13 3632 3643 10.1158/0008‑5472.CAN‑16‑2938 28446465
    [Google Scholar]
  20. Brand A. Singer K. Koehl G.E. Kolitzus M. Schoenhammer G. Thiel A. Matos C. Bruss C. Klobuch S. Peter K. Kastenberger M. Bogdan C. Schleicher U. Mackensen A. Ullrich E. Fichtner-Feigl S. Kesselring R. Mack M. Ritter U. Schmid M. Blank C. Dettmer K. Oefner P.J. Hoffmann P. Walenta S. Geissler E.K. Pouyssegur J. Villunger A. Steven A. Seliger B. Schreml S. Haferkamp S. Kohl E. Karrer S. Berneburg M. Herr W. Mueller-Klieser W. Renner K. Kreutz M. LDHA-Associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab. 2016 24 5 657 671 10.1016/j.cmet.2016.08.011 27641098
    [Google Scholar]
  21. Xu H. Jiang Y. Xu X. Su X. Liu Y. Ma Y. Zhao Y. Shen Z. Huang B. Cao X. Inducible degradation of lncRNA Sros1 promotes IFN-γ-mediated activation of innate immune responses by stabilizing Stat1 mRNA. Nat. Immunol. 2019 20 12 1621 1630 10.1038/s41590‑019‑0542‑7 31740800
    [Google Scholar]
  22. Fiaschi T. Marini A. Giannoni E. Taddei M.L. Gandellini P. De Donatis A. Lanciotti M. Serni S. Cirri P. Chiarugi P. Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay. Cancer Res. 2012 72 19 5130 5140 10.1158/0008‑5472.CAN‑12‑1949 22850421
    [Google Scholar]
  23. Feng J. Yang H. Zhang Y. Wei H. Zhu Z. Zhu B. Yang M. Cao W. Wang L. Wu Z. Tumor cell-Derived lactate induces TAZ-dependent upregulation of PD-L1 through GPR81 in human lung cancer cells. Oncogene 2017 36 42 5829 5839 10.1038/onc.2017.188 28604752
    [Google Scholar]
  24. Weiss H.J. Angiari S. Metabolite transporters as regulators of immunity. Metabolites 2020 10 10 418 10.3390/metabo10100418 33086598
    [Google Scholar]
  25. Sun X. Wang M. Wang M. Yao L. Li X. Dong H. Li M. Sun T. Liu X. Liu Y. Xu Y. Role of Proton-Coupled monocarboxylate transporters in cancer: From metabolic crosstalk to therapeutic potential. Front. Cell Dev. Biol. 2020 8 651 10.3389/fcell.2020.00651 32766253
    [Google Scholar]
  26. Kabarowski J.H. G2A and LPC: Regulatory functions in immunity. Prostaglandins Other Lipid Mediat. 2009 89 3-4 73 81 10.1016/j.prostaglandins.2009.04.007 19383550
    [Google Scholar]
  27. Radu C.G. Yang L.V. Riedinger M. Au M. Witte O.N. T cell chemotaxis to lysophosphatidylcholine through the G2A receptor. Proc. Natl. Acad. Sci. USA 2004 101 1 245 250 10.1073/pnas.2536801100 14681556
    [Google Scholar]
  28. Cai T.Q. Ren N. Jin L. Cheng K. Kash S. Chen R. Wright S.D. Taggart A.K.P. Waters M.G. Role of GPR81 in lactate-mediated reduction of adipose lipolysis. Biochem. Biophys. Res. Commun. 2008 377 3 987 991 10.1016/j.bbrc.2008.10.088 18952058
    [Google Scholar]
  29. Liu C. Wu J. Zhu J. Kuei C. Yu J. Shelton J. Sutton S.W. Li X. Yun S.J. Mirzadegan T. Mazur C. Kamme F. Lovenberg T.W. Lactate inhibits lipolysis in fat cells through activation of an orphan G-protein-coupled receptor, GPR81. J. Biol. Chem. 2009 284 5 2811 2822 10.1074/jbc.M806409200 19047060
    [Google Scholar]
  30. Fliesser M. Morton C.O. Bonin M. Ebel F. Hünniger K. Kurzai O. Einsele H. Löffler J. Hypoxia-inducible factor 1α modulates metabolic activity and cytokine release in anti- Aspergillus fumigatus immune responses initiated by human dendritic cells. Int. J. Med. Microbiol. 2015 305 8 865 873 10.1016/j.ijmm.2015.08.036 26387061
    [Google Scholar]
