Skip to content
2000
image of Ethanolic Extract of Cyperus rotundus Augments Chemosensitivity to Docetaxel and Suppresses Autophagic Flux in HER2-Positive Breast Cancer Cells

Abstract

Introduction

Breast cancer (BC) represents a malignancy affecting populations globally. Its incidence is on the rise. The ethanolic extract of (EECR) has demonstrated potent anticancer activities against multiple human cancer types, inducing apoptosis in BC cells. Autophagic flux protects HER2+ cancer cells from trastuzumab-induced cytotoxicity, so inhibiting it undermines the resistance phenotype. This study aimed to elucidate the therapeutic potential of EECR in trastuzumab-resistant HER2-positive BC and decipher its underlying mechanisms.

Methods

Colony formation assay and Cell Counting Kit-8 (CCK-8) assessed cell viability. Flow cytometry was used for cell cycle analysis and apoptosis detection. Western blotting quantified relevant protein expressions. Nude mice were euthanized prior to tissue harvest. Tumor tissues were excised and processed for histological examination, with 5 μm paraffin sections prepared on glass slides for hematoxylin and eosin (H&E) staining. An orthotopic JIMT-1 cell transplantation tumor model was established, and immunohistochemistry was conducted.

Results

EECR demonstrated a dose-dependent suppressive effect on HER2-positive BC cells, inducing apoptosis and G2-M phase cell cycle arrest. It inhibited autophagic flux, as evidenced by LC3 and p62/SQSTM1 accumulation, and upregulated raptor and phosphorylated Mitogen-Activated Protein Kinase (MAPK) in trastuzumab-resistant JIMT-1 cells. Phosphorylated ERK (pERK)/total ERK and Raptor levels were significantly elevated in EECR-treated JIMT-1 cells compared to other treatment groups. Furthermore, EECR significantly inhibited tumorigenic growth in JIMT-1 cells.

Conclusion

This study reveals that EECR effectively impedes autophagic flux in trastuzumab-resistant HER2-positive breast cancer cells, a mechanism increasingly recognized as central to therapeutic resistance. By promoting LC3B and p62 accumulation and modulating the MAPK/mTOR signaling axis, EECR not only disrupts a key survival pathway in resistant cells but also enhances the efficacy of standard chemotherapeutic agents like docetaxel. These dual effects—autophagy inhibition and chemosensitization—underscore EECR’s therapeutic potential as an adjuvant strategy to overcome trastuzumab resistance. Given its multi-target nature and favorable safety profile, EECR represents a promising candidate for future combination therapy in refractory HER2-positive breast cancer.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010374529250715164342
2025-07-21
2025-10-27
Loading full text...

Full text loading...

References

  1. Pagani O. Walley B.A. Fleming G.F. Colleoni M. Láng I. Gomez H.L. Tondini C. Burstein H.J. Goetz M.P. Ciruelos E.M. Stearns V. Bonnefoi H.R. Martino S. Geyer C.E. Chini C. Puglisi F. Spazzapan S. Ruhstaller T. Winer E.P. Ruepp B. Loi S. Coates A.S. Gelber R.D. Goldhirsch A. Regan M.M. Francis P.A. Adjuvant exemestane with ovarian suppression in premenopausal breast cancer: Long-term follow-up of the combined text and soft trials. J. Clin. Oncol. 2023 41 7 1376 1382 10.1200/JCO.22.01064 36521078
    [Google Scholar]
