Skip to content
2000
image of Advances in the Mechanism and Applications of Stimulus-responsive DNA Hydrogels

Abstract

DNA hydrogels possess numerous unique and attractive features, including excellent biocompatibility and biodegradability, as well as inherent programmability, catalytic functionality, therapeutic potential, and precise molecular recognition and bonding capabilities. Furthermore, intelligent DNA hydrogels exhibit stimuli-responsive behaviors, transitioning between gel and sol states in response to various stimuli, including pH, temperature, enzymes, and others. Through intelligent, rational design and controlled preparation of DNA nanostructures, a broad spectrum of advanced applications has been realized. In this mini-review, we focus on recent developments in the construction strategies, molecular structures, and functional mechanisms of DNA hydrogels. Additionally, representative applications of stimuli-responsive DNA hydrogels are discussed. Finally, challenges and the future outlook of DNA hydrogels are proposed.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010374050250707181128
2025-07-24
2025-10-28
Loading full text...

Full text loading...

References

  1. Kouwer P.H.J. Koepf M. Le Sage V.A.A. Jaspers M. van Buul A.M. Eksteen-Akeroyd Z.H. Woltinge T. Schwartz E. Kitto H.J. Hoogenboom R. Picken S.J. Nolte R.J.M. Mendes E. Rowan A.E. Responsive biomimetic networks from polyisocyanopeptide hydrogels. Nature 2013 493 7434 651 655 10.1038/nature11839 23354048
    [Google Scholar]
  2. Shahbazi M.A. Bauleth-Ramos T. Santos H.A. DNA hydrogel assemblies: Bridging synthesis principles to biomedical applications. Adv. Ther. 2018 1 4 1800042 10.1002/adtp.201800042
    [Google Scholar]
  3. Zhao X. Zhao L. Xiao Q. Xiong H. Intermolecular hydrogen-bond interaction to promote thermoreversible 2′-deoxyuridine-based AIE-organogels. Chin. Chem. Lett. 2021 32 4 1363 1366 10.1016/j.cclet.2020.10.008
    [Google Scholar]
  4. Yang C. Suo Z. Hydrogel ionotronics. Nat. Rev. Mater. 2018 3 6 125 142 10.1038/s41578‑018‑0018‑7
    [Google Scholar]
  5. Appel E.A. del Barrio J. Loh X.J. Scherman O.A. Supramolecular polymeric hydrogels. Chem. Soc. Rev. 2012 41 18 6195 6214 10.1039/c2cs35264h 22890548
    [Google Scholar]
  6. Plamper F.A. Richtering W. Functional microgels and microgel systems. Acc. Chem. Res. 2017 50 2 131 140 10.1021/acs.accounts.6b00544 28186408
    [Google Scholar]
  7. Tam R.Y. Smith L.J. Shoichet M.S. Engineering cellular microenvironments with photo- and enzymatically responsive hydrogels: Toward biomimetic 3d cell culture models. Acc. Chem. Res. 2017 50 4 703 713 10.1021/acs.accounts.6b00543 28345876
    [Google Scholar]
  8. Liu P. Lin W. Wieduwild R. Towers R. Thomas A.K. Günther M. Butdayev S. Wobus M. Bornhäuser M. Zhang Y. Displaying lipid chains in a peptide-polysaccharide-based self-assembled hydrogel network. Chem. Mater. 2021 33 8 2756 2768 10.1021/acs.chemmater.0c04105
    [Google Scholar]
  9. Yao Y. Yin C. Hong S. Chen H. Shi Q. Wang J. Lu X. Zhou N. Lanthanide-ion-coordinated supramolecular hydrogel inks for 3d printed full-color luminescence and opacity-tuning soft actuators. Chem. Mater. 2020 32 20 8868 8876 10.1021/acs.chemmater.0c02448
    [Google Scholar]
  10. Kim K. Park Y.G. Hyun B.G. Choi M. Park J.U. Recent advances in transparent electronics with stretchable forms. Adv. Mater. 2019 31 20 1804690 10.1002/adma.201804690 30556173
    [Google Scholar]