  31. Xie Q. Zhu Z. He Y. Zhang Z. Zhang Y. Wang Y. Luo J. Peng T. Cheng F. Gao J. Cao Y. Wei H. Wu Z. A lactate-induced Snail/STAT3 pathway drives GPR81 expression in lung cancer cells. Biochim. Biophys. Acta Mol. Basis Dis. 2020 1866 1 165576 10.1016/j.bbadis.2019.165576 31666207
    [Google Scholar]
  32. Flommersfeld S. Böttcher J.P. Ersching J. Flossdorf M. Meiser P. Pachmayr L.O. Leube J. Hensel I. Jarosch S. Zhang Q. Chaudhry M.Z. Andrae I. Schiemann M. Busch D.H. Cicin-Sain L. Sun J.C. Gasteiger G. Victora G.D. Höfer T. Buchholz V.R. Grassmann S. Fate mapping of single NK cells identifies a type 1 innate lymphoid-like lineage that bridges innate and adaptive recognition of viral infection. Immunity 2021 54 10 2288 2304.e7 10.1016/j.immuni.2021.08.002 34437840
    [Google Scholar]
  33. Pötzl J. Roser D. Bankel L. Hömberg N. Geishauser A. Brenner C.D. Weigand M. Röcken M. Mocikat R. Reversal of tumor acidosis by systemic buffering reactivates NK cells to express IFN‐γ and induces NK cell‐dependent lymphoma control without other immunotherapies. Int. J. Cancer 2017 140 9 2125 2133 10.1002/ijc.30646 28195314
    [Google Scholar]
  34. Harmon C. Robinson M.W. Hand F. Almuaili D. Mentor K. Houlihan D.D. Hoti E. Lynch L. Geoghegan J. O’Farrelly C. Lactate-Mediated acidification of tumor microenvironment induces apoptosis of liver-resident NK cells in colorectal liver metastasis. Cancer Immunol. Res. 2019 7 2 335 346 10.1158/2326‑6066.CIR‑18‑0481 30563827
    [Google Scholar]
  35. Lewis K.L. Reizis B. Dendritic cells: Arbiters of immunity and immunological tolerance. Cold Spring Harb. Perspect. Biol. 2012 4 8 a007401 10.1101/cshperspect.a007401 22855722
    [Google Scholar]
  36. Iwasaki A. Medzhitov R. Control of adaptive immunity by the innate immune system. Nat. Immunol. 2015 16 4 343 353 10.1038/ni.3123 25789684
    [Google Scholar]
  37. Gottfried E. Kunz-Schughart L.A. Ebner S. Mueller-Klieser W. Hoves S. Andreesen R. Mackensen A. Kreutz M. Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood 2006 107 5 2013 2021 10.1182/blood‑2005‑05‑1795 16278308
    [Google Scholar]
  38. Brown T.P. Bhattacharjee P. Ramachandran S. Sivaprakasam S. Ristic B. Sikder M.O.F. Ganapathy V. The lactate receptor GPR81 promotes breast cancer growth via a paracrine mechanism involving antigen-presenting cells in the tumor microenvironment. Oncogene 2020 39 16 3292 3304 10.1038/s41388‑020‑1216‑5 32071396
    [Google Scholar]
  39. Manoharan I. Prasad P.D. Thangaraju M. Manicassamy S. Lactate-Dependent regulation of immune responses by dendritic cells and macrophages. Front. Immunol. 2021 12 691134 10.3389/fimmu.2021.691134 34394085
    [Google Scholar]
  40. Böttcher J.P. Reis e Sousa C. The role of Type 1 conventional dendritic cells in cancer immunity. Trends Cancer 2018 4 11 784 792 10.1016/j.trecan.2018.09.001 30352680
    [Google Scholar]
  41. Pucino V. Bombardieri M. Pitzalis C. Mauro C. Lactate at the crossroads of metabolism, inflammation, and autoimmunity. Eur. J. Immunol. 2017 47 1 14 21 10.1002/eji.201646477 27883186
    [Google Scholar]
  42. Plebanek M.P. Xue Y. Nguyen Y.V. DeVito N.C. Wang X. Holtzhausen A. Beasley G.M. Theivanthiran B. Hanks B.A. A lactate-SREBP2 signaling axis drives tolerogenic dendritic cell maturation and promotes cancer progression. Sci. Immunol. 2024 9 95 eadi4191 10.1126/sciimmunol.adi4191 38728412
    [Google Scholar]
  43. Mendler A.N. Hu B. Prinz P.U. Kreutz M. Gottfried E. Noessner E. Tumor lactic acidosis suppresses CTL function by inhibition of p38 and JNK/c‐Jun activation. Int. J. Cancer 2012 131 3 633 640 10.1002/ijc.26410 21898391
