Skip to content
2000
image of Flavonoids as Antimicrobial Agents: A Comprehensive Review of Mechanisms and Therapeutic Potential

Abstract

Flavonoids, plant-derived polyphenolic compounds, have garnered significant attention for their broad-spectrum antimicrobial potential, encompassing antibacterial, antifungal, and antiviral activities. These bioactive molecules exert their effects through multiple mechanisms, including disruption of microbial cell membranes, inhibition of nucleic acid synthesis, suppression of biofilm formation, and interference with key bacterial enzymes. Notable flavonoids such as quercetin, apigenin, and kaempferol exhibit potent activity against bacterial pathogens like and as well as fungal pathogens such as and Furthermore, flavonoids can potentiate the efficacy of conventional antibiotics by inhibiting bacterial efflux pumps, a critical mechanism contributing to antibiotic resistance. Recent advancements in structure-activity relationship (SAR) studies have underscored the influence of structural modifications—such as prenylation, hydroxylation, and methoxylation—on the antimicrobial potency of flavonoids. By highlighting these insights, this review provides a unique perspective on flavonoid-based antimicrobial strategies, particularly their synergistic potential with existing antibiotics. These findings position flavonoids as promising candidates for novel antimicrobial therapies, particularly in the face of increasing antibiotic-resistant pathogens. However, further research is needed to elucidate their precise mechanisms and optimize their therapeutic applications.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010384002250628163849
2025-07-03
2025-09-14
Loading full text...

Full text loading...

References

  1. Hussain M.S. Mujwar S. Babu M.A. Goyal K. Chellappan D.K. Negi P. Singh T.G. Ali H. Singh S.K. Dua K. Gupta G. Balaraman A.K. Pharmacological, computational, and mechanistic insights into triptolide’s role in targeting drug-resistant cancers. Naunyn Schmiedebergs Arch. Pharmacol. 2025 10.1007/s00210‑025‑03809‑5
    [Google Scholar]
  2. Islam M.R. Rauf A. Alash S. Fakir M.N.H. Thufa G.K. Sowa M.S. Mukherjee D. Kumar H. Hussain M.S. Aljohani A.S.M. Imran M. Al Abdulmonem W. Thiruvengadam R. Thiruvengadam M. A comprehensive review of phytoconstituents in liver cancer prevention and treatment: targeting insights into molecular signaling pathways. Med. Oncol. 2024 41 6 134 10.1007/s12032‑024‑02333‑5 38703282
    [Google Scholar]
  3. Cushnie T.P.T. Lamb A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005 26 5 343 356 10.1016/j.ijantimicag.2005.09.002 16323269
    [Google Scholar]
  4. Daglia M. Polyphenols as antimicrobial agents. Curr. Opin. Biotechnol. 2012 23 2 174 181 10.1016/j.copbio.2011.08.007 21925860
    [Google Scholar]
  5. Górniak I. Bartoszewski R. Króliczewski J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem. Rev. 2019 18 1 241 272 10.1007/s11101‑018‑9591‑z
    [Google Scholar]
  6. Tiwari A. Tiwari V. Sharma A. Marrisetti A.L. Kumar M. Rochani A. Kaushik D. Mittal V. Jyothi S. R.; Ali, H.; Hussain, M.S.; Gupta, G. Unlocking the potential: integrating phytoconstituents and nanotechnology in skin cancer therapy – A comprehensive review. J. Complement. Integr. Med. 2024 10.1515/jcim‑2024‑0338 39668578
    [Google Scholar]
  7. Ventola C.L. The antibiotic resistance crisis: Part 1: Causes and threats. P&T 2015 40 4 277 25859123
    [Google Scholar]
  8. Cushnie T.P.T. Lamb A.J. Recent advances in understanding the antibacterial properties of flavonoids. Int. J. Antimicrob. Agents 2011 38 2 99 107 10.1016/j.ijantimicag.2011.02.014 21514796
    [Google Scholar]