  11. Ni C. Chen D. Zhang Y. Xie T. Zhao Q. Autonomous shapeshifting hydrogels via temporal programming of photoswitchable dynamic network. Chem. Mater. 2021 33 6 2046 2053 10.1021/acs.chemmater.0c04375
    [Google Scholar]
  12. Yang D. Recent advances in hydrogels. Chem. Mater. 2022 34 5 1987 1989 10.1021/acs.chemmater.2c00188
    [Google Scholar]
  13. Yu X. Zheng Y. Zhang H. Wang Y. Fan X. Liu T. Fast-recoverable, self-healable, and adhesive nanocomposite hydrogel consisting of hybrid nanoparticles for ultrasensitive strain and pressure sensing. Chem. Mater. 2021 33 15 6146 6157 10.1021/acs.chemmater.1c01595
    [Google Scholar]
  14. Wei H. Wang Z. Zhang H. Huang Y. Wang Z. Zhou Y. Xu B.B. Halila S. Chen J. Ultrastretchable, highly transparent, self-adhesive, and 3d-printable ionic hydrogels for multimode tactical sensing. Chem. Mater. 2021 33 17 6731 6742 10.1021/acs.chemmater.1c01246
    [Google Scholar]
  15. Wang W. Xiang L. Diaz-Dussan D. Zhang J. Yang W. Gong L. Chen J. Narain R. Zeng H. Dynamic flexible hydrogel network with biological tissue-like self-protective functions. Chem. Mater. 2020 32 24 10545 10555 10.1021/acs.chemmater.0c03526
    [Google Scholar]
  16. Tan Y. Zhang Y. Zhang Y. Zheng J. Wu H. Chen Y. Xu S. Yang J. Liu C. Zhang Y. Dual cross-linked ion-based temperature-responsive conductive hydrogels with multiple sensors and steady electrocardiogram monitoring. Chem. Mater. 2020 32 18 7670 7678 10.1021/acs.chemmater.0c01589
    [Google Scholar]
  17. Li R. Fan T. Chen G. Zhang K. Su B. Tian J. He M. Autonomous self-healing, antifreezing, and transparent conductive elastomers. Chem. Mater. 2020 32 2 874 881 10.1021/acs.chemmater.9b04592
    [Google Scholar]
  18. Jiang P. Lin P. Yang C. Qin H. Wang X. Zhou F. 3d printing of dual-physical cross-linking hydrogel with ultrahigh strength and toughness. Chem. Mater. 2020 32 23 9983 9995 10.1021/acs.chemmater.0c02941
    [Google Scholar]
  19. Li Y. Yang L. Zeng Y. Wu Y. Wei Y. Tao L. Self-healing hydrogel with a double dynamic network comprising imine and borate ester linkages. Chem. Mater. 2019 31 15 5576 5583 10.1021/acs.chemmater.9b01301
    [Google Scholar]
  20. Lee K.Y. Mooney D.J. Hydrogels for tissue engineering. Chem. Rev. 2001 101 7 1869 1880 10.1021/cr000108x 11710233
    [Google Scholar]
  21. Drury J.L. Mooney D.J. Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials 2003 24 24 4337 4351 10.1016/S0142‑9612(03)00340‑5 12922147
    [Google Scholar]
  22. Hu Y. Gao S. Lu H. Ying J.Y. Acid-resistant and physiological ph-responsive DNA hydrogel composed of a-motif and i-motif toward oral insulin delivery. J. Am. Chem. Soc. 2022 144 12 5461 5470 10.1021/jacs.1c13426 35312303
    [Google Scholar]
  23. Wan L. Chen Q. Liu J. Yang X. Huang J. Li L. Guo X. Zhang J. Wang K. Programmable self-assembly of DNA-protein hybrid hydrogel for enzyme encapsulation with enhanced biological stability. Biomacromolecules 2016 17 4 1543 1550 10.1021/acs.biomac.6b00233 27008186
    [Google Scholar]
  24. Hu Y. Liu J. Ke Y. Wang B. Lim J.Y.C. Dong Z. Long Y. Willner I. Oligo-adenine and cyanuric acid supramolecular DNA-based hydrogels exhibiting acid-resistance and physiological ph-responsiveness. ACS Appl. Mater. Interfaces 2024 16 22 29235 29247 10.1021/acsami.4c03834 38769743
    [Google Scholar]
  25. Li Y. Ding Y. Yang B. Cao T. Xu J. Dong Y. Chen Q. Xu L. Liu D. Reinforcing DNA supramolecular hydrogel with polymeric multiple-unit linker. CCS Chem. 2023 5 2 434 444 10.31635/ccschem.022.202101523
    [Google Scholar]