    [Google Scholar]
  44. Cascone T. McKenzie J.A. Mbofung R.M. Punt S. Wang Z. Xu C. Williams L.J. Wang Z. Bristow C.A. Carugo A. Peoples M.D. Li L. Karpinets T. Huang L. Malu S. Creasy C. Leahey S.E. Chen J. Chen Y. Pelicano H. Bernatchez C. Gopal Y.N.V. Heffernan T.P. Hu J. Wang J. Amaria R.N. Garraway L.A. Huang P. Yang P. Wistuba I.I. Woodman S.E. Roszik J. Davis R.E. Davies M.A. Heymach J.V. Hwu P. Peng W. Increased tumor glycolysis characterizes immune resistance to adoptive T cell therapy. Cell Metab. 2018 27 5 977 987.e4 10.1016/j.cmet.2018.02.024 29628419
    [Google Scholar]
  45. Chang C.H. Curtis J.D. Maggi L.B. Faubert B. Villarino A.V. O’Sullivan D. Huang S.C.C. van der Windt G.J.W. Blagih J. Qiu J. Weber J.D. Pearce E.J. Jones R.G. Pearce E.L. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 2013 153 6 1239 1251 10.1016/j.cell.2013.05.016 23746840
    [Google Scholar]
  46. Sukumar M. Liu J. Ji Y. Subramanian M. Crompton J.G. Yu Z. Roychoudhuri R. Palmer D.C. Muranski P. Karoly E.D. Mohney R.P. Klebanoff C.A. Lal A. Finkel T. Restifo N.P. Gattinoni L. Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. J. Clin. Invest. 2013 123 10 4479 4488 10.1172/JCI69589 24091329
    [Google Scholar]
  47. Pilon-Thomas S. Kodumudi K.N. El-Kenawi A.E. Russell S. Weber A.M. Luddy K. Damaghi M. Wojtkowiak J.W. Mulé J.J. Ibrahim-Hashim A. Gillies R.J. Neutralization of tumor acidity improves antitumor responses to immunotherapy. Cancer Res. 2016 76 6 1381 1390 10.1158/0008‑5472.CAN‑15‑1743 26719539
    [Google Scholar]
  48. Chang C.H. Qiu J. O’Sullivan D. Buck M.D. Noguchi T. Curtis J.D. Chen Q. Gindin M. Gubin M.M. van der Windt G.J.W. Tonc E. Schreiber R.D. Pearce E.J. Pearce E.L. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 2015 162 6 1229 1241 10.1016/j.cell.2015.08.016 26321679
    [Google Scholar]
  49. Frauwirth K.A. Riley J.L. Harris M.H. Parry R.V. Rathmell J.C. Plas D.R. Elstrom R.L. June C.H. Thompson C.B. The CD28 signaling pathway regulates glucose metabolism. Immunity 2002 16 6 769 777 10.1016/S1074‑7613(02)00323‑0 12121659
    [Google Scholar]
  50. Dang B.T.N. Duwa R. Lee S. Kwon T.K. Chang J.H. Jeong J.H. Yook S. Targeting tumor-Associated macrophages with mannosylated nanotherapeutics delivering TLR7/8 agonist enhances cancer immunotherapy. J. Control. Release 2024 372 587 608 10.1016/j.jconrel.2024.06.062 38942083
    [Google Scholar]
  51. Liu Y. Li H. Hao Y.Y. Huang L.L. Li X. Zou J. Zhang S.Y. Yang X.Y. Chen H.F. Guo Y.X. Guan Y.Y. Zhang Z.Y. Tumor-Selective Nano-Dispatcher enforced cancer immunotherapeutic effects via regulating lactate metabolism and activating Toll-Like receptors. Small 2025 21 1 2406870 10.1002/smll.202406870 39390849
    [Google Scholar]
  52. Angelin A. Gil-de-Gómez L. Dahiya S. Jiao J. Guo L. Levine M.H. Wang Z. Quinn W.J. Kopinski P.K. Wang L. Akimova T. Liu Y. Bhatti T.R. Han R. Laskin B.L. Baur J.A. Blair I.A. Wallace D.C. Hancock W.W. Beier U.H. Foxp3 reprograms t cell metabolism to function in low-glucose, high-lactate environments. Cell Metab. 2017 25 6 1282 1293.e7 10.1016/j.cmet.2016.12.018 28416194
    [Google Scholar]
  53. Watson M.J. Vignali P.D.A. Mullett S.J. Overacre-Delgoffe A.E. Peralta R.M. Grebinoski S. Menk A.V. Rittenhouse N.L. DePeaux K. Whetstone R.D. Vignali D.A.A. Hand T.W. Poholek A.C. Morrison B.M. Rothstein J.D. Wendell S.G. Delgoffe G.M. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature 2021 591 7851 645 651 10.1038/s41586‑020‑03045‑2 33589820
