Skip to content
2000
image of PhytoCAT: A Comprehensive Data Repository of PhytoChemicals for Affordable Breast Cancer Therapeutics

Abstract

Introduction

Breast cancer is a global health challenge with a high mortality rate of 30% of total cases in a year. Breast cancer presents in 4 main types, namely, TNBC, HER2+, luminal A, and Luminal B. Current treatments, though not without side effects, incur substantial cost, and are rendered ineffective by rising drug resistance. Phytochemicals are being investigated for their beneficial effects on breast cancer. Systematically collecting, organizing, and analyzing this data from available literature could benefit the development of more potent chemopreventive and chemotherapeutic approaches with reduced side effects.

Methods

To overcome the challenges posed by diverse naming practices, we adopted a sentiment (subjective) based text-mining approach to systematically extract and analyze data on anti-breast cancer phytochemicals from biomedical literature. This method is based on anchor and associated terms to capture authors’ sentiments regarding the therapeutic potential of these compounds. Subsequently, comprehensive and objective information was extracted and curated for each phytochemical, including target genes, pathways, study type, IC50 values, PMIDs, plant sources, and geographical availability.

Results

PhytoCAT (PhytoChemical Affordable Therapeutics for Breast Cancer) is a comprehensive database of phytochemicals, plant extracts, and essential oils, enriched with links to phytogeographic data and chemical structures. PhytoCAT includes data on 28 essential oils, 470 plant extracts, and 1,649 phytochemical compounds. These compounds were classified into several chemical groups, including alkaloids (167), coumarins (43), flavonoids (290), lignans (47), quinones (43), saponins (27), sesquiterpenoid lactones (40), terpenoids (282), triterpenoid saponins (28), and xanthones (22) groups. Additionally, 505 phytochemicals belong to other subclasses such as esters, glucosides, phenanthrenes, and phenylpropanoids. Further, information on their mechanisms of action is also provided.

Discussion

Phytochemicals have gained significant attention in recent years because of their potential health benefits, particularly in the prevention and treatment of various diseases, including cancer. Compounds such as curcumin, resveratrol, and epigallocatechin gallate (EGCG) are examples of phytochemicals that have shown promise in preclinical studies. PhytoCAT offers a centralized and searchable database enriched with biological, chemical, and pharmacological details. Its structured presentation allows researchers to identify promising compounds and study patterns in chemical class-specific activity.

Conclusion

PhytoCAT provides an evidence-based platform for researchers and clinicians to explore the potential of phytochemicals in breast cancer management. Although PhytoCAT has an advanced search engine, it lacks analytical tools, which we envisage integrating in the future. future. (https://phytocat.igib.res.in/)

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010399400250903074949
2025-09-26
2026-02-02
Loading full text...

Full text loading...