  26. Chen B. Mei L. Wang Y. Guo G. Advances in intelligent DNA nanomachines for targeted cancer therapy. Drug Discov. Today 2021 26 4 1018 1029 10.1016/j.drudis.2020.11.006 33217344
    [Google Scholar]
  27. Yang D. Hartman M.R. Derrien T.L. Hamada S. An D. Yancey K.G. Cheng R. Ma M. Luo D. DNA materials: Bridging nanotechnology and biotechnology. Acc. Chem. Res. 2014 47 6 1902 1911 10.1021/ar5001082 24884022
    [Google Scholar]
  28. Watson J.D. Crick F.H.C. The structure of DNA. Cold Spring Harb. Symp. Quant. Biol. 1953 18 0 123 131 10.1101/SQB.1953.018.01.020 13168976
    [Google Scholar]
  29. Harding S.E. Channell G. Phillips-Jones M.K. The discovery of hydrogen bonds in DNA and a re-evaluation of the 1948 Creeth two-chain model for its structure. Biochem. Soc. Trans. 2018 46 5 1171 1182 10.1042/BST20180158 30190332
    [Google Scholar]
  30. Tolosa S. Sansón J.A. Hidalgo A. Theoretical study of mechanisms for double proton transfer in adenine–uracil base pair via steered molecular dynamic simulations. J. Mol. Liq. 2018 265 487 495 10.1016/j.molliq.2018.06.018
    [Google Scholar]
  31. Guéron M. Leroy J.L. The i-motif in nucleic acids. Curr. Opin. Struct. Biol. 2000 10 3 326 331 10.1016/S0959‑440X(00)00091‑9 10851195
    [Google Scholar]
  32. Abou Assi H. Garavís M. González C. Damha M.J. i-Motif DNA: structural features and significance to cell biology. Nucleic Acids Res. 2018 46 16 8038 8056 10.1093/nar/gky735 30124962
    [Google Scholar]
  33. Hasuike E. Akimoto A.M. Kuroda R. Matsukawa K. Hiruta Y. Kanazawa H. Yoshida R. Reversible conformational changes in the parallel type G-quadruplex structure inside a thermoresponsive hydrogel. Chem. Commun. (Camb.) 2017 53 21 3142 3144 10.1039/C7CC00279C
    [Google Scholar]
  34. Phan A.T. Mergny J.L. Human telomeric DNA: G-quadruplex, i-motif and Watson-Crick double helix. Nucleic Acids Res. 2002 30 21 4618 4625 10.1093/nar/gkf597 12409451
    [Google Scholar]
  35. Huppert J.L. Balasubramanian S. G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res. 2007 35 2 406 413 10.1093/nar/gkl1057 17169996
    [Google Scholar]
  36. Hu Y. Cecconello A. Idili A. Ricci F. Willner I. Triplex DNA nanostructures: From basic properties to applications. Angew. Chem. Int. Ed. 2017 56 48 15210 15233 10.1002/anie.201701868 28444822
    [Google Scholar]
  37. Rhee S. Han Z. Liu K. Miles H.T. Davies D.R. Structure of a triple helical DNA with a triplex-duplex junction. Biochemistry 1999 38 51 16810 16815 10.1021/bi991811m 10606513
    [Google Scholar]
  38. Zhang Z.L. Wu Y.Y. Xi K. Sang J.P. Tan Z.J. Divalent ion-mediated DNA-DNA interactions: Acomparative study of triplex and duplex. Biophys. J. 2017 113 3 517 528 10.1016/j.bpj.2017.06.021 28793207
    [Google Scholar]
  39. Zhang Z. Liu Y. Liu P. Yang L. Jiang X. Luo D. Yang D. Non-invasive detection of gastric cancer relevant d -amino acids with luminescent DNA/silver nanoclusters. Nanoscale 2017 9 48 19367 19373 10.1039/C7NR07337B 29199749
    [Google Scholar]
  40. Li F. Dong Y. Zhang Z. Lv M. Wang Z. Ruan X. Yang D. A recyclable biointerface based on cross-linked branched DNA nanostructures for ultrasensitive nucleic acid detection. Biosens. Bioelectron. 2018 117 562 566 10.1016/j.bios.2018.06.053 29982127
    [Google Scholar]
  41. Li J. Yu J. Huang Y. Zhao H. Tian L. Highly stable and multiemissive silver nanoclusters synthesized in situ in a DNA hydrogel and their application for hydroxyl radical sensing. ACS Appl. Mater. Interfaces 2018 10 31 26075 26083 10.1021/acsami.8b09152 30001115