  9. Alvarez M.A. Debattista N.B. Pappano N.B. Antimicrobial activity and synergism of some substituted flavonoids. Folia Microbiol. (Praha) 2008 53 1 23 28 10.1007/s12223‑008‑0003‑4 18481214
    [Google Scholar]
  10. Kincses A. Ghazal T.S.A. Hohmann J. Synergistic effect of phenylpropanoids and flavonoids with antibiotics against Gram-positive and Gram-negative bacterial strains. Pharm. Biol. 2024 62 1 659 665 10.1080/13880209.2024.2389105 39126171
    [Google Scholar]
  11. Thebti A. Meddeb A. Ben Salem I. Bakary C. Ayari S. Rezgui F. Essafi-Benkhadir K. Boudabous A. Ouzari H.I. Antimicrobial activities and mode of flavonoid actions. Antibiotics 2023 12 2 225 10.3390/antibiotics12020225 36830135
    [Google Scholar]
  12. Malczak I. Gajda A. Interactions of naturally occurring compounds with antimicrobials. J. Pharm. Anal. 2023 13 12 1452 1470 10.1016/j.jpha.2023.09.014 38223447
    [Google Scholar]
  13. Bayat P. Farshchi M. Yousefian M. Mahmoudi M. Yazdian-Robati R. Flavonoids, the compounds with anti-inflammatory and immunomodulatory properties, as promising tools in multiple sclerosis (MS) therapy: A systematic review of preclinical evidence. Int. Immunopharmacol. 2021 95 107562 10.1016/j.intimp.2021.107562 33770729
    [Google Scholar]
  14. Abreu A.C. Serra S.C. Borges A. Saavedra M.J. Mcbain A.J. Salgado A.J. Simões M. Combinatorial activity of flavonoids with antibiotics against drug-resistant Staphylococcus aureus. Microb. Drug Resist. 2015 21 6 600 609 10.1089/mdr.2014.0252 25734256
    [Google Scholar]
  15. Bouterfas K. Mehdadi Z. Aouad L. Elaoufi M.M. Khaled M.B. Latreche A. Benchiha W. Does the sampling locality influence on the antifungal activity of the flavonoids of Marrubium vulgare against Aspergillus niger and Candida albicans? J. Mycol. Med. 2016 26 3 201 211 10.1016/j.mycmed.2016.02.019 26994761
    [Google Scholar]
  16. Zhang X. Chen S. Li X. Zhang L. Ren L. Flavonoids as potential antiviral agents for porcine viruses. Pharmaceutics 2022 14 9 1793 10.3390/pharmaceutics14091793 36145539
    [Google Scholar]
  17. Saha C. Naskar R. Chakraborty S. Antiviral flavonoids: A natural scaffold with prospects as phytomedicines against SARS-CoV2. Mini Rev. Med. Chem. 2024 24 1 39 59 10.2174/1389557523666230503105053 37138419
    [Google Scholar]
  18. Hussain M.S. Gupta G. Goyal A. Thapa R. almalki, W.H.; Kazmi, I.; Alzarea, S.I.; Fuloria, S.; Meenakshi, D.U.; Jakhmola, V.; Pandey, M.; Singh, S.K.; Dua, K. From nature to therapy: Luteolin’s potential as an immune system modulator in inflammatory disorders. J. Biochem. Mol. Toxicol. 2023 37 11 e23482 10.1002/jbt.23482 37530602
    [Google Scholar]
  19. Chen L. Cao H. Huang Q. Xiao J. Teng H. Absorption, metabolism and bioavailability of flavonoids: A review. Crit. Rev. Food Sci. Nutr. 2022 62 28 7730 7742 10.1080/10408398.2021.1917508 34078189
    [Google Scholar]
  20. Dewanjee S. Chakraborty P. Bhattacharya H. Singh S.K. Dua K. Dey A. Jha N.K. Recent advances in flavonoid-based nanocarriers as an emerging drug delivery approach for cancer chemotherapy. Drug Discov. Today 2023 28 1 103409 10.1016/j.drudis.2022.103409 36265733
    [Google Scholar]
  21. Williams P. Qazi S. Agarwal R. Velaphi S. Bielicki J. Nambiar S. Giaquinto C. Bradley J. Noel G. Ellis S. O’Brien S. Balasegaram M. Sharland M. Antibiotics needed to treat multidrug-resistant infections in neonates. Bull. World Health Organ. 2022 100 12 797 807 10.2471/BLT.22.288623 36466207
    [Google Scholar]
  22. Morrison L. Zembower T.R. Antimicrobial resistance. Gastrointest. Endosc. Clin. N. Am. 2020 30 4 619 635 10.1016/j.giec.2020.06.004 32891221
    [Google Scholar]