    [Google Scholar]
  54. Zappasodi R. Serganova I. Cohen I.J. Maeda M. Shindo M. Senbabaoglu Y. Watson M.J. Leftin A. Maniyar R. Verma S. Lubin M. Ko M. Mane M.M. Zhong H. Liu C. Ghosh A. Abu-Akeel M. Ackerstaff E. Koutcher J.A. Ho P.C. Delgoffe G.M. Blasberg R. Wolchok J.D. Merghoub T. CTLA-4 blockade drives loss of Treg stability in glycolysis-low tumours. Nature 2021 591 7851 652 658 10.1038/s41586‑021‑03326‑4 33588426
    [Google Scholar]
  55. Zenke S. Palm M.M. Braun J. Gavrilov A. Meiser P. Böttcher J.P. Beyersdorf N. Ehl S. Gerard A. Lämmermann T. Schumacher T.N. Beltman J.B. Rohr J.C. Quorum regulation via nested antagonistic feedback circuits mediated by the receptors CD28 and CTLA-4 confers robustness to T cell population dynamics. Immunity 2020 52 2 313 327.e7 10.1016/j.immuni.2020.01.018 32049052
    [Google Scholar]
  56. Lopez Krol A. Nehring H.P. Krause F.F. Wempe A. Raifer H. Nist A. Stiewe T. Bertrams W. Schmeck B. Luu M. Leister H. Chung H.R. Bauer U.M. Adhikary T. Visekruna A. Lactate induces metabolic and epigenetic reprogramming of pro-inflammatory Th17 cells. EMBO Rep. 2022 23 12 e54685 10.15252/embr.202254685 36215678
    [Google Scholar]
  57. Huang Z.W. Zhang X.N. Zhang L. Liu L.L. Zhang J.W. Sun Y.X. Xu J.Q. Liu Q. Long Z.J. STAT5 promotes PD-L1 expression by facilitating histone lactylation to drive immunosuppression in acute myeloid leukemia. Signal Transduct. Target. Ther. 2023 8 1 391 10.1038/s41392‑023‑01605‑2 37777506
    [Google Scholar]
  58. Yu Y. Huang X. Liang C. Zhang P. Evodiamine impairs HIF1A histone lactylation to inhibit Sema3A-mediated angiogenesis and PD-L1 by inducing ferroptosis in prostate cancer. Eur. J. Pharmacol. 2023 957 176007 10.1016/j.ejphar.2023.176007 37611839
    [Google Scholar]
  59. Sun T. Liu B. Li Y. Wu J. Cao Y. Yang S. Tan H. Cai L. Zhang S. Qi X. Yu D. Yang W. Oxamate enhances the efficacy of CAR-T therapy against glioblastoma via suppressing ectonucleotidases and CCR8 lactylation. J. Exp. Clin. Cancer Res. 2023 42 1 253 10.1186/s13046‑023‑02815‑w 37770937
    [Google Scholar]
  60. Mehla K. Singh P.K. Metabolic regulation of macrophage polarization in cancer. Trends Cancer 2019 5 12 822 834 10.1016/j.trecan.2019.10.007 31813459
    [Google Scholar]
  61. Wynn T.A. Chawla A. Pollard J.W. Macrophage biology in development, homeostasis and disease. Nature 2013 496 7446 445 455 10.1038/nature12034 23619691
    [Google Scholar]
  62. Noy R. Pollard J.W. Tumor-associated macrophages: From mechanisms to therapy. Immunity 2014 41 1 49 61 10.1016/j.immuni.2014.06.010 25035953
    [Google Scholar]
  63. Wenes M. Shang M. Di Matteo M. Goveia J. Martín-Pérez R. Serneels J. Prenen H. Ghesquière B. Carmeliet P. Mazzone M. Macrophage metabolism controls tumor blood vessel morphogenesis and metastasis. Cell Metab. 2016 24 5 701 715 10.1016/j.cmet.2016.09.008 27773694
    [Google Scholar]
  64. Dietl K. Renner K. Dettmer K. Timischl B. Eberhart K. Dorn C. Hellerbrand C. Kastenberger M. Kunz-Schughart L.A. Oefner P.J. Andreesen R. Gottfried E. Kreutz M.P. Lactic acid and acidification inhibit TNF secretion and glycolysis of human monocytes. J. Immunol. 2010 184 3 1200 1209 10.4049/jimmunol.0902584 20026743
    [Google Scholar]