    [Google Scholar]
  42. Liao R. Yang P. Wu W. Luo D. Yang D. A DNA tracer system for hydrological environment investigations. Environ. Sci. Technol. 2018 52 4 1695 1703 10.1021/acs.est.7b02928 29361228
    [Google Scholar]
  43. Yang L. Yao C. Li F. Dong Y. Zhang Z. Yang D. Synthesis of branched DNA scaffolded super-nanoclusters with enhanced antibacterial performance. Small 2018 14 16 1800185 10.1002/smll.201800185 29575604
    [Google Scholar]
  44. Li F. Lyu D. Liu S. Guo W. DNA hydrogels and microgels for biosensing and biomedical applications. Adv. Mater. 2020 32 3 1806538 10.1002/adma.201806538 31379017
    [Google Scholar]
  45. Zhou L. Jiao X. Liu S. Hao M. Cheng S. Zhang P. Wen Y. Functional DNA-based hydrogel intelligent materials for biomedical applications. J. Mater. Chem. B Mater. Biol. Med. 2020 8 10 1991 2009 10.1039/C9TB02716E 32073097
    [Google Scholar]
  46. Li J. Mo L. Lu C.H. Fu T. Yang H.H. Tan W. Functional nucleic acid-based hydrogels for bioanalytical and biomedical applications. Chem. Soc. Rev. 2016 45 5 1410 1431 10.1039/C5CS00586H 26758955
    [Google Scholar]
  47. Wang C. O’Hagan M.P. Li Z. Zhang J. Ma X. Tian H. Willner I. Photoresponsive DNA materials and their applications. Chem. Soc. Rev. 2022 51 2 720 760 10.1039/D1CS00688F 34985085
    [Google Scholar]
  48. Wang C. Willner B. Willner I. Redox-responsive and light-responsive DNA-based hydrogels and their applications. React. Funct. Polym. 2021 166 104983 10.1016/j.reactfunctpolym.2021.104983
    [Google Scholar]
  49. Ma X. Yang Z. Wang Y. Zhang G. Shao Y. Jia H. Cao T. Wang R. Liu D. Remote controlling DNA hydrogel by magnetic field. ACS Appl. Mater. Interfaces 2017 9 3 1995 2000 10.1021/acsami.6b12327 28054768
    [Google Scholar]
  50. Iqbal S. Ahmed F. Xiong H. Responsive-DNA hydrogel based intelligent materials: Preparation and applications. Chem. Eng. J. 2021 420 130384 10.1016/j.cej.2021.130384
    [Google Scholar]
  51. Hu Y. Guo W. Kahn J.S. Aleman-Garcia M.A. Willner I. A shape-memory DNA-based hydrogel exhibiting two internal memories. Angew. Chem. Int. Ed. 2016 55 13 4210 4214 10.1002/anie.201511201 26915713
    [Google Scholar]
  52. Vázquez-González M. Willner I. Stimuli-responsive biomolecule-based hydrogels and their applications. Angew. Chem. Int. Ed. 2020 59 36 15342 15377 10.1002/anie.201907670 31730715
    [Google Scholar]
  53. Shao Y. Jia H. Cao T. Liu D. Supramolecular hydrogels based on dna self-assembly. Acc. Chem. Res. 2017 50 4 659 668 10.1021/acs.accounts.6b00524 28299927
    [Google Scholar]
  54. Chen J. Zhu Y. Liu H. Wang L. Tailoring DNA self-assembly to build hydrogels. Top. Curr. Chem. 2020 378 2 32 10.1007/s41061‑020‑0295‑7 32146604
    [Google Scholar]
  55. Lima C.S.A. Balogh T.S. Varca J.P.R.O. Varca G.H.C. Lugão A.B. Camacho-Cruz A. L.; Bucio, E.; Kadlubowski, S.S. An updated review of macro, micro, and nanostructured hydrogels for biomedical and pharmaceutical applications. Pharmaceutics 2020 12 10 970 10.3390/pharmaceutics12100970 33076231
    [Google Scholar]
  56. Li F. Tang J. Geng J. Luo D. Yang D. Polymeric DNA hydrogel: Design, synthesis and applications. Prog. Polym. Sci. 2019 98 101163 10.1016/j.progpolymsci.2019.101163
    [Google Scholar]
  57. Xu N. Ma N. Yang X. Ling G. Yu J. Zhang P. Preparation of intelligent DNA hydrogel and its applications in biosensing. Eur. Polym. J. 2020 137 109951 10.1016/j.eurpolymj.2020.109951
    [Google Scholar]
  58. Zhang X. Yan W. Song Z. Asif S. Hussain I. Xiao C. Chen X. DNA nanogel for cancer therapy. Adv. Ther. 2023 6 4 2200287 10.1002/adtp.202200287