References

  1. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  2. Konduri S. Singh M. Bobustuc G. Rovin R. Kassam A. Epidemiology of male breast cancer. Breast 2020 54 8 14 10.1016/j.breast.2020.08.010 32866903
    [Google Scholar]
  3. Morrow M. Identification of the woman at risk for breast cancer: problem solved? Recent Results Cancer Res. 1999 151 85 95 10.1007/978‑3‑642‑59945‑3_6 10337720
    [Google Scholar]
  4. Hashemi S.H.B. Karimi S. Mahboobi H. Lifestyle changes for prevention of breast cancer. Electron. Physician 2014 6 3 894 905 10.14661/2014.894‑905 25763165
    [Google Scholar]
  5. Arnold M. Morgan E. Rumgay H. Mafra A. Singh D. Laversanne M. Vignat J. Gralow J.R. Cardoso F. Siesling S. Soerjomataram I. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast 2022 66 15 23 10.1016/j.breast.2022.08.010 36084384
    [Google Scholar]
  6. 2025 Breast cancer Available from: https://www.who.int/news-room/fact-sheets/detail/breast-cancer
  7. Onitilo A.A. Engel J.M. Greenlee R.T. Mukesh B.N. Breast cancer subtypes based on ER/PR and Her2 expression: comparison of clinicopathologic features and survival. Clin. Med. Res. 2009 7 1-2 4 13 10.3121/cmr.2008.825 19574486
    [Google Scholar]
  8. Moo T.A. Sanford R. Dang C. Morrow M. Overview of breast cancer therapy. PET Clin. 2018 13 3 339 354 10.1016/j.cpet.2018.02.006 30100074
    [Google Scholar]
  9. Nounou M.I. ElAmrawy F. Ahmed N. Abdelraouf K. Goda S. Syed-Sha-Qhattal H. Breast Cancer: Conventional diagnosis and treatment modalities and recent patents and technologies. Breast Cancer (Auckl), 2015 9s2, BCBCR.S29420. 10.4137/BCBCR.S29420 26462242
    [Google Scholar]
  10. Kumar A. P, N.; Kumar, M.; Jose, A.; Tomer, V.; Oz, E.; Proestos, C.; Zeng, M.; Elobeid, T.; K, S.; Oz, F. Major phytochemicals: Recent advances in health benefits and extraction method. Molecules 2023 28 2 887 10.3390/molecules28020887 36677944
    [Google Scholar]
  11. Surguchov A. Bernal L. Surguchev A.A. Phytochemicals as regulators of genes involved in synucleinopathies. Biomolecules 2021 11 5 624 10.3390/biom11050624 33922207
    [Google Scholar]
  12. George B.P. Chandran R. Abrahamse H. Role of phytochemicals in cancer chemoprevention: Insights. Antioxidants 2021 10 9 1455 10.3390/antiox10091455 34573087
    [Google Scholar]
  13. Eghbaliferiz S. Iranshahi M. Prooxidant activity of polyphenols, flavonoids, anthocyanins and carotenoids: Updated review of mechanisms and catalyzing metals. Phytother. Res. 2016 30 9 1379 1391 10.1002/ptr.5643 27241122
    [Google Scholar]
  14. Kocyigit A. Role of Antioxidant Phytochemicals in Prevention, Formation, and Treatment of Cancer In: Reactive Oxygen Species (ROS) in Living Cells; IntechOpen, 2017 10.5772/intechopen.72217
    [Google Scholar]
  15. Hashem S. Ali T.A. Akhtar S. Nisar S. Sageena G. Ali S. Al-Mannai S. Therachiyil L. Mir R. Elfaki I. Mir M.M. Jamal F. Masoodi T. Uddin S. Singh M. Haris M. Macha M. Bhat A.A. Targeting cancer signaling pathways by natural products: Exploring promising anti-cancer agents. Biomed. Pharmacother. 2022 150 113054 10.1016/j.biopha.2022.113054 35658225
    [Google Scholar]
  16. Rizeq B. Gupta I. Ilesanmi J. AlSafran M. Rahman M.D.M. Ouhtit A. The power of phytochemicals combination in cancer chemoprevention. J. Cancer 2020 11 15 4521 4533 10.7150/jca.34374 32489469
    [Google Scholar]