  23. Huemer M. Mairpady Shambat S. Brugger S.D. Zinkernagel A.S. Antibiotic resistance and persistence—Implications for human health and treatment perspectives. EMBO Rep. 2020 21 12 e51034 10.15252/embr.202051034 33400359
    [Google Scholar]
  24. Christaki E. Marcou M. Tofarides A. Antimicrobial resistance in bacteria: Mechanisms, evolution, and persistence. J. Mol. Evol. 2020 88 1 26 40 10.1007/s00239‑019‑09914‑3 31659373
    [Google Scholar]
  25. Lerminiaux N.A. Cameron A.D.S. Horizontal transfer of antibiotic resistance genes in clinical environments. Can. J. Microbiol. 2019 65 1 34 44 10.1139/cjm‑2018‑0275 30248271
    [Google Scholar]
  26. Egorov A.M. Ulyashova M.M. Rubtsova M.Y. Bacterial enzymes and antibiotic resistance. Acta Nat. (Engl. Ed.) 2018 10 4 33 48 10.32607/20758251‑2018‑10‑4‑33‑48 30713760
    [Google Scholar]
  27. Singh S. Singh S.K. Chowdhury I. Singh R. Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. Open Microbiol. J. 2017 11 1 53 62 10.2174/1874285801711010053 28553416
    [Google Scholar]
  28. Jolivet-Gougeon A. Bonnaure-Mallet M. Biofilms as a mechanism of bacterial resistance. Drug Discov. Today. Technol. 2014 11 49 56 10.1016/j.ddtec.2014.02.003 24847653
    [Google Scholar]
  29. Haque M. Islam S. Sheikh M.A. Dhingra S. Uwambaye P. Labricciosa F.M. Iskandar K. Charan J. Abukabda A.B. Jahan D. Quorum sensing: A new prospect for the management of antimicrobial-resistant infectious diseases. Expert Rev. Anti Infect. Ther. 2021 19 5 571 586 10.1080/14787210.2021.1843427 33131352
    [Google Scholar]
  30. Blair J.M.A. Richmond G.E. Piddock L.J.V. Multidrug efflux pumps in Gram-negative bacteria and their role in antibiotic resistance. Future Microbiol. 2014 9 10 1165 1177 10.2217/fmb.14.66 25405886
    [Google Scholar]
  31. Fisher R.A. Gollan B. Helaine S. Persistent bacterial infections and persister cells. Nat. Rev. Microbiol. 2017 15 8 453 464 10.1038/nrmicro.2017.42 28529326
    [Google Scholar]
  32. Farhadi F. Khameneh B. Iranshahi M. Iranshahy M. Antibacterial activity of flavonoids and their structure–activity relationship: An update review. Phytother. Res. 2019 33 1 13 40 10.1002/ptr.6208 30346068
    [Google Scholar]
  33. Ohemeng K.A. Schwender C.F. Fu K.P. Barrett J.F. DNA gyrase inhibitory and antibacterial activity of some flavones(1). Bioorg. Med. Chem. Lett. 1993 3 2 225 230 10.1016/S0960‑894X(01)80881‑7
    [Google Scholar]
  34. Fang Y. Lu Y. Zang X. Wu T. Qi X. Pan S. Xu X. 3D-QSAR and docking studies of flavonoids as potent Escherichia coli inhibitors. Sci. Rep. 2016 6 1 23634 10.1038/srep23634 27049530
    [Google Scholar]
  35. Shadrick W.R. Ndjomou J. Kolli R. Mukherjee S. Hanson A.M. Frick D.N. Discovering new medicines targeting helicases: Challenges and recent progress. SLAS Discov. 2013 18 7 761 781 10.1177/1087057113482586 23536547
    [Google Scholar]
  36. Yuan G. Guan Y. Yi H. Lai S. Sun Y. Cao S. Antibacterial activity and mechanism of plant flavonoids to gram-positive bacteria predicted from their lipophilicities. Sci. Rep. 2021 11 1 10471 10.1038/s41598‑021‑90035‑7 34006930
    [Google Scholar]
  37. Tsuchiya H. Membrane interactions of phytochemicals as their molecular mechanism applicable to the discovery of drug leads from plants. Molecules 2015 20 10 18923 18966 10.3390/molecules201018923 26501254
    [Google Scholar]
  38. Jamal M. Ahmad W. Andleeb S. Jalil F. Imran M. Nawaz M.A. Hussain T. Ali M. Rafiq M. Kamil M.A. Bacterial biofilm and associated infections. J. Chin. Med. Assoc. 2018 81 1 7 11 10.1016/j.jcma.2017.07.012 29042186
    [Google Scholar]