    [Google Scholar]
  59. Yang P.P. Zhang K. He P.P. Fan Y. Gao X.J. Gao X. Chen Z.M. Hou D.Y. Li Y. Yi Y. Cheng D.B. Zhang J.P. Shi L. Zhang X.Z. Wang L. Wang H. A biomimetic platelet based on assembling peptides initiates artificial coagulation. Sci. Adv. 2020 6 22 eaaz4107 10.1126/sciadv.aaz4107 32766439
    [Google Scholar]
  60. Zhao L. Li L. Yang G. Wei B. Ma Y. Qu F. Aptamer functionalized DNA hydrogels: Design, applications and kinetics. Biosens. Bioelectron. 2021 194 113597 10.1016/j.bios.2021.113597 34534951
    [Google Scholar]
  61. Jian X. Feng X. Luo Y. Li F. Tan J. Yin Y. Liu Y. Development, preparation and biomedical applications of DNA-based hydrogels. Front. Bioeng. Biotechnol. 2021 9 661409 10.3389/fbioe.2021.661409 34150729
    [Google Scholar]
  62. Hivare P. Gangrade A. Swarup G. Bhavsar K. Singh A. Gupta R. Thareja P. Gupta S. Bhatia D. Peptide functionalized DNA hydrogel enhances neuroblastoma cell growth and differentiation. Nanoscale 2022 14 24 8611 8620 10.1039/D1NR07187D 35687044
    [Google Scholar]
  63. Yang Z.H. Zhuo Y. Yuan R. Chai Y.Q. Amplified impedimetric aptasensor combining target-induced DNA hydrogel formation with pH-stimulated signal amplification for the heparanase assay. Nanoscale 2017 9 7 2556 2562 10.1039/C6NR08353F 28150826
    [Google Scholar]
  64. Sontakke V.A. Yokobayashi Y. Programmable macroscopic self-assembly of DNA-decorated hydrogels. J. Am. Chem. Soc. 2022 144 5 2149 2155 10.1021/jacs.1c10308 35098709
    [Google Scholar]
  65. Cheng E. Xing Y. Chen P. Yang Y. Sun Y. Zhou D. Xu L. Fan Q. Liu D. A pH-triggered, fast-responding DNA hydrogel. Angew. Chem. Int. Ed. 2009 48 41 7660 7663 10.1002/anie.200902538 19739155
    [Google Scholar]
  66. Fu X. Chen T. Song Y. Feng C. Chen H. Zhang Q. Chen G. Zhu X. mRNA Delivery by a pH-Responsive DNA Nano-Hydrogel. Small 2021 17 29 2101224 10.1002/smll.202101224 34145748
    [Google Scholar]
  67. Yang B. Zhao Z. Pan Y. Xie J. Zhou B. Li Y. Dong Y. Liu D. Shear-thinning and designable responsive supramolecular DNA hydrogels based on chemically branched DNA. ACS Appl. Mater. Interfaces 2021 13 41 48414 48422 10.1021/acsami.1c15494 34633793
    [Google Scholar]
  68. Ma Y. He S. Huang J. DNA hydrogels as selective biomaterials for specifically capturing DNA, protein and bacteria. Acta Biomater. 2022 147 158 167 10.1016/j.actbio.2022.05.023 35584747
    [Google Scholar]
  69. Ko O. Han S. Lee J.B. Selective release of DNA nanostructures from DNA hydrogel. J. Ind. Eng. Chem. 2020 84 46 51 10.1016/j.jiec.2020.01.005
    [Google Scholar]
  70. Morya V. Bhatia D.D. Ghoroi C. 2d mxene-DNA hybrid hydrogel for thrombin detection: A versatile approach for biomedical sensing. bioRxiv 2024 10.1101/2024.04.24.590924
    [Google Scholar]
  71. Hu X. Nian G. Liang X. Wu L. Yin T. Lu H. Qu S. Yang W. Adhesive tough magnetic hydrogels with high fe3o4 content. ACS Appl. Mater. Interfaces 2019 11 10 10292 10300 10.1021/acsami.8b20937 30773877
    [Google Scholar]
  72. English M.A. Soenksen L.R. Gayet R.V. de Puig H. Angenent-Mari N.M. Mao A.S. Nguyen P.Q. Collins J.J. Programmable CRISPR-responsive smart materials. Science 2019 365 6455 780 785 10.1126/science.aaw5122 31439791
    [Google Scholar]
  73. Peng L. You M. Yuan Q. Wu C. Han D. Chen Y. Zhong Z. Xue J. Tan W. Macroscopic volume change of dynamic hydrogels induced by reversible DNA hybridization. J. Am. Chem. Soc. 2012 134 29 12302 12307 10.1021/ja305109n 22742418