  2. Deluche É Vincent-Salomon A. « HER2-faible », un nouveau concept dans la prise en charge des cancers du sein: HER2-low breast cancer: A new concept in breast cancer treatment strategy. Bull Cancer 2021 108 (11S) 11S1 11S7 10.1016/S0007‑4551(21)00631‑7
    [Google Scholar]
  3. Slamon D.J. Clark G.M. Wong S.G. Levin W.J. Ullrich A. McGuire W.L. Human breast cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987 235 4785 177 182 10.1126/science.3798106 3798106
    [Google Scholar]
  4. Swain S.M. Shastry M. Hamilton E. Targeting HER2-positive breast cancer: Advances and future directions. Nat. Rev. Drug Discov. 2023 22 2 101 126 10.1038/s41573‑022‑00579‑0 36344672
    [Google Scholar]
  5. Sahu A. Verma S. Varma M. Yadav M.K. Impact of ErbB receptors and anticancer drugs against breast cancer: A review. Curr. Pharm. Biotechnol. 2022 23 6 787 802 10.2174/1389201022666210719161453 34825638
    [Google Scholar]
  6. Escrivá-de-Romaní S. Arumí M. Bellet M. Saura C. HER2-positive breast cancer: Current and new therapeutic strategies. Breast 2018 39 80 88 10.1016/j.breast.2018.03.006 29631097
    [Google Scholar]
  7. von Arx C. De Placido P. Caltavituro A. Di Rienzo R. Buonaiuto R. De Laurentiis M. Arpino G. Puglisi F. Giuliano M. Del Mastro L. The evolving therapeutic landscape of trastuzumab-drug conjugates: Future perspectives beyond HER2-positive breast cancer. Cancer Treat. Rev. 2023 113 102500 10.1016/j.ctrv.2022.102500 36587473
    [Google Scholar]
  8. Quartino A.L. Li H. Kirschbrown W.P. Mangat R. Wada D.R. Garg A. Jin J.Y. Lum B. Population pharmacokinetic and covariate analyses of intravenous trastuzumab (Herceptin®), a HER2-targeted monoclonal antibody, in patients with a variety of solid tumors. Cancer Chemother. Pharmacol. 2019 83 2 329 340 10.1007/s00280‑018‑3728‑z 30467591
    [Google Scholar]
  9. Vogel C.L. Cobleigh M.A. Tripathy D. Gutheil J.C. Harris L.N. Fehrenbacher L. Slamon D.J. Murphy M. Novotny W.F. Burchmore M. Shak S. Stewart S.J. Press M. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2 -overexpressing metastatic breast cancer. J. Clin. Oncol. 2023 41 9 1638 1645 10.1200/JCO.22.02516 36921335
    [Google Scholar]
  10. Pondé N. Brandão M. El-Hachem G. Werbrouck E. Piccart M. Treatment of advanced HER2-positive breast cancer: 2018 and beyond. Cancer Treat. Rev. 2018 67 10 20 10.1016/j.ctrv.2018.04.016 29751334
    [Google Scholar]
  11. Li X. Yang C. Wan H. Zhang G. Feng J. Zhang L. Chen X. Zhong D. Lou L. Tao W. Zhang L. Discovery and development of pyrotinib: A novel irreversible EGFR/HER2 dual tyrosine kinase inhibitor with favorable safety profiles for the treatment of breast cancer. Eur. J. Pharm. Sci. 2017 110 51 61 10.1016/j.ejps.2017.01.021 28115222
    [Google Scholar]
  12. Ma F. Li Q. Chen S. Zhu W. Fan Y. Wang J. Luo Y. Xing P. Lan B. Li M. Yi Z. Cai R. Yuan P. Zhang P. Li Q. Xu B. Phase I study and biomarker analysis of pyrotinib, a novel irreversible pan-erbb receptor tyrosine kinase inhibitor, in patients with human epidermal growth factor receptor 2–positive metastatic breast cancer. J. Clin. Oncol. 2017 35 27 3105 3112 10.1200/JCO.2016.69.6179 28498781
    [Google Scholar]
  13. Gourd E. Pyrotinib shows activity in metastatic breast cancer. Lancet Oncol. 2017 18 11 643 10.1016/S1470‑2045(17)30755‑6 28943217
    [Google Scholar]