  39. Damyanova T. Dimitrova P.D. Borisova D. Topouzova-Hristova T. Haladjova E. Paunova-Krasteva T. An overview of biofilm-associated infections and the role of phytochemicals and nanomaterials in their control and prevention. Pharmaceutics 2024 16 2 162 10.3390/pharmaceutics16020162 38399223
    [Google Scholar]
  40. Bjarnsholt T. Ciofu O. Molin S. Givskov M. Høiby N. Applying insights from biofilm biology to drug development: Can a new approach be developed? Nat. Rev. Drug Discov. 2013 12 10 791 808 10.1038/nrd4000 24080700
    [Google Scholar]
  41. Lee P. Tan K.S. Effects of Epigallocatechin gallate against Enterococcus faecalis biofilm and virulence. Arch. Oral Biol. 2015 60 3 393 399 10.1016/j.archoralbio.2014.11.014 25526623
    [Google Scholar]
  42. Hussain M.S. Altamimi A.S.A. Afzal M. Almalki W.H. Kazmi I. Alzarea S.I. Gupta G. Shahwan M. Kukreti N. Wong L.S. Kumarasamy V. Subramaniyan V. Kaempferol: Paving the path for advanced treatments in aging-related diseases. Exp. Gerontol. 2024 188 112389 10.1016/j.exger.2024.112389 38432575
    [Google Scholar]
  43. Ansari S. Yamaoka Y. Helicobacter pylori virulence factors exploiting gastric colonization and its pathogenicity. Toxins (Basel) 2019 11 11 677 10.3390/toxins11110677 31752394
    [Google Scholar]
  44. Ansari S. Yamaoka Y. Survival of Helicobacter pylori in gastric acidic territory. Helicobacter 2017 22 4 e12386 10.1111/hel.12386 28402047
    [Google Scholar]
  45. Yu X.D. Zheng R.B. Xie J.H. Su J.Y. Huang X.Q. Wang Y.H. Zheng Y.F. Mo Z.Z. Wu X.L. Wu D.W. Liang Y. Zeng H.F. Su Z.R. Huang P. Biological evaluation and molecular docking of baicalin and scutellarin as Helicobacter pylori urease inhibitors. J. Ethnopharmacol. 2015 162 69 78 10.1016/j.jep.2014.12.041 25557028
    [Google Scholar]
  46. Lv S. Zhu Z. Xiao H. Flavonoids and their metal complexes as potential agents for diabetes mellitus with future perspectives. Crit. Rev. Food Sci. Nutr. 2025 1 31 10.1080/10408398.2025.2461238 39902771
    [Google Scholar]
  47. Kim M.H. Flavonoids inhibit VEGF/bFGF‐induced angiogenesis in vitro by inhibiting the matrix‐degrading proteases. J. Cell. Biochem. 2003 89 3 529 538 10.1002/jcb.10543 12761886
    [Google Scholar]
  48. Potempa M. Potempa J. Protease-dependent mechanisms of complement evasion by bacterial pathogens. bchm 2012 93 9 873 888 10.1515/hsz‑2012‑0174 22944688
    [Google Scholar]
  49. Pan B.W. Xiao J.W. Li S.M. Yang X. Zhou X. Sun Q.W. Chen M. Xie S.X. Sakharkar M.K. Yang J. Zhou Y. Wei Y. Inhibitors of HIV-1 and Cathepsin L proteases identified from the insect gall of Hypericum kouytchense. Pharmaceuticals 2022 15 12 1499 10.3390/ph15121499 36558950
    [Google Scholar]
  50. Susmitha A. Bajaj H. Madhavan Nampoothiri K. The divergent roles of sortase in the biology of Gram-positive bacteria. Cell Surf. 2021 7 100055 10.1016/j.tcsw.2021.100055 34195501
    [Google Scholar]
  51. Oh I. Yang W.Y. Chung S.C. Kim T.Y. Oh K.B. Shin J. In vitro sortase a inhibitory and antimicrobial activity of flavonoids isolated from the roots of Sophora flavescens. Arch. Pharm. Res. 2011 34 2 217 222 10.1007/s12272‑011‑0206‑0 21380804
    [Google Scholar]
  52. Nielsen B.E. Bermudez I. Bouzat C. Flavonoids as positive allosteric modulators of α7 nicotinic receptors. Neuropharmacology 2019 160 107794 10.1016/j.neuropharm.2019.107794 31560909
    [Google Scholar]
  53. Verhamme P. Vanassche T. Peetermans M. Coagulase activity by Staphylococcus aureus: A potential target for therapy? Semin. Thromb. Hemost. 2015 41 4 433 444 10.1055/s‑0035‑1549849 25973589
    [Google Scholar]
  54. Zulkefli N. Che Zahari C.N.M. Sayuti N.H. Kamarudin A.A. Saad N. Hamezah H.S. Bunawan H. Baharum S.N. Mediani A. Ahmed Q.U. Ismail A.F.H. Sarian M.N. Flavonoids as potential wound-healing molecules: Emphasis on pathways perspective. Int. J. Mol. Sci. 2023 24 5 4607 10.3390/ijms24054607 36902038