    [Google Scholar]
  74. Hong C.A. Park J.C. Na H. Jeon H. Nam Y.S. Short DNA-catalyzed formation of quantum dot-DNA hydrogel for enzyme-free femtomolar specific DNA assay. Biosens. Bioelectron. 2021 182 113110 10.1016/j.bios.2021.113110 33812283
    [Google Scholar]
  75. Zhang H. Ba S. Lee J.Y. Xie J. Loh T.P. Li T. Cancer biomarker-triggered disintegrable DNA nanogels for intelligent drug delivery. Nano Lett. 2020 20 11 8399 8407 10.1021/acs.nanolett.0c03671 33118827
    [Google Scholar]
  76. Lyu D. Chen S. Guo W. Liposome crosslinked polyacrylamide/DNA hydrogel: A smart controlled-release system for small molecular payloads. Small 2018 14 15 1704039 10.1002/smll.201704039 29479856
    [Google Scholar]
  77. Du X. Xing Y. Li Y. Cao M. Wu J. Dong G. Shi Z. Wei X. Qiu M. Gao J. Xu Y. Xu H. Liu D. Dong Y. Gradually self-strengthen DNA supramolecular hydrogels. Macromol. Rapid Commun. 2024 45 16 2400177 10.1002/marc.202400177 38636558
    [Google Scholar]
  78. Tanaka S. Wakabayashi K. Fukushima K. Yukami S. Maezawa R. Takeda Y. Tatsumi K. Ohya Y. Kuzuya A. Intelligent, biodegradable, and self-healing hydrogels utilizing DNA quadruplexes. Chem. Asian J. 2017 12 18 2388 2392 10.1002/asia.201701066 28777486
    [Google Scholar]
  79. Topuz F. Thermoresponsive DNA hydrogels through hydrophilic pre-polymer cross-linker and self-assembly. J. Mol. Liq. 2023 391 123209 10.1016/j.molliq.2023.123209
    [Google Scholar]
  80. Parvez A. Baum D.A. DNA aptamers that bind to alginate hydrogels. ACS Biomater. Sci. Eng. 2024 10 12 7507 7515 10.1021/acsbiomaterials.4c01436 39570116
    [Google Scholar]
  81. Chen F. He Y. Li Z. Xu B. Ye Q. Li X. Ma Z. Song W. Zhang Y. A novel tunable, highly biocompatible and injectable DNA-chitosan hybrid hydrogel fabricated by electrostatic interaction between chitosan and DNA backbone. Int. J. Pharm. 2021 606 120938 10.1016/j.ijpharm.2021.120938 34310955
    [Google Scholar]
  82. Zhang L. Jean S.R. Ahmed S. Aldridge P.M. Li X. Fan F. Sargent E.H. Kelley S.O. Multifunctional quantum dot DNA hydrogels. Nat. Commun. 2017 8 1 381 10.1038/s41467‑017‑00298‑w 28851869
    [Google Scholar]
  83. Fujita S. Hara S. Hosono A. Sugihara S. Uematsu H. Suye S. Hyaluronic acid hydrogel crosslinked with complementary dnas. Adv. Polym. Technol. 2020 2020 1 7 10.1155/2020/1470819
    [Google Scholar]
  84. Kim M.G. Shon Y. Miao W. Lee J. Oh Y.K. Biodegradable graphene oxide and polyaptamer DNA hybrid hydrogels for implantable drug delivery. Carbon 2016 105 14 22 10.1016/j.carbon.2016.04.014
    [Google Scholar]
  85. Finke A. Schneider A.K. Spreng A.S. Leist M. Niemeyer C.M. Marx A. Functionalized DNA hydrogels produced by polymerase-catalyzed incorporation of non-natural nucleotides as a surface coating for cell culture applications. Adv. Healthc. Mater. 2019 8 9 1900080 10.1002/adhm.201900080 30861332
    [Google Scholar]
  86. Beyer S. Nickels P. Simmel F.C. Periodic DNA nanotemplates synthesized by rolling circle amplification. Nano Lett. 2005 5 4 719 722 10.1021/nl050155a 15826115
    [Google Scholar]
  87. Li C. Wang Y. Li P.F. Fu Q. Construction of rolling circle amplification products-based pure nucleic acid nanostructures for biomedical applications. Acta Biomater. 2023 160 1 13 10.1016/j.actbio.2023.02.005 36764595
    [Google Scholar]
  88. Lee J.B. Peng S. Yang D. Roh Y.H. Funabashi H. Park N. Rice E.J. Chen L. Long R. Wu M. Luo D. A mechanical metamaterial made from a DNA hydrogel. Nat. Nanotechnol. 2012 7 12 816 820 10.1038/nnano.2012.211 23202472