  17. Veeresham C. Natural products derived from plants as a source of drugs. J. Adv. Pharm. Technol. Res. 2012 3 4 200 201 10.4103/2231‑4040.104709 23378939
    [Google Scholar]
  18. Beutler J.A. Natural products as a foundation for drug discovery. Curr. Protoc Pharmacol., 2009 46, 9.11. 10.1002/0471141755.ph0911s46
    [Google Scholar]
  19. Dhyani P. Quispe C. Sharma E. Bahukhandi A. Sati P. Attri D.C. Szopa A. Sharifi-Rad J. Docea A.O. Mardare I. Calina D. Cho W.C. Anticancer potential of alkaloids: a key emphasis to colchicine, vinblastine, vincristine, vindesine, vinorelbine and vincamine. Cancer Cell Int. 2022 22 1 206 10.1186/s12935‑022‑02624‑9 35655306
    [Google Scholar]
  20. Mangal M. Sagar P. Singh H. Raghava G.P.S. Agarwal S.M. NPACT: Naturally occurring plant-based anti-cancer compound-activity-target database. Nucleic Acids Res. 2013 41 D1 D1124 D1129 10.1093/nar/gks1047 23203877
    [Google Scholar]
  21. Mohanraj K. Karthikeyan B.S. Vivek-Ananth R.P. Chand R.P.B. Aparna S.R. Mangalapandi P. Samal A. IMPPAT: A curated database of Indian Medicinal Plants, Phytochemistry And Therapeutics. Sci. Rep. 2018 8 1 4329 10.1038/s41598‑018‑22631‑z 29531263
    [Google Scholar]
  22. Tan X. Fu J. Yuan Z. Zhu L. Fu L. ACNPD: The database for elucidating the relationships between natural products, compounds, molecular mechanisms, and cancer types. Front. Pharmacol. 2021 12 746067 10.3389/fphar.2021.746067 34497528
    [Google Scholar]
  23. Rani J. Shah A.R. Ramachandran S. pubmed.mineR: An R package with text-mining algorithms to analyse PubMed abstracts. J. Biosci. 2015 40 4 671 682 10.1007/s12038‑015‑9552‑2 26564970
    [Google Scholar]
  24. Sayers E.W. Bolton E.E. Brister J.R. Canese K. Chan J. Comeau D.C. Connor R. Funk K. Kelly C. Kim S. Madej T. Marchler-Bauer A. Lanczycki C. Lathrop S. Lu Z. Thibaud-Nissen F. Murphy T. Phan L. Skripchenko Y. Tse T. Wang J. Williams R. Trawick B.W. Pruitt K.D. Sherry S.T. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2022 50 D1 D20 D26 10.1093/nar/gkab1112 34850941
    [Google Scholar]
  25. Tailor N.K. Lee H.B. Sharma M. Effective melanoma inhibition by synthetic pentacyclic triterpenoid 2-(3-phenylprop-2-en-1-ylidene)-22β-hydroxy-3-oxoolean-12-en-28-oic acid: An in vitro and in vivo study. J. Environ. Pathol. Toxicol. Oncol. 2013 32 1 59 72 10.1615/JEnvironPatholToxicolOncol.2013007125 23758153
    [Google Scholar]
  26. Bhargav A. Gupta S. Seth S. James S. Fatima F. Chaurasia P. Ramachandran S. Knowledgebase of potential multifaceted solutions to antimicrobial resistance. Comput. Biol. Chem. 2022 101 107772 10.1016/j.compbiolchem.2022.107772 36155273
    [Google Scholar]
  27. Silge J. Robinson D. tidytext: Text mining and analysis using tidy data principles in R. J. Open Source Softw. 2016 1 3 37 10.21105/joss.00037
    [Google Scholar]
  28. Feinerer I. Hornik K. Meyer D. Text mining infrastructure in R. J. Stat. Softw. 2008 25 5 1 54 10.18637/jss.v025.i05
    [Google Scholar]
  29. Kim S. Thiessen P.A. Bolton E.E. Chen J. Fu G. Gindulyte A. Han L. He J. He S. Shoemaker B.A. Wang J. Yu B. Zhang J. Bryant S.H. PubChem substance and compound databases. Nucleic Acids Res. 2016 44 D1 D1202 D1213 10.1093/nar/gkv951 26400175
    [Google Scholar]
  30. Plants of the World Online Plants of the World Online 2025 Available from: https://powo.science.kew.org/results
  31. Grinberg M. Flask web development. 1st ed Sebastopol, CA O’Reilly 2014
    [Google Scholar]
  32. Van Rossum G. Drake F.L. Python 3 Reference Manual. Scotts Valley, CA CreateSpace 2009