    [Google Scholar]
  55. Burzyńska P. Sobala Ł. Mikołajczyk K. Jodłowska M. Jaśkiewicz E. Sialic acids as receptors for pathogens. Biomolecules 2021 11 6 831 10.3390/biom11060831 34199560
    [Google Scholar]
  56. Kim YS Ryu YB Curtis-Long MJ Yuk HJ Cho JK Kim JY Flavanones and rotenoids from the roots of Amorpha fruticosa L. that inhibit bacterial neuraminidase. Food. Chem. Toxicol 2011 49 8 1849 10.1016/j.fct.2011.04.038
    [Google Scholar]
  57. Chen P. Li C. Chen L. Li X. Zhu S. Citrus-derived flavanones as neuraminidase inhibitors: In vitro and in silico study. Eur. J. Med. Chem. 2024 277 116758 10.1016/j.ejmech.2024.116758 39151273
    [Google Scholar]
  58. Payne D.J. Warren P.V. Holmes D.J. Ji Y. Lonsdale J.T. Bacterial fatty-acid biosynthesis: A genomics-driven target for antibacterial drug discovery. Drug Discov. Today 2001 6 10 537 544 10.1016/S1359‑6446(01)01774‑3 11369293
    [Google Scholar]
  59. Yao J. Rock C.O. How bacterial pathogens eat host lipids: Implications for the development of fatty acid synthesis therapeutics. J. Biol. Chem. 2015 290 10 5940 5946 10.1074/jbc.R114.636241 25648887
    [Google Scholar]
  60. Pearson J.P. Feldman M. Iglewski B.H. Prince A. Pseudomonas aeruginosa cell-to-cell signaling is required for virulence in a model of acute pulmonary infection. Inf. Immunity 2000 68 7 4331 4 26169404
    [Google Scholar]
  61. Zhang L. Kong Y. Wu D. Zhang H. Wu J. Chen J. Three flavonoids targeting the beta-hydroxyacyl-acyl carrier protein dehydratase from Helicobacter pylori: Crystal structure characterization with enzymatic inhibition assay. Protein Sci. 2008 17 11 1971 10.1110/ps.036186.108
    [Google Scholar]
  62. Jeong K.W. Lee J.Y. Kang D.I. Lee J.U. Shin S.Y. Kim Y. Screening of flavonoids as candidate antibiotics against Enterococcus faecalis J. Nat. Prod 2009 72 4 719 724 10.1021/np800698d 19236029
    [Google Scholar]
  63. Dzoyem J.P. Hamamoto H. Ngameni B. Ngadjui B.T. Sekimizu K. Antimicrobial action mechanism of flavonoids from Dorstenia species. Drug Discov. Ther. 2013 7 2 66 72 23715504
    [Google Scholar]
  64. Xu X. Zhou X.D. Wu C.D. Tea catechin epigallocatechin gallate inhibits Streptococcus mutans biofilm formation by suppressing gtf genes. Arch. Oral Biol. 2012 57 6 678 683 10.1016/j.archoralbio.2011.10.021 22169220
    [Google Scholar]
  65. Silva L.N. Zimmer K.R. Macedo A.J. Trentin D.S. Plant natural products targeting bacterial virulence factors. Chem. Rev. 2016 116 16 9162 9236 27437994
    [Google Scholar]
  66. Menzel E.J. Farr C. Hyaluronidase and its substrate hyaluronan: Biochemistry, biological activities and therapeutic uses. Cancer Lett. 1998 131 1 3 11 10.1016/S0304‑3835(98)00195‑5 9839614
    [Google Scholar]
  67. Tao Z. Wang H. Ke K. Shi D. Zhu L. Flavone inhibits Staphylococcus aureus virulence via inhibiting the sae two component system. Microb. Pathog. 2023 180 106128 10.1016/j.micpath.2023.106128 37148922
    [Google Scholar]
  68. Liu Z. Pan Y. Li X. Jie J. Zeng M. Chemical composition, antimicrobial and anti-quorum sensing activities of pummelo peel flavonoid extract. Ind. Crops Prod. 2017 109 862 868 10.1016/j.indcrop.2017.09.054
    [Google Scholar]
  69. Paczkowski J.E. Mukherjee S. McCready A.R. Cong J.P. Aquino C.J. Kim H. Henke B.R. Smith C.D. Bassler B.L. Flavonoids suppress Pseudomonas aeruginosa virulence through allosteric inhibition of quorum-sensing receptors. J. Biol. Chem. 2017 292 10 4064 4076 10.1074/jbc.M116.770552 28119451
    [Google Scholar]