    [Google Scholar]
  89. Lin Y. Huang Y. Yang Y. Jiang L. Xing C. Li J. Lu C. Yang H. Functional self-assembled DNA nanohydrogels for specific telomerase activity imaging and telomerase-activated antitumor gene therapy. Anal. Chem. 2020 92 22 15179 15186 10.1021/acs.analchem.0c03746 33112598
    [Google Scholar]
  90. Li J. Zheng C. Cansiz S. Wu C. Xu J. Cui C. Liu Y. Hou W. Wang Y. Zhang L. Teng I. Yang H.H. Tan W. Self-assembly of DNA nanohydrogels with controllable size and stimuli-responsive property for targeted gene regulation therapy. J. Am. Chem. Soc. 2015 137 4 1412 1415 10.1021/ja512293f 25581100
    [Google Scholar]
  91. Yin M. Zhang Y. Liang H. Liu C. Bi Y. Sun J. Guo W. Smart free-standing bilayer polyacrylamide/DNA hybrid hydrogel film-based sensing system using changes in bending angles as a visual signal readout. Anal. Chem. 2024 96 13 5215 5222 10.1021/acs.analchem.3c05562 38506337
    [Google Scholar]
  92. Yang S. Pan X. Tang J. Yao C. Yang D. Lanthanide-DNA supramolecular hydrogels with tunable and responsive luminescence. Sci. China Technol. Sci. 2022 65 5 1043 1051 10.1007/s11431‑021‑1975‑9
    [Google Scholar]
  93. Uzumcu A.T. Guney O. Okay O. Nanocomposite DNA hydrogels with temperature sensitivity. Polymer 2016 100 169 178 10.1016/j.polymer.2016.08.041
    [Google Scholar]
  94. Zhou H.Y. Jiang L.J. Cao P.P. Li J.B. Chen X.G. Glycerophosphate-based chitosan thermosensitive hydrogels and their biomedical applications. Carbohydr. Polym. 2015 117 524 536 10.1016/j.carbpol.2014.09.094 25498667
    [Google Scholar]
  95. Song J. He W. Shen H. Zhou Z. Li M. Su P. Yang Y. Self-assembly of a magnetic DNA hydrogel as a new biomaterial for enzyme encapsulation with enhanced activity and stability. Chem. Commun. (Camb.) 2019 55 17 2449 2452 10.1039/C8CC09717H 30734040
    [Google Scholar]
  96. Chu B. Zhang D. Paukstelis P.J.A. DNA G-quadruplex/i-motif hybrid. Nucleic Acids Res. 2019 47 22 gkz1008 10.1093/nar/gkz1008 31724696
    [Google Scholar]
  97. Morya V. Shukla A.K. Ghoroi C. Bhatia D. Ph-responsive and reversible a-motif-based DNA hydrogel: Synthesis and biosensing application. ChemBioChem 2023 24 10 e202300067 10.1002/cbic.202300067 36862065
    [Google Scholar]
  98. Ren J. Hu Y. Lu C.H. Guo W. Aleman-Garcia M.A. Ricci F. Willner I. pH-responsive and switchable triplex-based DNA hydrogels. Chem. Sci. (Camb.) 2015 6 7 4190 4195 10.1039/C5SC00594A 29218185
    [Google Scholar]
  99. Lee S.R. Ong C.Y.J. Wong J.Y. Ke Y. Lim J.Y.C. Dong Z. Long Y. Hu Y. Programming the assembly of oligo-adenine with coralyne into a ph-responsive DNA hydrogel. ACS Appl. Mater. Interfaces 2024 16 12 15394 15404 10.1021/acsami.4c01678 38489480
    [Google Scholar]
  100. Zhang J. Guo Y. Pan G. Wang P. Li Y. Zhu X. Zhang C. Injectable drug-conjugated DNA hydrogel for local chemotherapy to prevent tumor recurrence. ACS Appl. Mater. Interfaces 2020 12 19 21441 21449 10.1021/acsami.0c03360 32314901
    [Google Scholar]
  101. Xing Y. Cheng E. Yang Y. Chen P. Zhang T. Sun Y. Yang Z. Liu D. Self-assembled DNA hydrogels with designable thermal and enzymatic responsiveness. Adv. Mater. 2011 23 9 1117 1121 10.1002/adma.201003343 21181766
    [Google Scholar]
  102. Zhang R. Lv Z. Chang L. Wang J. Tang J. Wang Z. Li S. Guo J. Yao C. Yang D. A responsive DNA hydrogel containing poly-aptamers as dual-target inhibitors for localized cancer immunotherapy. Adv. Funct. Mater. 2024 34 32 2401563 10.1002/adfm.202401563
    [Google Scholar]