  14. Wang Y. Jiang T. Qin Z. Jiang J. Wang Q. Yang S. Rivard C. Gao G. Ng T.L. Tu M.M. Yu H. Ji H. Zhou C. Ren S. Zhang J. Bunn P. Doebele R.C. Camidge D.R. Hirsch F.R. HER2 exon 20 insertions in non-small-cell lung cancer are sensitive to the irreversible pan-HER receptor tyrosine kinase inhibitor pyrotinib. Ann. Oncol. 2019 30 3 447 455 10.1093/annonc/mdy542 30596880
    [Google Scholar]
  15. Ma F. Ouyang Q. Li W. Jiang Z. Tong Z. Liu Y. Li H. Yu S. Feng J. Wang S. Hu X. Zou J. Zhu X. Xu B. Pyrotinib or lapatinib combined with capecitabine in HER2–POSITIVE metastatic breast cancer with prior taxanes, anthracyclines, and/or trastuzumab: A randomized, phase II study. J. Clin. Oncol. 2019 37 29 2610 2619 10.1200/JCO.19.00108 31430226
    [Google Scholar]
  16. Qasim M. Abideen Z. Adnan M.Y. Ansari R. Gul B. Khan M.A. Traditional ethno-botanical uses of medicinal plants from coastal areas of Pakistan. J. Coast. Life Med. 2014 2 22 30 10.12980/JCLM.2.2014C1177
    [Google Scholar]
  17. Gould E. Fraser H.S. Parker T.H. Nakagawa S. Griffith S.C. Vesk P.A. Fidler F. Hamilton D.G. Abbey-Lee R.N. Abbott J.K. Aguirre L.A. Alcaraz C. Aloni I. Altschul D. Arekar K. Atkins J.W. Atkinson J. Baker C.M. Barrett M. Bell K. Bello S.K. Beltrán I. Berauer B.J. Bertram M.G. Billman P.D. Blake C.K. Blake S. Bliard L. Bonisoli-Alquati A. Bonnet T. Bordes C.N.M. Bose A.P.H. Botterill-James T. Boyd M.A. Boyle S.A. Bradfer-Lawrence T. Bradham J. Brand J.A. Brengdahl M.I. Bulla M. Bussière L. Camerlenghi E. Campbell S.E. Campos L.L.F. Caravaggi A. Cardoso P. Carroll C.J.W. Catanach T.A. Chen X. Chik H.Y.J. Choy E.S. Christie A.P. Chuang A. Chunco A.J. Clark B.L. Contina A. Covernton G.A. Cox M.P. Cressman K.A. Crotti M. Crouch C.D. D’Amelio P.B. de Sousa A.A. Döbert T.F. Dobler R. Dobson A.J. Doherty T.S. Drobniak S.M. Duffy A.G. Duncan A.B. Dunn R.P. Dunning J. Dutta T. Eberhart-Hertel L. Elmore J.A. Elsherif M.M. English H.M. Ensminger D.C. Ernst U.R. Ferguson S.M. Fernandez-Juricic E. Ferreira-Arruda T. Fieberg J. Finch E.A. Fiorenza E.A. Fisher D.N. Fontaine A. Forstmeier W. Fourcade Y. Frank G.S. Freund C.A. Fuentes-Lillo E. Gandy S.L. Gannon D.G. García-Cervigón A.I. Garretson A.C. Ge X. Geary W.L. Géron C. Gilles M. Girndt A. Gliksman D. Goldspiel H.B. Gomes D.G.E. Good M.K. Goslee S.C. Gosnell J.S. Grames E.M. Gratton P. Grebe N.M. Greenler S.M. Griffioen M. Griffith D.M. Griffith F.J. Grossman J.J. Güncan A. Haesen S. Hagan J.G. Hager H.A. Harris J.P. Harrison N.D. Hasnain S.S. Havird J.C. Heaton A.J. Herrera-Chaustre M.L. Howard T.J. Hsu B.Y. Iannarilli F. Iranzo E.C. Iverson E.N.K. Jimoh S.O. Johnson D.H. Johnsson M. Jorna J. Jucker T. Jung M. Kačergytė I. Kaltz O. Ke A. Kelly C.D. Keogan K. Keppeler F.W. Killion A.K. Kim D. Kochan D.P. Korsten P. Kothari S. Kuppler J. Kusch J.M. Lagisz M. Lalla K.M. Larkin D.J. Larson C.L. Lauck K.S. Lauterbur M.E. Law A. Léandri-Breton D.J. Lembrechts J.J. L’Herpiniere K. Lievens E.J.P. de Lima D.O. Lindsay S. Luquet M. MacLeod R. Macphie K.H. Magellan K. Mair M.M. Malm L.E. Mammola S. Mandeville C.P. Manhart M. Manrique-Garzon L.M. Mäntylä E. Marchand P. Marshall B.M. Martin C.A. Martin D.A. Martin J.M. Martinig A.R. McCallum E.S. McCauley M. McNew S.M. Meiners S.J. Merkling T. Michelangeli M. Moiron M. Moreira B. Mortensen J. Mos B. Muraina T.O. Murphy P.W. Nelli L. Niemelä