    [Google Scholar]
  33. Taxonomy Browser Taxonomy Browser. 2025 Available from: https://www.ncbi.nlm.nih.gov/datasets/taxonomy/tree/
  34. Sohel M. Aktar S. Biswas P. Amin M.A. Hossain M.A. Ahmed N. Mim M.I.H. Islam F. Mamun A.A. Exploring the anti‐cancer potential of dietary phytochemicals for the patients with breast cancer: A comprehensive review. Cancer Med. 2023 12 13 14556 14583 10.1002/cam4.5984 37132286
    [Google Scholar]
  35. Xiao X. Ao M. Xu F. Li X. Hu J. Wang Y. Li D. Zhu X. Xin C. Shi W. Effect of matrine against breast cancer by downregulating the vascular endothelial growth factor via the Wnt/β catenin pathway. Oncol. Lett. 2017 15 2 1691 1697 10.3892/ol.2017.7519 29434864
    [Google Scholar]
  36. Wang P. Yuan H.H. Zhang X. Li Y.P. Shang L.Q. Yin Z. Novel lycorine derivatives as anticancer agents: synthesis and in vitro biological evaluation. Molecules 2014 19 2 2469 2480 10.3390/molecules19022469 24566315
    [Google Scholar]
  37. Sivakumaran N. Samarakoon S.R. Adhikari A. Ediriweera M.K. Tennekoon K.H. Malavige N. Thabrew I. Shrestha R.L.S. Cytotoxic and apoptotic effects of govaniadine isolated from corydalis govaniana wall. Biomed Res. Int. 2018 2018 3171348 10.1155/2018/3171348
    [Google Scholar]
  38. Kim S. Lee T.J. Leem J. Choi K.S. Park J.W. Kwon T.K. Sanguinarine-induced apoptosis: Generation of ROS, down-regulation of Bcl-2, c-FLIP, and synergy with TRAIL. J. Cell. Biochem. 2008 104 3 895 907 10.1002/jcb.21672 18189268
    [Google Scholar]
  39. Su K. Hu P. Wang X. Kuang C. Xiang Q. Yang F. Xiang J. Zhu S. Wei L. Zhang J. Tumor suppressor berberine binds VASP to inhibit cell migration in basal-like breast cancer. Oncotarget 2016 7 29 45849 45862 10.18632/oncotarget.9968 27322681
    [Google Scholar]
  40. Liu G. Liu Z. Yan Y. Wang H. Effect of fraxetin on proliferation and apoptosis in breast cancer cells. Oncol. Lett. 2017 14 6 7374 7378 10.3892/ol.2017.7143 29344176
    [Google Scholar]
  41. Santoro M. Guido C. De Amicis F. Sisci D. Cione E. Vincenza D. Donà A. Panno M.L. Aquila S. Bergapten induces metabolic reprogramming in breast cancer cells. Oncol. Rep. 2016 35 1 568 576 10.3892/or.2015.4327 26459431
    [Google Scholar]
  42. Cheriyamundath S. Raghavan R. Banerji A. Klika K.D. Ulrich C. Owen R.W. Madassery J. Bioassay-guided isolation and evaluation of antiproliferative effects of (Z)-Ethylidene-4, 6-dimethoxycoumaran-3-one from pogostemon quadrifolius (benth.). Asian Pac. J. Cancer Prev. 2017 18 7 1783 1790 10.22034/APJCP.2017.18.7.1783 28749106
    [Google Scholar]
  43. Arbab I.A. Abdul A.B. Sukari M.A. Abdullah R. Syam S. Kamalidehghan B. Ibrahim M.Y. Taha M.M.E. Abdelwahab S.I. Mohd Ali H. Mohan S. Dentatin isolated from Clausena excavata induces apoptosis in MCF-7 cells through the intrinsic pathway with involvement of NF-κB signalling and G0/G1 cell cycle arrest: A bioassay-guided approach. J. Ethnopharmacol. 2013 145 1 343 354 10.1016/j.jep.2012.11.020 23178663
    [Google Scholar]
  44. Pirouzpanah M.B. Sabzichi M. Pirouzpanah S. Chavoshi H. Samadi N. Silibilin-induces apoptosis in breast cancer cells by modulating p53, p21, Bak and Bcl-XL pathways. Asian Pac. J. Cancer Prev. 2015 16 5 2087 2092 10.7314/APJCP.2015.16.5.2087 25773855
    [Google Scholar]
  45. Mäkelä S. Poutanen M. Kostian M.L. Lehtimäki N. Strauss L. Santti R. Vihko R. Inhibition of 17beta-hydroxysteroid oxidoreductase by flavonoids in breast and prostate cancer cells. Exp. Biol. Med. (Maywood) 1998 217 3 310 316 10.3181/00379727‑217‑44237 9492340