  103. Liang X. Asanuma H. Komiyama M. Photoregulation of DNA triplex formation by azobenzene. J. Am. Chem. Soc. 2002 124 9 1877 1883 10.1021/ja011988f 11866598
    [Google Scholar]
  104. Li Z. Davidson-Rozenfeld G. Vázquez-González M. Fadeev M. Zhang J. Tian H. Willner I. Multi-triggered supramolecular DNA/bipyridinium dithienylethene hydrogels driven by light, redox, and chemical stimuli for shape-memory and self-healing applications. J. Am. Chem. Soc. 2018 140 50 17691 17701 10.1021/jacs.8b10481 30452256
    [Google Scholar]
  105. Kandatsu D. Cervantes-Salguero K. Kawamata I. Hamada S. Nomura S.M. Fujimoto K. Murata S. Reversible gel-sol transition of a photo-responsive DNA gel. ChemBioChem 2016 17 12 1118 1121 10.1002/cbic.201600088 27123549
    [Google Scholar]
  106. Si Y. Xu L. Wang N. Zheng J. Yang R. Li J. Target microrna-responsive DNA hydrogel-based surface-enhanced raman scattering sensor arrays for microrna-marked cancer screening. Anal. Chem. 2020 92 3 2649 2655 10.1021/acs.analchem.9b04606 31920078
    [Google Scholar]
  107. Sun Y. Li S. Chen R. Wu P. Liang J. Ultrasensitive and rapid detection of T-2 toxin using a target-responsive DNA hydrogel. Sens. Actuators B Chem. 2020 311 127912 10.1016/j.snb.2020.127912
    [Google Scholar]
  108. Oh J. Yang J.C. Kim J.O. Park H. Kwon S.Y. Lee S. Sim J.Y. Oh H.W. Kim J. Park S. Pressure insensitive strain sensor with facile solution-based process for tactile sensing applications. ACS Nano 2018 12 8 7546 7553 10.1021/acsnano.8b03488 29995382
    [Google Scholar]
  109. Ayoubi-Joshaghani M.H. Seidi K. Azizi M. Jaymand M. Javaheri T. Jahanban-Esfahlan R. Hamblin M.R. Potential applications of advanced nano/hydrogels in biomedicine: Static, dynamic, multi-stage, and bioinspired. Adv. Funct. Mater. 2020 30 45 2004098 10.1002/adfm.202004098
    [Google Scholar]
  110. Lallemang M. Akintayo C.O. Wenzel C. Chen W. Sielaff L. Ripp A. Jessen H.J. Balzer B.N. Walther A. Hugel T. Hierarchical mechanical transduction of precision-engineered DNA hydrogels with sacrificial bonds. ACS Appl. Mater. Interfaces 2023 15 51 59714 59721 10.1021/acsami.3c15135 38095074
    [Google Scholar]
  111. Wiraja C. Siantoputri M.E. Liu S. Shum H.C. Xu C. Unraveling framework nucleic acid-skin cell interactions with a co-culture system. Adv. Biosyst. 2020 4 1 1900169 10.1002/adbi.201900169 32293123
    [Google Scholar]
  112. Wiraja C. Zhu Y. Lio D.C.S. Yeo D.C. Xie M. Fang W. Li Q. Zheng M. Van Steensel M. Wang L. Fan C. Xu C. Framework nucleic acids as programmable carrier for transdermal drug delivery. Nat. Commun. 2019 10 1 1147 10.1038/s41467‑019‑09029‑9 30850596
    [Google Scholar]
  113. Shen F. Sun L. Wang L. Peng R. Fan C. Liu Z. Framework nucleic acid immune adjuvant for transdermal delivery based chemo-immunotherapy for malignant melanoma treatment. Nano Lett. 2022 22 11 4509 4518 10.1021/acs.nanolett.2c01332 35594186
    [Google Scholar]
  114. Song W. Song P. Sun Y. Zhang Z. Zhou H. Zhang X. He P. Self-assembly of multifunctional DNA nanohydrogels with tumor microenvironment-responsive cascade reactions for cooperative cancer therapy. ACS Biomater. Sci. Eng. 2021 7 11 5165 5174 10.1021/acsbiomaterials.1c00959 34704735
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010374050250707181128
Loading
/content/journals/cpb/10.2174/0113892010374050250707181128
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: hydrogels ; transdermal ; delivery ; DNA ; stimuli-responsive ; application
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test