Skip to content
2000
image of Spray Drying: A Promising Technique for Inhalable Vaccine Development

Abstract

In the pursuit of innovative vaccine delivery methods, this review explores the potential of spray drying for formulating inhalable vaccines. Traditional vaccine approaches face challenges in administration, storage, and accessibility, especially in resource-limited settings. Inhalable vaccines, utilizing techniques like spray drying, offer a promising solution. By bypassing systemic circulation and directly targeting the respiratory mucosa, inhalable vaccines can induce robust mucosal and systemic immune responses. Spray drying, a versatile technique, is particularly well-suited for formulating inhalable vaccines. It transforms liquid vaccine formulations into finely dispersed powders, enabling efficient delivery to the lungs. This review delves into the unique characteristics of spray-dried particles, their impact on immune system activation, and their role in overcoming traditional vaccine limitations. The exploration emphasizes the potential for spray drying to revolutionize vaccine development, providing a comprehensive overview of its applications and contributions to improving global public health.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010352443250402184623
2025-07-29
2025-09-19
Loading full text...

Full text loading...

References

  1. Ellwanger J.H. Veiga A.B.G. Kaminski V.L. Valverde-Villegas J.M. Freitas A.W.Q. Chies J.A.B. Control and prevention of infectious diseases from a One Health perspective. Genet. Mol. Biol. 2021 44 1 suppl 1 e20200256 10.1590/1678‑4685‑gmb‑2020‑0256 33533395
    [Google Scholar]
  2. Schrager L.K. Harris R.C. Vekemans J. Research and development of new tuberculosis vaccines: A review. F1000 Res. 2018 7 1732 10.12688/f1000research.16521.1 30613395
    [Google Scholar]
  3. Heida R. Akkerman R. Silva J.P.H. Lakerveld A.J. Ortiz D. Bigogno C. Gasbarri M. Kasteren V.P.B. Stellacci F. Frijlink H.W. Huckriede A.L.W. Hinrichs W.L.J. Development of an inhalable antiviral powder formulation against respiratory syncytial virus. J. Control. Release 2023 357 264 273 10.1016/j.jconrel.2023.03.059 37015293
    [Google Scholar]
  4. Dotiwala F. Upadhyay A.K. Next generation mucosal vaccine strategy for respiratory pathogens. Vaccines 2023 11 10 1585 10.3390/vaccines11101585 37896988
    [Google Scholar]
  5. Challener C. Inhalation vaccine development. Pharm. Technol. 2023 47 1 26 29
    [Google Scholar]
  6. Kanojia G. Have R. Soema P.C. Frijlink H. Amorij J.P. Kersten G. Developments in the formulation and delivery of spray dried vaccines. Hum. Vaccin. Immunother. 2017 13 10 2364 2378 10.1080/21645515.2017.1356952 28925794
    [Google Scholar]
  7. Poozesh S. Connaughton P. Sides S. Lechuga-Ballesteros D. Patel S.M. Manikwar P. Spray drying process challenges and considerations for inhaled biologics- a review. J. Pharm. Sci. 2024 Dec S0022354924006002
    [Google Scholar]
  8. Ghaemmaghamian Z. Zarghami R. Walker G. O’Reilly E. Ziaee A. Stabilizing vaccines via drying: Quality by design considerations. Adv. Drug Deliv. Rev. 2022 187 114313 10.1016/j.addr.2022.114313 35597307
    [Google Scholar]