    [Google Scholar]
  46. Najafipour R. Momeni A.M. Mirmazloomi Y. Moghbelinejad S. Vitexin induces apoptosis in MCF-7 breast cancer cells through the regulation of specific miRNAs expression. Int. J. Mol. Cell. Med. 2022 11 3 197 206 10.22088/IJMCM.BUMS.11.3.197 37605736
    [Google Scholar]
  47. Rosenberg R.S. Grass L. Jenkins D.J.A. Kendall C.W.C. Diamandis E.P. Modulation of androgen and progesterone receptors by phytochemicals in breast cancer cell lines. Biochem. Biophys. Res. Commun. 1998 248 3 935 939 10.1006/bbrc.1998.8977 9704030
    [Google Scholar]
  48. Sun Z.L. Dong J.L. Wu J. Juglanin induces apoptosis and autophagy in human breast cancer progression via ROS/JNK promotion. Biomed. Pharmacother. 2017 85 303 312 10.1016/j.biopha.2016.11.030 27899257
    [Google Scholar]
  49. Nyandoro S.S. Maeda G. Munissi J.J.E. Gruhonjic A. Fitzpatrick P.A. Lindblad S. Duffy S. Pelletier J. Pan F. Puttreddy R. Avery V.M. Erdélyi M. A New benzopyranyl cadenane sesquiterpene and other antiplasmodial and cytotoxic metabolites from Cleistochlamys kirkii. Molecules 2019 24 15 2746 10.3390/molecules24152746 31362371
    [Google Scholar]
  50. Yeon Park J. Young Kim H. Shibamoto T. Su Jang T. Cheon Lee S. Suk Shim J. Hahm D.H. Lee H.J. Lee S. Sung Kang K. Beneficial effects of a medicinal herb, Cirsium japonicum var. maackii, extract and its major component, cirsimaritin on breast cancer metastasis in MDA-MB-231 breast cancer cells. Bioorg. Med. Chem. Lett. 2017 27 17 3968 3973 10.1016/j.bmcl.2017.07.070 28784292
    [Google Scholar]
  51. Saggar J.K. Chen J. Corey P. Thompson L.U. The effect of secoisolariciresinol diglucoside and flaxseed oil, alone and in combination, on MCF-7 tumor growth and signaling pathways. Nutr. Cancer 2010 62 4 533 542 10.1080/01635580903532440 20432175
    [Google Scholar]
  52. Zhou Y. Bi Y. Yang C. Yang J. Jiang Y. Meng F. Yu B. Khan M. Ma T. Yang H. Magnolol induces apoptosis in MCF-7 human breast cancer cells through G2/M phase arrest and caspase-independent pathway. Pharmazie 2013 68 9 755 762 24147344
    [Google Scholar]
  53. Lee D. Lee Y.H. Lee K.H. Lee B.S. Alishir A. Ko Y.J. Kang K.S. Kim K.H. Aviculin isolated from Lespedeza cuneata induce apoptosis in breast cancer cells through mitochondria-mediated caspase activation pathway. Molecules 2020 25 7 1708 10.3390/molecules25071708 32276430
    [Google Scholar]
  54. Katiyar; Katiyar, S.K. Honokiol, a phytochemical from Magnolia spp., inhibits breast cancer cell migration by targeting nitric oxide and cyclooxygenase-2. Int. J. Oncol. 2011 38 3 769 776 10.3892/ijo.2011.899 21225228
    [Google Scholar]
  55. Dastjerdi M. Mehdiabady E. Iranpour F. Bahramian H. Effect of thymoquinone on P53 gene expression and consequence apoptosis in breast cancer cell line. Int. J. Prev. Med. 2016 7 1 66 10.4103/2008‑7802.180412 27141285
    [Google Scholar]
  56. Lin K.H. Huang M.Y. Cheng W.C. Wang S.C. Fang S.H. Tu H.P. Su C.C. Hung Y.L. Liu P.L. Chen C.S. Wang Y.T. Li C.Y. RNA-seq transcriptome analysis of breast cancer cell lines under shikonin treatment. Sci. Rep. 2018 8 1 2672 10.1038/s41598‑018‑21065‑x 29422643
    [Google Scholar]
  57. Retraction: Plumbagin suppresses the invasion of her2-overexpressing breast cancer cells through inhibition of IKKα-Mediated NF-κB activation. PLoS One 2019 14 1 e0207273 10.1371/journal.pone.0207273 30657758