  70. Amin M.U. Khurram M. Khattak B. Khan J. Antibiotic additive and synergistic action of rutin, morin and quercetin against methicillin resistant Staphylococcus aureus. BMC Complement. Altern. Med. 2015 15 1 59 10.1186/s12906‑015‑0580‑0 25879586
    [Google Scholar]
  71. Sathiya Deepika M. Thangam R. Sakthidhasan P. Arun S. Sivasubramanian S. Thirumurugan R. Combined effect of a natural flavonoid rutin from Citrus sinensis and conventional antibiotic gentamicin on Pseudomonas aeruginosa biofilm formation. Food Control 2018 90 282 294 10.1016/j.foodcont.2018.02.044
    [Google Scholar]
  72. Zhang L. Tian X. Sun L. Mi K. Wang R. Gong F. Huang L. Bacterial efflux pump inhibitors reduce antibiotic resistance. Pharmaceutics 2024 16 2 170 10.3390/pharmaceutics16020170 38399231
    [Google Scholar]
  73. Veiko A.G. Olchowik-Grabarek E. Sekowski S. Roszkowska A. Lapshina E.A. Dobrzynska I. Zamaraeva M. Zavodnik I.B. Antimicrobial activity of quercetin, naringenin and catechin: Flavonoids inhibit Staphylococcus aureus-induced hemolysis and modify membranes of bacteria and erythrocytes. Molecules 2023 28 3 1252 10.3390/molecules28031252 36770917
    [Google Scholar]
  74. Wang L.H. Zeng X.A. Wang M.S. Brennan C.S. Gong D. Modification of membrane properties and fatty acids biosynthesis-related genes in Escherichia coli and Staphylococcus aureus: Implications for the antibacterial mechanism of naringenin. Biochim. Biophys. Acta Biomembr. 2018 1860 2 481 490 10.1016/j.bbamem.2017.11.007 29138066
    [Google Scholar]
  75. Shamsudin N.F. Ahmed Q.U. Mahmood S. Ali Shah S.A. Khatib A. Mukhtar S. Alsharif M.A. Parveen H. Zakaria Z.A. Antibacterial effects of flavonoids and their structure-activity relationship study: A comparative interpretation. Molecules 2022 27 4 1149 10.3390/molecules27041149 35208939
    [Google Scholar]
  76. Badshah S.L. Ullah A. New developments in non-quinolone-based antibiotics for the inhibiton of bacterial gyrase and topoisomerase IV. Eur. J. Med. Chem. 2018 152 393 400 10.1016/j.ejmech.2018.04.059 29751233
    [Google Scholar]
  77. Ngueyem T.A. Brusotti G. Caccialanza G. Finzi P.V. The genus Bridelia: A phytochemical and ethnopharmacological review. J. Ethnopharmacol. 2009 124 3 339 349 10.1016/j.jep.2009.05.019 19477259
    [Google Scholar]
  78. Ahmad A. Tandon S. Xuan T.D. Nooreen Z. A review on phytoconstituents and biological activities of Cuscuta species. Biomed. Pharmacother. 2017 92 772 795 10.1016/j.biopha.2017.05.124
    [Google Scholar]
  79. Al-Huqail A.A. Behiry S.I. Salem M.Z.M. Ali H.M. Siddiqui M.H. Salem A.Z.M. Antifungal, antibacterial, and antioxidant activities of Acacia Saligna (Labill.) H. L. Wendl. Flower extract: HPLC analysis of phenolic and flavonoid compounds. Molecules 2019 24 4 700 10.3390/molecules24040700 30781352
    [Google Scholar]
  80. Metoui M. Essid A. Bouzoumita A. Ferchichi A. Chemical composition, antioxidant and antibacterial activity of tunisian date palm seed. Pol. J. Environ. Stud. 2019 28 1 10.15244/pjoes/84918
    [Google Scholar]
  81. Geethalakshmi R. Sundaramurthi J.C. Sarada D.V.L. Antibacterial activity of flavonoid isolated from Trianthema decandra against Pseudomonas aeruginosa and molecular docking study of FabZ. Microb. Pathog. 2018 121 87 92 10.1016/j.micpath.2018.05.016 29763727
    [Google Scholar]
  82. Zhao X. Cui X. Yang Y. Zhu L. Li L. Kong X. Synergistic effect of Quercetin on antibacterial activity of florfenicol against Aeromonas hydrophila in vitro and in vivo. Antibiotics 2022 11 7 929 10.3390/antibiotics11070929 35884183
    [Google Scholar]
  83. Aleebrahim-Dehkordy E. Rafieian-kopaei M. Amini-Khoei H. Abbasi S. In vitro evaluation of antioxidant activity and antibacterial effects and measurement of total phenolic and flavonoid contents of Quercus brantii L. fruit extract. J. Diet. Suppl. 2019 16 4 408 416 10.1080/19390211.2018.1470126 29958029