  65. Ohashi T. Akazawa T. Aoki M. Kuze B. Mizuta K. Ito Y. Inoue N. Dichloroacetate improves immune dysfunction caused by tumor‐secreted lactic acid and increases antitumor immunoreactivity. Int. J. Cancer 2013 133 5 1107 1118 10.1002/ijc.28114 23420584
    [Google Scholar]
  66. Selleri S. Bifsha P. Civini S. Pacelli C. Dieng M.M. Lemieux W. Jin P. Bazin R. Patey N. Marincola F.M. Moldovan F. Zaouter C. Trudeau L.E. Benabdhalla B. Louis I. Beauséjour C. Stroncek D. Le Deist F. Haddad E. Human mesenchymal stromal cell-secreted lactate induces M2-macrophage differentiation by metabolic reprogramming. Oncotarget 2016 7 21 30193 30210 10.18632/oncotarget.8623 27070086
    [Google Scholar]
  67. Mu X. Shi W. Xu Y. Xu C. Zhao T. Geng B. Yang J. Pan J. Hu S. Zhang C. Zhang J. Wang C. Shen J. Che Y. Liu Z. Lv Y. Wen H. You Q. Tumor-derived lactate induces M2 macrophage polarization via the activation of the ERK/STAT3 signaling pathway in breast cancer. Cell Cycle 2018 17 4 428 438 10.1080/15384101.2018.1444305 29468929
    [Google Scholar]
  68. Singh A. Bhoumick A. Sen P. Matriptase-mediated PAR 2 activation drives monocyte-to-macrophage differentiation and polarization under hypoxic conditions. FEBS J. 2025 292 12 3129 3150 10.1111/febs.70046 40014479
    [Google Scholar]
  69. Bohn T. Rapp S. Luther N. Klein M. Bruehl T.J. Kojima N. Aranda Lopez P. Hahlbrock J. Muth S. Endo S. Pektor S. Brand A. Renner K. Popp V. Gerlach K. Vogel D. Lueckel C. Arnold-Schild D. Pouyssegur J. Kreutz M. Huber M. Koenig J. Weigmann B. Probst H.C. von Stebut E. Becker C. Schild H. Schmitt E. Bopp T. Tumor immunoevasion via acidosis-dependent induction of regulatory tumor-associated macrophages. Nat. Immunol. 2018 19 12 1319 1329 10.1038/s41590‑018‑0226‑8 30397348
    [Google Scholar]
  70. Ohashi T. Aoki M. Tomita H. Akazawa T. Sato K. Kuze B. Mizuta K. Hara A. Nagaoka H. Inoue N. Ito Y. M2-like macrophage polarization in high lactic acid-producing head and neck cancer. Cancer Sci. 2017 108 6 1128 1134 10.1111/cas.13244 28370718
    [Google Scholar]
  71. Chen P. Zuo H. Xiong H. Kolar M.J. Chu Q. Saghatelian A. Siegwart D.J. Wan Y. Gpr132 sensing of lactate mediates tumor–macrophage interplay to promote breast cancer metastasis. Proc. Natl. Acad. Sci. USA 2017 114 3 580 585 10.1073/pnas.1614035114 28049847
    [Google Scholar]
  72. Lee L.Y.H. Oldham W.M. He H. Wang R. Mulhern R. Handy D.E. Loscalzo J. Interferon-γ impairs human coronary artery endothelial glucose metabolism by tryptophan catabolism and activates fatty acid oxidation. Circulation 2021 144 20 1612 1628 10.1161/CIRCULATIONAHA.121.053960 34636650
    [Google Scholar]
  73. Van Hée V.F. Pérez-Escuredo J. Cacace A. Copetti T. Sonveaux P. Lactate does not activate NF-κB in oxidative tumor cells. Front. Pharmacol. 2015 6 228 10.3389/fphar.2015.00228 26528183
    [Google Scholar]
  74. Brooks G.A. The science and translation of lactate shuttle theory. Cell Metab. 2018 27 4 757 785 10.1016/j.cmet.2018.03.008 29617642
    [Google Scholar]
  75. Porporato P.E. Payen V.L. De Saedeleer C.J. Préat V. Thissen J.P. Feron O. Sonveaux P. Lactate stimulates angiogenesis and accelerates the healing of superficial and ischemic wounds in mice. Angiogenesis 2012 15 4 581 592 10.1007/s10456‑012‑9282‑0 22660894
    [Google Scholar]
  76. Sonveaux P. Copetti T. De Saedeleer C.J. Végran F. Verrax J. Kennedy K.M. Moon E.J. Dhup S. Danhier P. Frérart F. Gallez B. Ribeiro A. Michiels C. Dewhirst M.W. Feron O. Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis. PLoS One 2012 7 3 e33418 10.1371/journal.pone.0033418 22428047