    [Google Scholar]
  58. Liang Y. Xu X. Yu H. Li L. Hong T. Ji Q. Feng Y. Jin S. Song Y. Guo J. Zheng Z. Ye Q. Yang S. Raddeanoside R13 inhibits breast cancer cell proliferation, invasion, and metastasis. Tumour Biol. 2016 37 7 9837 9847 10.1007/s13277‑015‑4748‑5 26810189
    [Google Scholar]
  59. Wang Y. Xu X. Zhao P. Tong B. Wei Z. Dai Y. Escin Ia suppresses the metastasis of triple-negative breast cancer by inhibiting epithelial-mesenchymal transition via down-regulating LOXL2 expression. Oncotarget 2016 7 17 23684 23699 10.18632/oncotarget.8152 27008697
    [Google Scholar]
  60. Fu J. Ke X. Tan S. Liu T. Wang S. Ma J. Lu H. The natural compound codonolactone attenuates TGF-β1-mediated epithelial-to-mesenchymal transition and motility of breast cancer cells. Oncol. Rep. 2016 35 1 117 126 10.3892/or.2015.4394 26549400
    [Google Scholar]
  61. Yang B. Zhao Y. Lou C. Zhao H. Eupalinolide O. Eupalinolide O, a novel sesquiterpene lactone from Eupatorium lindleyanum DC., induces cell cycle arrest and apoptosis in human MDA-MB-468 breast cancer cells. Oncol. Rep. 2016 36 5 2807 2813 10.3892/or.2016.5115 27666560
    [Google Scholar]
  62. Isca V.M.S. Andrade J. Fernandes A.S. Paixão P. Uriel C. Gómez A.M. Duarte N. Rijo P. In vitro antimicrobial activity of isopimarane-type diterpenoids. Molecules 2020 25 4250 10.3390/molecules25184250
    [Google Scholar]
  63. Dakeng S. Duangmano S. Jiratchariyakul W. U-Pratya, Y.; Bögler, O.; Patmasiriwat, P. Inhibition of Wnt signaling by cucurbitacin B in breast cancer cells: Reduction of Wnt-associated proteins and reduced translocation of galectin-3-mediated β-catenin to the nucleus. J. Cell. Biochem. 2012 113 1 49 60 10.1002/jcb.23326 21866566
    [Google Scholar]
  64. Subash-Babu P. Alshammari G.M. Ignacimuthu S. Alshatwi A.A. Epoxy clerodane diterpene inhibits MCF-7 human breast cancer cell growth by regulating the expression of the functional apoptotic genes Cdkn2A, Rb1, mdm2 and p53. Biomed. Pharmacother. 2017 87 388 396 10.1016/j.biopha.2016.12.091 28068628
    [Google Scholar]
  65. Noori S. Hassan Z.M. Mohammadi M. Habibi Z. Sohrabi N. Bayanolhagh S. Sclareol modulates the Treg intra-tumoral infiltrated cell and inhibits tumor growth in vivo. Cell. Immunol. 2010 263 2 148 153 10.1016/j.cellimm.2010.02.009 20409537
    [Google Scholar]
  66. Vetvicka V. Vannucci L. Biological properties of andrographolide, an active ingredient of Andrographis Paniculata: a narrative review. Ann. Transl. Med. 2021 9 14 1186 10.21037/atm‑20‑7830 34430627
    [Google Scholar]
  67. Chun J. Kim Y.S. Platycodin D inhibits migration, invasion, and growth of MDA-MB-231 human breast cancer cells via suppression of EGFR-mediated Akt and MAPK pathways. Chem. Biol. Interact. 2013 205 3 212 221 10.1016/j.cbi.2013.07.002 23867902
    [Google Scholar]
  68. Mu L.H. Wang Y.N. Wang D.X. Zhang J. Liu L. Dong X.Z. Hu Y. Liu P. AG36 inhibits human breast cancer cells proliferation by promotion of apoptosis In vitro and In vivo. Front. Pharmacol. 2017 8 15 10.3389/fphar.2017.00015 28184196
    [Google Scholar]
  69. Liu C. Dong L. Sun Z. Wang L. Wang Q. Li H. Zhang J. Wang X. Esculentoside A suppresses breast cancer stem cell growth through stemness attenuation and apoptosis induction by blocking IL-6/STAT3 signaling pathway. Phytother. Res. 2018 32 11 2299 2311 10.1002/ptr.6172 30080291
    [Google Scholar]