P. Nightingale J. Nilsonne G. Nolazco S. Nooten S.S. Novotny J.L. Olin A.B. Organ C.L. Ostevik K.L. Palacio F.X. Paquet M. Parker D.J. Pascall D.J. Pasquarella V.J. Paterson J.H. Payo-Payo A. Pedersen K.M. Perez G. Perry K.I. Pottier P. Proulx M.J. Proulx R. Pruett J.L. Ramananjato V. Randimbiarison F.T. Razafindratsima O.H. Rennison D.J. Riva F. Riyahi S. Roast M.J. Rocha F.P. Roche D.G. Román-Palacios C. Rosenberg M.S. Ross J. Rowland F.E. Rugemalila D. Russell A.L. Ruuskanen S. Saccone P. Sadeh A. Salazar S.M. Sales K. Salmón P. Sánchez-Tójar A. Santos L.P. Santostefano F. Schilling H.T. Schmidt M. Schmoll T. Schneider A.C. Schrock A.E. Schroeder J. Schtickzelle N. Schultz N.L. Scott D.A. Scroggie M.P. Shapiro J.T. Sharma N. Shearer C.L. Simón D. Sitvarin M.I. Skupien F.L. Slinn H.L. Smith G.P. Smith J.A. Sollmann R. Whitney K.S. Still S.M. Stuber E.F. Sutton G.F. Swallow B. Taff C.C. Takola E. Tanentzap A.J. Tarjuelo R. Telford R.J. Thawley C.J. Thierry H. Thomson J. Tidau S. Tompkins E.M. Tortorelli C.M. Trlica A. Turnell B.R. Urban L. Van de Vondel S. van der Wal J.E.M. Van Eeckhoven J. van Oordt F. Vanderwel K.M. Vanderwel M.C. Vanderwolf K.J. Vélez J. Vergara-Florez D.C. Verrelli B.C. Vieira M.V. Villamil N. Vitali V. Vollering J. Walker J. Walker X.J. Walter J.A. Waryszak P. Weaver R.J. Wedegärtner R.E.M. Weller D.L. Whelan S. White R.L. Wolfson D.W. Wood A. Yanco S.W. Yen J.D.L. Youngflesh C. Zilio G. Zimmer C. Zimmerman G.M. Zitomer R.A. Same data, different analysts: Variation in effect sizes due to analytical decisions in ecology and evolutionary biology. BMC Biol. 2025 23 1 35 10.1186/s12915‑024‑02101‑x 39915771
    [Google Scholar]
  18. Karki D. Khadka D. Kunwar R.M. Aryal P.C. Paudel H.R. Bhatta S. Shi S. Ethnomedicinal plants in champadevi rural municipality, okhaldhunga district, nepal. J. Ethnobiol. Ethnomed. 2023 19 1 58 10.1186/s13002‑023‑00627‑y 38072922
    [Google Scholar]
  19. Kujawska M. Schmeda-Hirschmann G. The use of medicinal plants by paraguayan migrants in the atlantic forest of misiones, argentina, is based on guaraní tradition, colonial and current plant knowledge. J. Ethnopharmacol. 2022 283 114702 10.1016/j.jep.2021.114702 34627987
    [Google Scholar]
  20. Iqbal M.S. Ahmad K.S. Ali M.A. Akbar M. Mehmood A. Nawaz F. Hussain S.A. Arshad N. Munir S. Arshad H. Shahbaz K. Bussmann R.W. An ethnobotanical study of wetland flora of Head Maralla Punjab Pakistan. PLoS One 2021 16 10 0258167 10.1371/journal.pone.0258167 34648500
    [Google Scholar]
  21. Hu Q.P. Cao X.M. Hao D.L. Zhang L.L. Chemical composition, antioxidant, dna damage protective, cytotoxic and antibacterial activities of cyperus rotundus rhizomes essential oil against foodborne pathogens. Sci. Rep. 2017 7 1 45231 10.1038/srep45231 28338066
    [Google Scholar]
  22. Chen J. Shen K. Fan L. Hu H. Li T. Zhang Y. Gao H. Integrative medicine in treating post-stroke depression: Study protocol for a multicenter, prospective, randomized, controlled trial. Front. Psychol. 2022 13 923506 10.3389/fpsyg.2022.923506 36110277
    [Google Scholar]
  23. Mehdizadeh M. Hashem Dabaghian F. Shojaee A. Molavi N. Taslimi Z. Shabani R. Soleimani Asl S. Short communication: Protective effects of cyperus rotundus extract on amyloid β-peptide (1-40)-induced memory impairment in male rats: A behavioral study. Basic Clin. Neurosci. 2017 8 3 249 254 10.18869/nirp.bcn.8.3.249 28781732