    [Google Scholar]
  77. Fan H. Yang F. Xiao Z. Luo H. Chen H. Chen Z. Liu Q. Xiao Y. Lactylation: Novel epigenetic regulatory and therapeutic opportunities. Am. J. Physiol. Endocrinol. Metab. 2023 324 4 E330 E338 10.1152/ajpendo.00159.2022 36856188
    [Google Scholar]
  78. Wang T. Ye Z. Li Z. Jing D. Fan G. Liu M. Zhuo Q. Ji S. Yu X. Xu X. Qin Y. Lactate-induced protein lactylation: A bridge between epigenetics and metabolic reprogramming in cancer. Cell Prolif. 2023 56 10 e13478 10.1111/cpr.13478 37060186
    [Google Scholar]
  79. Yang Z. Zheng Y. Gao Q. Lysine lactylation in the regulation of tumor biology. Trends Endocrinol. Metab. 2024 35 8 720 731 10.1016/j.tem.2024.01.011 38395657
    [Google Scholar]
  80. Wang P. Xie D. Xiao T. Cheng C. Wang D. Sun J. Wu M. Yang Y. Zhang A. Liu Q. H3K18 lactylation promotes the progression of arsenite-related idiopathic pulmonary fibrosis via YTHDF1/m6A/NREP. J. Hazard. Mater. 2024 461 132582 10.1016/j.jhazmat.2023.132582 37742376
    [Google Scholar]
  81. Li X. Yang Y. Zhang B. Lin X. Fu X. An Y. Zou Y. Wang J.X. Wang Z. Yu T. Lactate metabolism in human health and disease. Signal Transduct Target Ther 2022 7 1 305 10.1038/s41392‑022‑01151‑3 36050306
    [Google Scholar]
  82. Gao X. Pang C. Fan Z. Wang Y. Duan Y. Zhan H. Regulation of newly identified lysine lactylation in cancer. Cancer Lett. 2024 587 216680 10.1016/j.canlet.2024.216680 38346584
    [Google Scholar]
  83. Irizarry-Caro R.A. McDaniel M.M. Overcast G.R. Jain V.G. Troutman T.D. Pasare C. TLR signaling adapter BCAP regulates inflammatory to reparatory macrophage transition by promoting histone lactylation. Proc. Natl. Acad. Sci. USA 2020 117 48 30628 30638 10.1073/pnas.2009778117 33199625
    [Google Scholar]
  84. Li L. Chen K. Wang T. Wu Y. Xing G. Chen M. Hao Z. Zhang C. Zhang J. Ma B. Liu Z. Yuan H. Liu Z. Long Q. Zhou Y. Qi J. Zhao D. Gao M. Pei D. Nie J. Ye D. Pan G. Liu X. Glis1 facilitates induction of pluripotency via an epigenome–metabolome–epigenome signalling cascade. Nat. Metab. 2020 2 9 882 892 10.1038/s42255‑020‑0267‑9 32839595
    [Google Scholar]
  85. Hagihara H. Shoji H. Otabi H. Toyoda A. Katoh K. Namihira M. Miyakawa T. Protein lactylation induced by neural excitation. Cell Rep. 2021 37 2 109820 10.1016/j.celrep.2021.109820 34644564
    [Google Scholar]
  86. Yu J. Chai P. Xie M. Ge S. Ruan J. Fan X. Jia R. Histone lactylation drives oncogenesis by facilitating m6A reader protein YTHDF2 expression in ocular melanoma. Genome Biol. 2021 22 1 85 10.1186/s13059‑021‑02308‑z 33726814
    [Google Scholar]
  87. Pan L. Feng F. Wu J. Fan S. Han J. Wang S. Yang L. Liu W. Wang C. Xu K. Demethylzeylasteral targets lactate by inhibiting histone lactylation to suppress the tumorigenicity of liver cancer stem cells. Pharmacol. Res. 2022 181 106270 10.1016/j.phrs.2022.106270 35605812
    [Google Scholar]
  88. Chai P. Zhao F. Jia R. Zhou X. Fan X. Lactate/lactylation in ocular development and diseases Trends Mol. Med 2024 S1471-4914 24 00187 4
    [Google Scholar]
  89. Yang J. Luo L. Zhao C. Li X. Wang Z. Zeng Z. Yang X. Zheng X. Jie H. Kang L. Li S. Liu S. Zhou C. Liu H. A positive feedback loop between inactive VHL-Triggered histone lactylation and PDGFRβ signaling drives clear cell renal cell carcinoma progression. Int. J. Biol. Sci. 2022 18 8 3470 3483 10.7150/ijbs.73398 35637958