  70. Zhu X. Wang K. Zhang K. Zhu L. Zhou F. Ziyuglycoside II induces cell cycle arrest and apoptosis through activation of ROS/JNK pathway in human breast cancer cells. Toxicol. Lett. 2014 227 1 65 73 10.1016/j.toxlet.2014.03.015 24680927
    [Google Scholar]
  71. Cheng L. Shi L. Wu J. Zhou X. Li X. Sun X. Zhu L. Xia T.S. Ding Q. A hederagenin saponin isolated from Clematis ganpiniana induces apoptosis in breast cancer cells via the mitochondrial pathway. Oncol. Lett. 2017 15 2 1737 1743 10.3892/ol.2017.7494 29434869
    [Google Scholar]
  72. Zhang P. Lai X. Zhu M.H. Long M. Liu X.L. Wang Z.X. Zhang Y. Guo R.J. Dong J. Lu Q. Sun P. Fang C. Zhao M. Saikosaponin A. Saikosaponin A, a Triterpene Saponin, suppresses angiogenesis and tumor growth by blocking VEGFR2-mediated signaling pathway. Front. Pharmacol. 2021 12 713200 10.3389/fphar.2021.713200 34776948
    [Google Scholar]
  73. Barua A. Choudhury P. Mandal S. Panda C.K. Saha P. Therapeutic potential of xanthones from Swertia chirata in breast cancer cells. Indian J. Med. Res. 2020 152 3 285 295 10.4103/ijmr.IJMR_1153_18 33107489
    [Google Scholar]
  74. Shan T. Ma Q. Guo K. Liu J. Li W. Wang F. Wu E. Xanthones from mangosteen extracts as natural chemopreventive agents: potential anticancer drugs. Curr. Mol. Med. 2011 11 8 666 677 10.2174/156652411797536679 21902651
    [Google Scholar]
  75. Jeon S.M. Lee D.S. Jeong G.S. Cudraticusxanthone A isolated from the roots of Cudrania tricuspidata inhibits metastasis and induces apoptosis in breast cancer cells. J. Ethnopharmacol. 2016 194 57 62 10.1016/j.jep.2016.08.042 27586822
    [Google Scholar]
  76. Khan P. Queen A. Mohammad T. Smita; Khan, N.S.; Hafeez, Z.B.; Hassan, M.I.; Ali, S. Identification of α-Mangostin as a Potential Inhibitor of Microtubule Affinity Regulating Kinase 4. J. Nat. Prod. 2019 82 8 2252 2261 10.1021/acs.jnatprod.9b00372 31343173
    [Google Scholar]
  77. Wang S. Xu Y. Li C. Tao H. Wang A. Sun C. Zhong Z. Wu X. Li P. Wang Y. Gambogic acid sensitizes breast cancer cells to TRAIL-induced apoptosis by promoting the crosstalk of extrinsic and intrinsic apoptotic signalings. Food Chem. Toxicol. 2018 119 334 341 10.1016/j.fct.2018.02.037 29458160
    [Google Scholar]
  78. Mohan S. Abdelwahab S.I. Kamalidehghan B. Syam S. May K.S. Harmal N.S.M. Shafifiyaz N. Hadi A.H.A. Hashim N.M. Rahmani M. Taha M.M.E. Cheah S.C. Zajmi A. Involvement of NF-κB and Bcl2/Bax signaling pathways in the apoptosis of MCF7 cells induced by a xanthone compound Pyranocycloartobiloxanthone A. Phytomedicine 2012 19 11 1007 1015 10.1016/j.phymed.2012.05.012 22739412
    [Google Scholar]
  79. Ibrahim S.R.M. Mohamed G.A. Elfaky M.A. Zayed M.F. El-Kholy A.A. Abdelmageed O.H. Ross S.A. Mangostanaxanthone V. Mangostanaxanthone VII, a new cytotoxic xanthone from Garcinia mangostana. Z. Naturforsch. C J. Biosci. 2018 73 5-6 185 189 10.1515/znc‑2017‑0122 29116938
    [Google Scholar]
  80. Fu M. Qiu S.X. Xu Y. Wu J. Chen Y. Yu Y. Xiao G. A new xanthone from the pericarp of Garcinia mangostana. Nat. Prod Commun, 2013 8 12 1934578X1300801219. 10.1177/1934578X1300801219 24555285
    [Google Scholar]
  81. Hanahan D. Weinberg R.A. The hallmarks of cancer. Cell 2000 100 1 57 70 10.1016/S0092‑8674(00)81683‑9 10647931
    [Google Scholar]
  82. Hanahan D. Weinberg R.A. Hallmarks of cancer: the next generation. Cell 2011 144 5 646 674 10.1016/j.cell.2011.02.013 21376230
    [Google Scholar]