    [Google Scholar]
  84. Donadio G. Mensitieri F. Santoro V. Parisi V. Bellone M.L. De Tommasi N. Izzo V. Dal Piaz F. Interactions with microbial proteins driving the antibacterial activity of flavonoids. Pharmaceutics 2021 13 5 660 10.3390/pharmaceutics13050660 34062983
    [Google Scholar]
  85. Das S. Tanwar J. Hameed S. Fatima Z. Manesar G. Antimicrobial potential of epigallocatechin-3-gallate (EGCG): A green tea polyphenol. J. Biochem. Pharmacol. Res. 2014 2 167 174
    [Google Scholar]
  86. Förster C. Handrick V. Ding Y. Nakamura Y. Paetz C. Schneider B. Castro-Falcón G. Hughes C.C. Luck K. Poosapati S. Kunert G. Huffaker A. Gershenzon J. Schmelz E.A. Köllner T.G. Biosynthesis and antifungal activity of fungus-induced O -methylated flavonoids in maize. Plant Physiol. 2022 188 1 167 190 10.1093/plphys/kiab496 34718797
    [Google Scholar]
  87. Campoy S. Adrio J.L. Antifungals. Biochem. Pharmacol. 2017 133 86 96 10.1016/j.bcp.2016.11.019 27884742
    [Google Scholar]
  88. Ferraz H.O. Silva M.G. Carvalho R. Suffredini I.B. Kato E. Arakaki F. Phytochemical study and evaluation of the antimicrobial activity and cytotoxicity of Cuscuta racemosa. Rev. Bras. Farmacogn. 2011 21 41 46 10.1590/S0102‑695X2011005000005
    [Google Scholar]
  89. Jeon J. Kim J.H. Lee C.K. Oh C.H. Song H.J. The antimicrobial activity of (-)-epigallocatehin-3-gallate and green tea extracts against Pseudomonas aeruginosa and Escherichia coli isolated from skin wounds. Ann Dermatol. 2014 26 5 564 569 10.3390/molecules27082494 25324647
    [Google Scholar]
  90. Nguyen T.L.A. Bhattacharya D. Antimicrobial activity of quercetin: An approach to its mechanistic principle. Molecules 2022 27 8 27 10.3390/antibiotics1109122 35458691
    [Google Scholar]
  91. Ivanov M. Novović K. Malešević M. Dinić M. Stojković D. Jovčić B. Soković M. Polyphenols as Inhibitors of antibiotic resistant bacteria-mechanisms underlying rutin interference with bacterial virulence. Pharmaceuticals 2022 15 3 15 35337182
    [Google Scholar]
  92. Jubair N. Abdullah N.H. Mahdi Y.K. Fatima A. Evaluation of Catechin synergistic and antibacterial efficacy on biofilm formation and acrA gene expression of uropathogenic E. coli clinical isolates. Antibiotics 2022 11 9 1223 10.3390/antibiotics11091223
    [Google Scholar]
  93. Feng L. Maddox M.M. Alam M.Z. Tsutsumi L.S. Narula G. Bruhn D.F. Wu X. Sandhaus S. Lee R.B. Simmons C.J. Tse-Dinh Y.C. Hurdle J.G. Lee R.E. Sun D. Synthesis, structure-activity relationship studies, and antibacterial evaluation of 4-chromanones and chalcones, as well as olympicin A and derivatives. J. Med. Chem. 2014 57 20 8398 8420 10.1021/jm500853v 25238443
    [Google Scholar]
  94. Omosa L.K. Midiwo J.O. Mbaveng A.T. Tankeo S.B. Seukep J.A. Voukeng I.K. Dzotam J.K. Isemeki J. Derese S. Omolle R.A. Efferth T. Kuete V. Antibacterial activities and structure-activity relationships of a panel of 48 compounds from Kenyan plants against multidrug resistant phenotypes. Springerplus 2016 5 1 901 10.1186/s40064‑016‑2599‑1 27386347
    [Google Scholar]
  95. Song M. Liu Y. Li T. Liu X. Hao Z. Ding S. Plant natural flavonoids against multidrug resistant pathogens. Adv. Sci. (Weinh.) 2021 8 15 e2100749 10.1002/advs.202100749
    [Google Scholar]
  96. Farooq S. Ngaini Z. Mortadza N.A. Microwave‐assisted synthesis and molecular docking study of heteroaromatic chalcone derivatives as potential antibacterial agents. Bull. Korean Chem. Soc. 2020 41 918 924
    [Google Scholar]
  97. Bansal S. Choudhary S. Sharma M. Kumar S.S. Lohan S. Bhardwaj V. Syan N. Jyoti S. Tea: A native source of antimicrobial agents. Food Res. Int. 2013 53 2 568 584 10.1016/j.foodres.2013.01.032