  9. Amorij J-P. Huckriede A. Wilschut J. Frijlink H.W. Hinrichs W.L.J. Development of stable influenza vaccine powder formulations: Challenges and possibilities. Pharm. Res. 2008 25 6 1256 1273 10.1007/s11095‑008‑9559‑6 18338241
    [Google Scholar]
  10. Bot A.I. Smith D.J. Bot S. Dellamary L. Tarara T.E. Harders S. Phillips W. Weers J.G. Woods C.M. Receptor-mediated targeting of spray-dried lipid particles coformulated with immunoglobulin and loaded with a prototype vaccine. Pharm. Res. 2001 18 7 971 979 10.1023/A:1010988311640 11496957
    [Google Scholar]
  11. Smith D.J. Bot S. Dellamary L. Bot A. Evaluation of novel aerosol formulations designed for mucosal vaccination against influenza virus. Vaccine 2003 21 21-22 2805 2812 10.1016/S0264‑410X(03)00224‑X 12798621
    [Google Scholar]
  12. Sievers B.L. Sievers R.E. Sievers E.L. Inundative, dry-powder, inhaled measles vaccination to prevent deaths of young children in war-torn regions. Open Forum Infect. Dis. 2023 10 6 ofad302 10.1093/ofid/ofad302 37383252
    [Google Scholar]
  13. Kanojia G. Willems G.J. Frijlink H.W. Kersten G.F.A. Soema P.C. Amorij J.P. A design of experiment approach to predict product and process parameters for a spray dried influenza vaccine. Int. J. Pharm. 2016 511 2 1098 1111 10.1016/j.ijpharm.2016.08.022 27523619
    [Google Scholar]
  14. Tomar J. Born P.A. Frijlink H.W. Hinrichs W.L.J. Dry influenza vaccines: Towards a stable, effective and convenient alternative to conventional parenteral influenza vaccination. Expert Rev. Vaccines 2016 15 11 1431 1447 10.1080/14760584.2016.1182869 27118428
    [Google Scholar]
  15. Adjuvants and vaccines. 2025 Available from: https://www.cdc.gov/vaccine-safety/about/adjuvants.html#:~:text=In%20other%20words%2C%20adjuvants%20help,safely%20in%20vaccines%20for%20decades
  16. Saboo S. Tumban E. Peabody J. Wafula D. Peabody D.S. Chackerian B. Muttil P. Optimized formulation of a thermostable spray-dried virus-like particle vaccine against human papillomavirus. Mol. Pharm. 2016 13 5 1646 1655 10.1021/acs.molpharmaceut.6b00072 27019231
    [Google Scholar]
  17. Yum J.S. Ahn B.C. Jo H.J. Kim D.Y. Kim K.H. Kim H.S. Sung Y.C. Yoon J. Morrey J. Moon H.M. Use of pre-S protein-containing hepatitis B virus surface antigens and a powerful adjuvant to develop an immune therapy for chronic hepatitis B virus infection. Clin. Vaccine Immunol. 2012 19 2 120 127 10.1128/CVI.05355‑11 22155769
    [Google Scholar]
  18. Santos D. Maurício A.C. Sencadas V. Santos J.D. Fernandes M.H. Gomes P.S. An overview. Biomaterials - Physics and Chemistry Pignatello R. Musumeci T. London, UK IntechOpen 2018
    [Google Scholar]
  19. Li Z. Sun C. Naeem A. Li Q. Yang L. Jin Z. Guan Y. Chen L. Zhu W. Ming L. Advancements in spray drying, part II: From configuration to variegated applications in pharmaceuticals and chemical processing. Dry. Technol. 2024 42 16 2328 2347 10.1080/07373937.2024.2422483
    [Google Scholar]
  20. Jayaprakash P. Maudhuit A. Gaiani C. Desobry S. Encapsulation of bioactive compounds using competitive emerging techniques: Electrospraying, nano spray drying, and electrostatic spray drying. J. Food Eng. 2023 339 111260 10.1016/j.jfoodeng.2022.111260
    [Google Scholar]
  21. Szczap J.P. Jacobs I.C. Atomization and spray drying processes. Microencapsulation in the Food Industry. Amsterdam, Netherlands Elsevier 2023 59 71 10.1016/B978‑0‑12‑821683‑5.00017‑0