    [Google Scholar]
  90. Wang G. Zou X. Chen Q. Nong W. Miao W. Luo H. Qu S. The relationship and clinical significance of lactylation modification in digestive system tumors. Cancer Cell Int. 2024 24 1 246 10.1186/s12935‑024‑03429‑8 39010066
    [Google Scholar]
  91. Xiong J. He J. Zhu J. Pan J. Liao W. Ye H. Wang H. Song Y. Du Y. Cui B. Xue M. Zheng W. Kong X. Jiang K. Ding K. Lai L. Wang Q. Lactylation-driven METTL3-mediated RNA m6A modification promotes immunosuppression of tumor-infiltrating myeloid cells. Mol. Cell 2022 82 9 1660 1677.e10 10.1016/j.molcel.2022.02.033 35320754
    [Google Scholar]
  92. Li W. Zhou C. Yu L. Hou Z. Liu H. Kong L. Xu Y. He J. Lan J. Ou Q. Fang Y. Lu Z. Wu X. Pan Z. Peng J. Lin J. Tumor-derived lactate promotes resistance to bevacizumab treatment by facilitating autophagy enhancer protein RUBCNL expression through histone H3 lysine 18 lactylation (H3K18la) in colorectal cancer. Autophagy 2024 20 1 114 130 10.1080/15548627.2023.2249762 37615625
    [Google Scholar]
  93. Yang K. Fan M. Wang X. Xu J. Wang Y. Tu F. Gill P.S. Ha T. Liu L. Williams D.L. Li C. Lactate promotes macrophage HMGB1 lactylation, acetylation, and exosomal release in polymicrobial sepsis. Cell Death Differ. 2022 29 1 133 146 10.1038/s41418‑021‑00841‑9 34363018
    [Google Scholar]
  94. Husain Z. Huang Y. Seth P. Sukhatme V.P. Tumor-derived lactate modifies antitumor immune response: effect on myeloid-derived suppressor cells and NK cells. J. Immunol. 2013 191 3 1486 1495 10.4049/jimmunol.1202702 23817426
    [Google Scholar]
  95. Raychaudhuri D. Bhattacharya R. Sinha B.P. Liu C.S.C. Ghosh A.R. Rahaman O. Bandopadhyay P. Sarif J. D’Rozario R. Paul S. Das A. Sarkar D.K. Chattopadhyay S. Ganguly D. Lactate induces pro-tumor reprogramming in intratumoral plasmacytoid dendritic cells. Front. Immunol. 2019 10 1878 10.3389/fimmu.2019.01878 31440253
    [Google Scholar]
  96. Sun H. Zhu A. Zhou X. Wang F. Suppression of pyruvate dehydrogenase kinase-2 re-sensitizes paclitaxel-resistant human lung cancer cells to paclitaxel. Oncotarget 2017 8 32 52642 52650 10.18632/oncotarget.16991 28881758
    [Google Scholar]
  97. Beloueche-Babari M. Casals Galobart T. Delgado-Goni T. Wantuch S. Parkes H.G. Tandy D. Harker J.A. Leach M.O. Monocarboxylate transporter 1 blockade with AZD3965 inhibits lipid biosynthesis and increases tumour immune cell infiltration. Br. J. Cancer 2020 122 6 895 903 10.1038/s41416‑019‑0717‑x 31937921
    [Google Scholar]
  98. Draoui N. Schicke O. Seront E. Bouzin C. Sonveaux P. Riant O. Feron O. Antitumor activity of 7-aminocarboxy-coumarin derivatives, a new class of potent inhibitors of lactate influx but not efflux. Mol. Cancer Ther. 2014 13 6 1410 1418 10.1158/1535‑7163.MCT‑13‑0653 24672058
    [Google Scholar]
  99. Corbière V. Chapiro J. Stroobant V. Ma W. Lurquin C. Lethé B. van Baren N. Van den Eynde B.J. Boon T. Coulie P.G. Antigen spreading contributes to MAGE vaccination-induced regression of melanoma metastases. Cancer Res. 2011 71 4 1253 1262 10.1158/0008‑5472.CAN‑10‑2693 21216894
    [Google Scholar]
  100. Lonchay C. van der Bruggen P. Connerotte T. Hanagiri T. Coulie P. Colau D. Lucas S. Van Pel A. Thielemans K. van Baren N. Boon T. Correlation between tumor regression and T cell responses in melanoma patients vaccinated with a MAGE antigen. Proc Natl Acad. Sc 2004 Suppl 2 Suppl 2 14631 14638 10.1073/pnas.0405743101
    [Google Scholar]