    [Google Scholar]
  98. Osorio M. Carvajal M. Vergara A. Butassi E. Zacchino S. Mascayano C. Montoya M. Mejías S. Martín M.C.S. Vásquez-Martínez Y. Prenylated flavonoids with potential antimicrobial activity: Synthesis, biological activity, and in silico study. Int. J. Mol. Sci. 2021 22 11 5472 10.3390/ijms22115472 34067346
    [Google Scholar]
  99. Zhong L. Zhou L. Zhou Y. Chen Y. Sui P. Wang J. Wang M. Antimicrobial flavonoids from the twigs of Populus nigra × Populus deltoides. Nat. Prod. Res. 2012 26 4 307 313 10.1080/14786411003675667 21416454
    [Google Scholar]
  100. Hummelova J. Rondevaldova J. Balastikova A. Lapcik O. Kokoska L. The relationship between structure and in vitro antibacterial activity of selected isoflavones and their metabolites with special focus on antistaphylococcal effect of demethyltexasin. Lett. Appl. Microbiol. 2015 60 3 242 247 10.1111/lam.12361 25421722
    [Google Scholar]
  101. Bibi R. Sadiq A. Mughal E.U. Synthesis, biological evaluation, and SAR studies of varyingly substituted 4-thioflavonols. Open J. Med. Chem. 2022 12 2 15 25 10.4236/ojmc.2022.122002
    [Google Scholar]
  102. Kumar S. Pandey A.K. Chemistry and biological activities of flavonoids: An overview. ScientificWorldJournal 2013 2013 1 162750 10.1155/2013/162750 24470791
    [Google Scholar]
  103. Cermak R. Effect of dietary flavonoids on pathways involved in drug metabolism. Expert Opin. Drug Metab. Toxicol. 2008 4 1 17 35 10.1517/17425255.4.1.17 18370856
    [Google Scholar]
  104. Borges A. Saavedra M.J. Simões M. Insights on antimicrobial resistance, biofilms and the use of phytochemicals as new antimicrobial agents. Curr. Med. Chem. 2015 22 21 2590 2614 26028341
    [Google Scholar]
  105. Waditzer M. Bucar F. Flavonoids as inhibitors of bacterial efflux pumps. Molecules 2021 26 22 6904 10.3390/molecules26226904 34833994
    [Google Scholar]
  106. Tomou E.M. Papakyriakopoulou P. Saitani E.M. Valsami G. Pippa N. Skaltsa H. Recent advances in nanoformulations for quercetin delivery. Pharmaceutics 2023 15 6 15 37376104
    [Google Scholar]
  107. Salla M. Karaki N. El Kaderi B. Ayoub A.J. Younes S. Abou Chahla M.N. Baksh S. El Khatib S. Enhancing the bioavailability of Resveratrol: Combine it, derivatize it, or encapsulate it? Pharmaceutics 2024 16 4 569 10.3390/pharmaceutics16040569 38675230
    [Google Scholar]
  108. Syahputra R.A. Dalimunthe A. Utari Z.D. Halim P. Sukarno M.A. Zainalabidin S. Nanotechnology and flavonoids: Current research and future perspectives on cardiovascular health. J. Funct. Foods 2024 120 106355
    [Google Scholar]
  109. Dehbanipour R. Ghalavand Z. Anti-virulence therapeutic strategies against bacterial infections: Recent advances. Germs 2022 12 2 262 275 36504617
    [Google Scholar]
  110. Metwaly A.M. Saleh M.M. Alsfouk B.A. Ibrahim I.M. Abd-Elraouf M. Elkaeed E.B. Eissa I.H. Anti-virulence potential of patuletin, a natural flavone, against Staphylococcus aureus: In vitro and In silico investigations. Heliyon 2024 10 2 e24075 38293404
    [Google Scholar]
  111. Al-Khayri J.M. Sahana G.R. Nagella P. Joseph B.V. Alessa F.M. Al-Mssallem M.Q. Flavonoids as potential anti-inflammatory molecules: A review. Molecules 2022 27 9 2901 10.3390/molecules27092901 35566252
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010384002250628163849
Loading
/content/journals/cpb/10.2174/0113892010384002250628163849
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: antibacterial ; mechanism of action ; flavonoids ; Antibiotic resistance ; antiviral ; antifungal
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test