    [Google Scholar]
  24. Shamim T. Asif H.M. Shaheen G. Sumreen L. Ayaz S. Qureshi T. Ghauri A.O. Ali T. Ahmad M. Sajid F. Khadim I. Tanveer R. Noor R. Nawaz H. Kaleem J. Anti-diabetic potential of indigenous medicinal plants of cholistan desert, pakistan: A review. Rev. Diabet. Stud. 2022 18 2 93 99 10.1900/RDS.2022.18.93 35831936
    [Google Scholar]
  25. Sutalangka C. Wattanathorn J. Neuroprotective and cognitive-enhancing effects of the combined extract of Cyperus rotundus and Zingiber officinale. BMC Complement. Altern. Med. 2017 17 1 135 10.1186/s12906‑017‑1632‑4 28253877
    [Google Scholar]
  26. Mannarreddy P. Denis M. Munireddy D. Pandurangan R. Thangavelu K.P. Venkatesan K. Cytotoxic effect of Cyperus rotundus rhizome extract on human cancer cell lines. Biomed. Pharmacother. 2017 95 1375 1387 10.1016/j.biopha.2017.09.051 28946185
    [Google Scholar]
  27. Subramanyam G.K. Gaddam S.A. Kotakadi V.S. Palithya S. Penchalaneni J. Challagundla V.N. Argyreia nervosa (Samudra pala) leaf extract mediated silver nanoparticles and evaluation of their antioxidant, antibacterial activity, in vitro anticancer and apoptotic studies in KB oral cancer cell lines. Artif. Cells Nanomed. Biotechnol. 2021 49 1 634 649 10.1080/21691401.2021.1996384 34738487
    [Google Scholar]
  28. Esfandiari E. Shakerin Z. Razavi S. Alaei H. Ghanadian M. Dashti G. Effects of Cyperus rotundus extract on spatial memory impairment and neuronal differentiation in rat model of Alzheimer’s disease. Adv. Biomed. Res. 2020 9 1 17 10.4103/abr.abr_173_19 32775310
    [Google Scholar]
  29. Woyessa A.M. Bultum L.E. Lee D. Designing combinational herbal drugs based on target space analysis. BMC Complement Med. Therap 2024 24 S1 179 10.1186/s12906‑024‑04455‑9 38693521
    [Google Scholar]
  30. Park S.E. Shin W.T. Park C. Hong S.H. Kim G.Y. Kim S.O. Ryu C.H. Hong S.H. Choi Y.H. Induction of apoptosis in MDA-MB-231 human breast carcinoma cells with an ethanol extract of Cyperus rotundus L. by activating caspases. Oncol. Rep. 2014 32 6 2461 2470 10.3892/or.2014.3507 25241797
    [Google Scholar]
  31. Wang F. Song X. Ma S. Liu C. Sun X. Wang X. Liu Z. Liang D. Yu Z. The treatment role of Cyperus rotundus L. to triple-negative breast cancer cells. Biosci. Rep. 2019 39 6 BSR20190502 10.1042/BSR20190502 31123166
    [Google Scholar]
  32. Ryu B. Kim H.M. Lee J.S. Cho Y.J. Oh M.S. Choi J-H. Jang D.S. Sesquiterpenes from rhizomes of Cyperus rotundus with cytotoxic activities on human cancer cells in vitro. Helv. Chim. Acta 2015 98 10 1372 1380 10.1002/hlca.201500117
    [Google Scholar]
  33. Ahn J.H. Lee T. Kim K.H. Byun H. Ryu B. Lee K.T. Jang D.S. Choi J.H. 6-Acetoxy cyperene, a patchoulane-type sesquiterpene isolated from Cyperus rotundus rhizomes induces caspase-dependent apoptosis in human ovarian cancer cells. Phytother. Res. 2015 29 9 1330 1338 10.1002/ptr.5385 26062076
    [Google Scholar]
  34. Ng S.S. Tsao M.S. Nicklee T. Hedley D.W. Effects of the epidermal growth factor receptor inhibitor OSI-774, Tarceva, on downstream signaling pathways and apoptosis in human pancreatic adenocarcinoma. Mol. Cancer Ther. 2002 1 10 777 783 [PMID: 12492110
    [Google Scholar]