  101. Gaffney D.O. Jennings E.Q. Anderson C.C. Marentette J.O. Shi T. Schou Oxvig A.M. Streeter M.D. Johannsen M. Spiegel D.A. Chapman E. Roede J.R. Galligan J.J. Non-enzymatic Lysine Lactoylation of Glycolytic Enzymes. Cell Chem. Biol. 2020 27 2 206 213.e6 10.1016/j.chembiol.2019.11.005 31767537
    [Google Scholar]
  102. Cui H. Xie N. Banerjee S. Ge J. Jiang D. Dey T. Matthews Q.L. Liu R.M. Liu G. Lung myofibroblasts promote macrophage profibrotic activity through lactate-induced histone lactylation. Am. J. Respir. Cell Mol. Biol. 2021 64 1 115 125 10.1165/rcmb.2020‑0360OC 33074715
    [Google Scholar]
  103. Fan Z. Liu Z. Zhang N. Wei W. Cheng K. Sun H. Hao Q. Identification of SIRT3 as an eraser of H4K16la. iScience 2023 26 10 107757 10.1016/j.isci.2023.107757 37720100
    [Google Scholar]
  104. Jin J. Bai L. Wang D. Ding W. Cao Z. Yan P. Li Y. Xi L. Wang Y. Zheng X. Wei H. Ding C. Wang Y. SIRT3 -dependent delactylation of cyclin E2 prevents hepatocellular carcinoma growth. EMBO Rep. 2023 24 5 e56052 10.15252/embr.202256052 36896611
    [Google Scholar]
  105. Rho H. Terry A.R. Chronis C. Hay N. Hexokinase 2-mediated gene expression via histone lactylation is required for hepatic stellate cell activation and liver fibrosis. Cell Metab. 2023 35 8 1406 1423.e8 10.1016/j.cmet.2023.06.013 37463576
    [Google Scholar]
  106. Moreno-Yruela C. Zhang D. Wei W. Bæk M. Liu W. Gao J. Danková D. Nielsen A.L. Bolding J.E. Yang L. Jameson S.T. Wong J. Olsen C.A. Zhao Y. Class I histone deacetylases (HDAC1–3) are histone lysine delactylases. Sci. Adv. 2022 8 3 eabi6696 10.1126/sciadv.abi6696 35044827
    [Google Scholar]
  107. Yang D. Yin J. Shan L. Yi X. Zhang W. Ding Y. Identification of lysine-lactylated substrates in gastric cancer cells. iScience 2022 25 7 104630 10.1016/j.isci.2022.104630 35800753
    [Google Scholar]
  108. Jiang J. Huang D. Jiang Y. Hou J. Tian M. Li J. Sun L. Zhang Y. Zhang T. Li Z. Li Z. Tong S. Ma Y. Lactate modulates cellular metabolism through histone lactylation-Mediated gene expression in non-small cell lung cancer. Front. Oncol. 2021 11 647559 10.3389/fonc.2021.647559 34150616
    [Google Scholar]
  109. Liu Y. Fassbender K. Deficiency of TLR4 ameliorates hypoperfusion-induced brain pathology. Theranostics 2018 8 22 6355 6356 10.7150/thno.30953 30613303
    [Google Scholar]
  110. Correction. JACC Cardiooncol 2024 6 2 329 10.1016/j.jaccao.2024.03.006 38774003
    [Google Scholar]
  111. Miao Z. Zhao X. Liu X. Hypoxia induced β-catenin lactylation promotes the cell proliferation and stemness of colorectal cancer through the wnt signaling pathway. Exp. Cell Res. 2023 422 1 113439 10.1016/j.yexcr.2022.113439 36464122
    [Google Scholar]
  112. Liu R. Ren X. Park Y.E. Feng H. Sheng X. Song X. AminiTabrizi, R.; Shah, H.; Li, L.; Zhang, Y.; Abdullah, K.G.; Dubois-Coyne, S.; Lin, H.; Cole, P.A.; DeBerardinis, R.J.; McBrayer, S.K.; Huang, H.; Zhao, Y. Nuclear GTPSCS functions as a lactyl-CoA synthetase to promote histone lactylation and gliomagenesis. Cell Metab. 2025 37 2 377 394.e9 10.1016/j.cmet.2024.11.005 39642882
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010415740251006000648
Loading
/content/journals/cpb/10.2174/0113892010415740251006000648
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Tumor microenvironment ; lactylation ; Immune cells ; Lactate ; Cancer therapy ; Immune evasion
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test