    [Google Scholar]
  22. Boel E. Koekoekx R. Dedroog S. Babkin I. Vetrano M.R. Clasen C. Van den Mooter G. Unraveling particle formation: From single droplet drying to spray drying and electrospraying. Pharmaceutics 2020 12 7 625 10.3390/pharmaceutics12070625 32635464
    [Google Scholar]
  23. Wu H.Y. Sun C.B. Liu N. Effects of different cryoprotectants on microemulsion freeze-drying. Innov. Food Sci. Emerg. Technol. 2019 54 28 33 10.1016/j.ifset.2018.12.007
    [Google Scholar]
  24. Alhajj N. O’Reilly N.J. Cathcart H. Designing enhanced spray dried particles for inhalation: A review of the impact of excipients and processing parameters on particle properties. Powder Technol. 2021 384 313 331 10.1016/j.powtec.2021.02.031
    [Google Scholar]
  25. Kwon Y.B. Kang J.H. Han C.S. Kim D.W. Park C.W. The effect of particle size and surface roughness of spray-dried bosentan microparticles on aerodynamic performance for dry powder inhalation. Pharmaceutics 2020 12 8 765 10.3390/pharmaceutics12080765 32823545
    [Google Scholar]
  26. Saha T. Sinha S. Harfoot R. Quiñones-Mateu M.E. Das S.C. Manipulation of spray-drying conditions to develop an inhalable ivermectin dry powder. Pharmaceutics 2022 14 7 1432 10.3390/pharmaceutics14071432 35890327
    [Google Scholar]
  27. Schuijs M.J. Hammad H. Lambrecht B.N. Professional and ‘Amateur’ antigen-presenting cells in type 2 immunity. Trends Immunol. 2019 40 1 22 34 10.1016/j.it.2018.11.001 30502024
    [Google Scholar]
  28. Ohtake S. Martin R.A. Yee L. Chen D. Kristensen D.D. Lechuga-Ballesteros D. Truong-Le V. Heat-stable measles vaccine produced by spray drying. Vaccine 2010 28 5 1275 1284 10.1016/j.vaccine.2009.11.024 19944152
    [Google Scholar]
  29. Kanojia G. Raeven R.H.M. van der Maas L. Bindels T.H.E. Riet V.E. Metz B. Soema P.C. Have T.R. Frijlink H.W. Amorij J.P. Kersten G.F.A. Development of a thermostable spray dried outer membrane vesicle pertussis vaccine for pulmonary immunization. J. Control. Release 2018 286 167 178 10.1016/j.jconrel.2018.07.035 30048656
    [Google Scholar]
  30. Kanojia G. Have T.R. Brugmans D. Soema P.C. Frijlink H.W. Amorij J.P. Kersten G. The effect of formulation on spray dried Sabin inactivated polio vaccine. Eur. J. Pharm. Biopharm. 2018 129 21 29 10.1016/j.ejpb.2018.05.021 29787800
    [Google Scholar]
  31. Jones R.M. Burke M. Dubose D. Chichester J.A. Manceva S. Horsey A. Streatfield S.J. Breit J. Yusibov V. Stability and pre-formulation development of a plant-produced anthrax vaccine candidate. Vaccine 2017 35 41 5463 5470 10.1016/j.vaccine.2016.12.009 28117174
    [Google Scholar]
  32. Pastor M. Esquisabel A. Talavera A. Año G. Fernández S. Cedré B. Infante J.F. Callicó A. Pedraz J.L. An approach to a cold chain free oral cholera vaccine: in vitro and in vivo characterization of Vibrio cholerae gastro-resistant microparticles. Int. J. Pharm. 2013 448 1 247 258 10.1016/j.ijpharm.2013.02.057 23518363
    [Google Scholar]
  33. Sou T. Morton D.A.V. Williamson M. Meeusen E.N. Kaminskas L.M. McIntosh M.P. Spray-dried influenza antigen with trehalose and leucine produces an aerosolizable powder vaccine formulation that induces strong systemic and mucosal immunity after pulmonary administration. J. Aerosol Med. Pulm. Drug Deliv. 2015 28 5 361 371 10.1089/jamp.2014.1176 25714115