  35. Lee A.Y.L. Dubois C.L. Sarai K. Zarei S. Schaeffer D.F. Sander M. Kopp J.L. Cell of origin affects tumour development and phenotype in pancreatic ductal adenocarcinoma. Gut 2019 68 3 487 498 10.1136/gutjnl‑2017‑314426 29363536
    [Google Scholar]
  36. Kunzmann V. Siveke J.T. Algül H. Goekkurt E. Siegler G. Martens U. Waldschmidt D. Pelzer U. Fuchs M. Kullmann F. Boeck S. Ettrich T.J. Held S. Keller R. Klein I. Germer C.T. Stein H. Friess H. Bahra M. Jakobs R. Hartlapp I. Heinemann V. Hennes E. Lindig U. Geer T. Stahl M. Senkal M. Südhoff T. Egger M. Kahl C. Große-Thie C. Reiser M. Mahlmann S. Fix P. Schulz H. Maschmeyer G. Blau W. Nab-paclitaxel plus gemcitabine versus nab-paclitaxel plus gemcitabine followed by FOLFIRINOX induction chemotherapy in locally advanced pancreatic cancer (NEOLAP-AIO-PAK-0113): A multicentre, randomised, phase 2 trial. Lancet Gastroenterol. Hepatol. 2021 6 2 128 138 10.1016/S2468‑1253(20)30330‑7 33338442
    [Google Scholar]
  37. Taylor M.A. Das B.C. Ray S.K. Targeting autophagy for combating chemoresistance and radioresistance in glioblastoma. Apoptosis 2018 23 11-12 563 575 10.1007/s10495‑018‑1480‑9 30171377
    [Google Scholar]
  38. Verbaanderd C. Maes H. Schaaf M.B. Sukhatme V.P. Pantziarka P. Sukhatme V. Agostinis P. Bouche G. Repurposing drugs in oncology (ReDO)—chloroquine and hydroxychloroquine as anti-cancer agents. Ecancermedicalscience 2017 11 781 10.3332/ecancer.2017.781 29225688
    [Google Scholar]
  39. Loibl S. Gianni L. HER2-positive breast cancer. Lancet 2017 389 10087 2415 2429 10.1016/S0140‑6736(16)32417‑5 27939064
    [Google Scholar]
  40. Singla H. Munshi A. HER2 Tyrosine Kinase Inhibitors in the Sensitization to Cancers Resistant to HER2 Antibodies. Crit. Rev. Oncog. 2020 25 3 241 250 10.1615/CritRevOncog.2020037108 33463944
    [Google Scholar]
  41. China approves Hengrui breast cancer drug on Phase II 2018 Available from: https://www.biocentury.com/bc-extra/company-news/2018-08-22/china-approves-hengrui-breast-cancer-drug-phase-ii-data
  42. Yapijakis C. Pachis N. Sotiriadou T. Vaila C. Michopoulou V. Vassiliou S. Molecular mechanisms involved in craniosynostosis. In Vivo 2023 37 1 36 46 10.21873/invivo.13052 36593018
    [Google Scholar]
  43. Thompson J.E. Thompson C.B. Putting the rap on Akt. J. Clin. Oncol. 2004 22 20 4217 4226 10.1200/JCO.2004.01.103 15483033
    [Google Scholar]
  44. Oda K. Stokoe D. Taketani Y. McCormick F. High frequency of coexistent mutations of PIK3CA and PTEN genes in endometrial carcinoma. Cancer Res. 2005 65 23 10669 10673 10.1158/0008‑5472.CAN‑05‑2620 16322209
    [Google Scholar]
  45. Levy J.M.M. Towers C.G. Thorburn A. Targeting autophagy in cancer. Nat. Rev. Cancer 2017 17 9 528 542 10.1038/nrc.2017.53 28751651
    [Google Scholar]
  46. Vera-Ramirez L. Vodnala S.K. Nini R. Hunter K.W. Green J.E. Autophagy promotes the survival of dormant breast cancer cells and metastatic tumour recurrence. Nat. Commun. 2018 9 1 1944 10.1038/s41467‑018‑04070‑6 29789598
    [Google Scholar]
  47. Zhang Y. Sha R. Zhang L. Zhang W. Jin P. Xu W. Ding J. Lin J. Qian J. Yao G. Zhang R. Luo F. Zeng J. Cao J. Wen L. Harnessing copper-palladium alloy tetrapod nanoparticle-induced pro-survival autophagy for optimized photothermal therapy of drug-resistant cancer. Nat. Commun. 2018 9 1 4236 10.1038/s41467‑018‑06529‑y 30315154
    [Google Scholar]