  83. Apostolou P. Fostira F. Hereditary breast cancer: The era of new susceptibility genes. Biomed Res. Int. 2013 2013 747318 10.1155/2013/747318
    [Google Scholar]
  84. Dastpeyman M. Motamed N. Azadmanesh K. Mostafavi E. Kia V. Jahanian-Najafabadi A. Shokrgozar M.A. Inhibition of silibinin on migration and adhesion capacity of human highly metastatic breast cancer cell line, MDA-MB-231, by evaluation of β1-integrin and downstream molecules, Cdc42, Raf-1 and D4GDI. Med. Oncol. 2012 29 4 2512 2518 10.1007/s12032‑011‑0113‑8 22101790
    [Google Scholar]
  85. Li M. Wang J. Jing J. Hua H. Luo T. Xu L. Wang R. Liu D. Jiang Y. Synergistic promotion of breast cancer cell death by targeting molecular chaperone GRP78 and heat shock protein 70. J. Cell. Mol. Med. 2009 13 11-12 4540 4550 10.1111/j.1582‑4934.2008.00575.x 19017364
    [Google Scholar]
  86. Chung S.Y. Sung M.K. Kim N.H. Jang J.O. Go E.J. Lee H.J. Inhibition of P-glycoprotein by natural products in human breast cancer cells. Arch. Pharm. Res. 2005 28 7 823 828 10.1007/BF02977349 16114498
    [Google Scholar]
  87. Ravizza R. Gariboldi M.B. Molteni R. Monti E. Linalool, a plant-derived monoterpene alcohol, reverses doxorubicin resistance in human breast adenocarcinoma cells. Oncol. Rep. 2008 20 3 625 630 18695915
    [Google Scholar]
  88. Curcumin completed phase 2 trials for metastatic breast cancer / advanced breast cancer treatment NCT03072992, 2025
    [Google Scholar]
  89. Khare N. Chandra S. Stevioside mediated chemosensitization studies and cytotoxicity assay on breast cancer cell lines MDA-MB-231 and SKBR3. Saudi J. Biol. Sci. 2019 26 7 1596 1601 10.1016/j.sjbs.2018.10.009 31762632
    [Google Scholar]
  90. Hernandez-Valencia J. Garcia-Villa E. Arenas-Hernandez A. Garcia-Mena J. Diaz-Chavez J. Gariglio P. Induction of p53 phosphorylation at serine 20 by resveratrol is required to activate p53 target genes, restoring apoptosis in MCF-7 cells resistant to cisplatin. Nutrients 2018 10 9 1148 10.3390/nu10091148 30142917
    [Google Scholar]
  91. Schoeman R. de la Harpe A. Beukes N. Frost C.L. Cannabis with breast cancer treatment: Propitious or pernicious? 3 Biotech, 2022 12, 54 54. 10.1007/s13205‑021‑03102‑1 35186676
  92. Khalil M. Khalifeh H. Baldini F. Serale N. Parodi A. Voci A. Vergani L. Daher A. Antitumor activity of ethanolic extract from Thymbra Spicata L. aerial Parts: Effects on cell viability and proliferation, apoptosis induction, STAT3, and NF-kB signaling. Nutr. Cancer 2021 73 7 1193 1206 10.1080/01635581.2020.1792517 32696667
    [Google Scholar]
  93. Mazurakova A. Koklesova L. Samec M. Kudela E. Kajo K. Skuciova V. Csizmár S.H. Mestanova V. Pec M. Adamkov M. Al-Ishaq R.K. Smejkal K. Giordano F.A. Büsselberg D. Biringer K. Golubnitschaja O. Kubatka P. Anti-breast cancer effects of phytochemicals: Primary, secondary, and tertiary care. EPMA J. 2022 13 2 315 334 10.1007/s13167‑022‑00277‑2 35437454
    [Google Scholar]
  94. Choudhari A.S. Mandave P.C. Deshpande M. Ranjekar P. Prakash O. Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Front. Pharmacol. 2020 10 1614 10.3389/fphar.2019.01614 32116665
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010399400250903074949
Loading
/content/journals/cpb/10.2174/0113892010399400250903074949
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Breast cancer ; sentiment analysis ; NLP ; phytochemicals ; database ; text mining
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test