    [Google Scholar]
  34. Kunda N.K. Alfagih I.M. Miyaji E.N. Figueiredo D.B. Gonçalves V.M. Ferreira D.M. Dennison S.R. Somavarapu S. Hutcheon G.A. Saleem I.Y. Pulmonary dry powder vaccine of pneumococcal antigen loaded nanoparticles. Int. J. Pharm. 2015 495 2 903 912 10.1016/j.ijpharm.2015.09.034 26387622
    [Google Scholar]
  35. Figueiredo D.B. Kaneko K. Rodrigues T.C. MacLoughlin R. Miyaji E.N. Saleem I. Gonçalves V.M. Pneumococcal surface protein a-hybrid nanoparticles protect mice from lethal challenge after mucosal immunization targeting the lungs. Pharmaceutics 2022 14 6 1238 10.3390/pharmaceutics14061238 35745810
    [Google Scholar]
  36. Mehanny M. Boese A. Bornamehr B. Hoppstädter J. Presser V. Kiemer A.K. Lehr C.M. Fuhrmann G. Spray-dried pneumococcal membrane vesicles are promising candidates for pulmonary immunization. Int. J. Pharm. 2022 621 121794 10.1016/j.ijpharm.2022.121794 35525468
    [Google Scholar]
  37. Kirby D.J. Rosenkrands I. Agger E.M. Andersen P. Coombes A.G.A. Perrie Y. PLGA microspheres for the delivery of a novel subunit TB vaccine. J. Drug Target. 2008 16 4 282 293 10.1080/10611860801900462 18446607
    [Google Scholar]
  38. Ye T. Jiao Z. Li X. He Z. Li Y. Yang F. Zhao X. Wang Y. Huang W. Qin M. Feng Y. Qiu Y. Yang W. Hu L. Hu Y. Zhai Y. Wang E. Yu D. Wang S. Yue H. Wang Y. Wang H. Zhu L. Ma G. Wei W. Inhaled SARS-CoV-2 vaccine for single-dose dry powder aerosol immunization. Nature 2023 624 7992 630 638 10.1038/s41586‑023‑06809‑8 38093012
    [Google Scholar]
  39. Preston K.B. Randolph T.W. Stability of lyophilized and spray dried vaccine formulations. Adv. Drug Deliv. Rev. 2021 171 50 61 10.1016/j.addr.2021.01.016 33484735
    [Google Scholar]
  40. Amelia R. Wu W.D. Cashion J. Bao P. Zheng R. Chen X.D. Selomulya C. Microfluidic spray drying as a versatile assembly route of functional particles. Chem. Eng. Sci. 2011 Aug S0009250911005379 10.1016/j.ces.2011.07.059
    [Google Scholar]
  41. Lian S. Lamprou D. Zhao M. Electrospinning technologies for the delivery of Biopharmaceuticals: Current status and future trends. Int. J. Pharm. 2024 651 123641 10.1016/j.ijpharm.2023.123641 38029864
    [Google Scholar]
  42. Sou T. Bergström C.A.S. Contemporary formulation development for inhaled pharmaceuticals. J. Pharm. Sci. 2021 110 1 66 86 10.1016/j.xphs.2020.09.006 32916138
    [Google Scholar]
  43. Gomez M. Ahmed M. Das S. McCollum J. Mellett L. Swanson R. Gupta A. Carrigy N.B. Wang H. Barona D. Bachchhav S. Gerhardt A. Press C. Archer M.C. Liang H. Seydoux E. Kramer R.M. Kuehl P.J. Vehring R. Khader S.A. Fox C.B. Development and testing of a spray-dried tuberculosis vaccine candidate in a mouse model. Front. Pharmacol. 2022 12 799034 10.3389/fphar.2021.799034 35126135
    [Google Scholar]
  44. Ziaee A. Albadarin A.B. Padrela L. Ung M.T. Femmer T. Walker G. O’Reilly E. A rational approach towards spray drying of biopharmaceuticals: The case of lysozyme. Powder Technol. 2020 366 206 215 10.1016/j.powtec.2020.02.057
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010352443250402184623
Loading
/content/journals/cpb/10.2174/0113892010352443250402184623
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test