  48. Li J. Kang R. Tang D. Monitoring autophagy-dependent ferroptosis. Methods Cell Biol. 2021 165 163 176 10.1016/bs.mcb.2020.10.012 34311865
    [Google Scholar]
  49. Sharma S. Patel F. Ara H. Bess E. Shum A. Bhattarai S. Subedi U. Bell D.S. Bhuiyan M.S. Sun H. Batinic-Haberle I. Panchatcharam M. Miriyala S. Rotenone-induced 4-HNE aggresome formation and degradation in HL-1 cardiomyocytes: Role of autophagy flux. Int. J. Mol. Sci. 2022 23 9 4675 10.3390/ijms23094675 35563066
    [Google Scholar]
  50. Huang X. Yao J. Liu L. Chen J. Mei L. Huangfu J. Luo D. Wang X. Lin C. Chen X. Yang Y. Ouyang S. Wei F. Wang Z. Zhang S. Xiang T. Neculai D. Sun Q. Kong E. Tate E.W. Yang A. S-acylation of p62 promotes p62 droplet recruitment into autophagosomes in mammalian autophagy. Mol. Cell 2023 83 19 3485 3501.e11 10.1016/j.molcel.2023.09.004 37802024
    [Google Scholar]
  51. Sato S. Noda S. Torii S. Amo T. Ikeda A. Funayama M. Yamaguchi J. Fukuda T. Kondo H. Tada N. Arakawa S. Watanabe M. Uchiyama Y. Shimizu S. Hattori N. Homeostatic p62 levels and inclusion body formation in CHCHD2 knockout mice. Hum. Mol. Genet. 2021 30 6 443 453 10.1093/hmg/ddab057 33631794
    [Google Scholar]
  52. Qu X. Yu J. Bhagat G. Furuya N. Hibshoosh H. Troxel A. Rosen J. Eskelinen E.L. Mizushima N. Ohsumi Y. Cattoretti G. Levine B. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J. Clin. Invest. 2003 112 12 1809 1820 10.1172/JCI20039 14638851
    [Google Scholar]
  53. Yang Y. Hu L. Zheng H. Mao C. Hu W. Xiong K. Wang F. Liu C. Application and interpretation of current autophagy inhibitors and activators. Acta Pharmacol. Sin. 2013 34 5 625 635 10.1038/aps.2013.5 23524572
    [Google Scholar]
  54. Tavan M. Hanachi P. de la Luz Cádiz-Gurrea M. Segura Carretero A. Mirjalili M.H. Natural phenolic compounds with neuroprotective effects. Neurochem. Res. 2024 49 2 306 326 10.1007/s11064‑023‑04046‑z 37940760
    [Google Scholar]
  55. Park J.I. MAPK-ERK pathway. Int. J. Mol. Sci. 2023 24 11 9666 10.3390/ijms24119666 37298618
    [Google Scholar]
  56. Yamate-Morgan H. Lauderdale K. Horeczko J. Merchant U. Tiwari-Woodruff S.K. Functional effects of cuprizone-induced demyelination in the presence of the mtor-inhibitor rapamycin. Neuroscience 2019 406 667 683 10.1016/j.neuroscience.2019.01.038 30703503
    [Google Scholar]
  57. Zhou J.Y. Huang D.G. Qin Y.C. Li X.G. Gao C.Q. Yan H.C. Wang X.Q. mTORC1 signaling activation increases intestinal stem cell activity and promotes epithelial cell proliferation. J. Cell. Physiol. 2019 234 10 19028 19038 10.1002/jcp.28542 30937902
    [Google Scholar]
  58. Chen Y. Xu S. Wang N. Ma Q. Peng P. Yu Y. Zhang L. Ying Z. Wang H. Dynasore suppresses mTORC1 activity and induces autophagy to regulate the clearance of protein aggregates in neurodegenerative diseases. Neurotox. Res. 2019 36 1 108 116 10.1007/s12640‑019‑00027‑9 30924108
    [Google Scholar]
  59. Hu Y. Shi Y. Chen H. Tao M. Zhou X. Li J. Ma X. Wang Y. Liu N. Blockade of autophagy prevents the progression of hyperuricemic nephropathy through inhibiting nlrp3 inflammasome-mediated pyroptosis. Front. Immunol. 2022 13 858494 10.3389/fimmu.2022.858494 35309342
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010374529250715164342
Loading
/content/journals/cpb/10.2174/0113892010374529250715164342
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test