Skip to content
2000
image of Flexible Pterostilbene Nanoliposomes for Enhanced Skin Delivery: 
Elasticity and Brightening Potential

Abstract

Introduction

This study aimed to develop a local drug delivery system using pterostilbene (PTS) flexible nanoliposomes (FNL) to overcome its limitations, such as poor water solubility and instability under light and oxygen. The research focused on optimizing deformability and transdermal delivery using dipotassium glycyrrhizinate and a single-chain surfactant as membrane softeners.

Methods

The encapsulation process and formulation of PTS FNL were systematically optimized through single-factor and orthogonal experiments. The physicochemical properties, stability, and transdermal performance of the optimized FNL were evaluated using dynamic light scattering, transmission electron microscopy (TEM), Turbiscan stability analysis, and / permeation studies.

Results

The optimized PTS FNL exhibited high encapsulation efficiency (96.49 ± 0.7%), a particle size of (60.11 ± 0.54 nm), PDI (0.237), a zeta potential of (-10.16 ± 0.54 mV), and good stability at 4°C and 25°C for three months. TEM confirmed spherical morphology, while studies demonstrated superior skin retention and prolonged permeation compared to PTS nanoliposomes (NL) and GTCC solutions. tests on human volunteers revealed that 0.4% PTS FNL cream significantly improved skin elasticity and chromaticity over 28 days without adverse effects.

Discussion

The enhanced deformability of PTS FNL contributed to its improved transdermal delivery, making it a promising candidate for cosmetic applications. The study highlights the effectiveness of membrane softeners in optimizing liposomal formulations, though long-term stability under varied conditions warrants further investigation.

Conclusion

The developed PTS FNL system significantly enhances skin permeation and stability, demonstrating great potential for cosmetic use in anti-aging and skin-brightening formulations. This approach provides a viable strategy for improving the delivery of poorly soluble active ingredients.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010392765250919183207
2025-10-21
2025-12-14
Loading full text...

Full text loading...

References

  1. Gómez-Zorita S. Milton-Laskíbar I. Aguirre L. Fernández-Quintela A. Xiao J. Portillo M.P. Effects of pterostilbene on diabetes, liver steatosis and serum lipids. Curr. Med. Chem. 2021 28 2 238 252 10.2174/1875533XMTAx3OTcF3 31663469
    [Google Scholar]
  2. Cassiano C. Eletto D. Tosco A. Riccio R. Monti M.C. Casapullo A. Determining the effect of pterostilbene on insulin secretion using chemoproteomics. Molecules 2020 25 12 2885 10.3390/molecules25122885 32585851
    [Google Scholar]
  3. Lin W.S. Leland J.V. Ho C.T. Pan M.H. Occurrence, bioavailability, anti-inflammatory, and anticancer effects of pterostilbene. J. Agric. Food Chem. 2020 68 46 12788 12799 10.1021/acs.jafc.9b07860 32064876
    [Google Scholar]
  4. Wang P. Sang S. Metabolism and pharmacokinetics of resveratrol and pterostilbene. Biofactors 2018 44 1 16 25 10.1002/biof.1410 29315886
    [Google Scholar]
  5. Yeju L. Yuyang Y. Juan L. Xi C. Zhihong Y. Recent advances in synthesis, bioactivity, and pharmacokinetics of pterostilbene, an important analog of resveratrol. Molecules 2020 25 21 5166 10.3390/molecules25215166 33171952
    [Google Scholar]
  6. Kapetanovic I.M. Muzzio M. Huang Z. Thompson T.N. McCormick D.L. Pharmacokinetics, oral bioavailability, and metabolic profile of resveratrol and its dimethylether analog, pterostilbene, in rats. Cancer Chemother. Pharmacol. 2011 68 3 593 601 10.1007/s00280‑010‑1525‑4 21116625
    [Google Scholar]
  7. Majeed M. Majeed S. Jain R. Mundkur L. Rajalakshmi H.R. Lad P.S. Neupane P. An open-label single-arm, monocentric study assessing the efficacy and safety of natural pterostilbene (Pterocarpus marsupium) for skin brightening and antiaging effects. Clin. Cosmet. Investig. Dermatol. 2020 13 105 116 10.2147/CCID.S238358 32099438
    [Google Scholar]
  8. Surien O. Masre S.F. Basri D.F. Ghazali A.R. Chemopreventive effects of oral pterostilbene in multistage carcinogenesis of skin squamous cell carcinoma mouse model induced by DMBA/TPA. Biomedicines 2022 10 11 2743 10.3390/biomedicines10112743 36359262
    [Google Scholar]
  9. Cen Z. Chen Z. Wang D. Zuo Y. Chen X. Chen J. In vitroinvestigation of antiaging efficacy of pterostilbene as cosmetic ingredient. Cosmetics 2025 12 1 23 10.3390/cosmetics12010023
    [Google Scholar]
  10. Yu W. Hu X. Wang M. Pterostilbene inhibited advanced glycation end products (AGEs)-induced oxidative stress and inflammation by regulation of RAGE/MAPK/NF-κB in RAW264.7 cells. J. Funct. Foods 2018 40 272 279 10.1016/j.jff.2017.11.003
    [Google Scholar]
  11. Liu J. Xu J. Jia L. Zhou Y. Fu Q. Wang Y. Mu D. Wang D. Li N. Hou Y. Pterostilbene nanoemulsion promotes Nrf2 signaling pathway to downregulate oxidative stress for treating Alzheimer’s disease. Int. J. Pharm. 2024 655 Apr 124002 10.1016/j.ijpharm.2024.124002 38492898
    [Google Scholar]
  12. Sato D. Shimizu N. Shimizu Y. Akagi M. Eshita Y. Ozaki S. Nakajima N. Ishihara K. Masuoka N. Hamada H. Shimoda K. Kubota N. Synthesis of glycosides of resveratrol, pterostilbene, and piceatannol, and their anti-oxidant, anti-allergic, and neuroprotective activities. Biosci. Biotechnol. Biochem. 2014 78 7 1123 1128 10.1080/09168451.2014.921551 25229845
    [Google Scholar]
  13. Acharya J.D. Ghaskadbi S.S. Protective effect of Pterostilbene against free radical mediated oxidative damage. BMC Complement. Altern. Med. 2013 13 1 238 10.1186/1472‑6882‑13‑238 24070177
    [Google Scholar]
  14. McCormack D. McFadden D. A review of pterostilbene antioxidant activity and disease modification. Oxid. Med. Cell. Longev. 2013 2013 1 15 10.1155/2013/575482 23691264
    [Google Scholar]
  15. Remsberg C.M. Yáñez J.A. Ohgami Y. Vega-Villa K.R. Rimando A.M. Davies N.M. Pharmacometrics of pterostilbene: Preclinical pharmacokinetics and metabolism, anticancer, antiinflammatory, antioxidant and analgesic activity. Phytother. Res. 2008 22 2 169 179 10.1002/ptr.2277 17726731
    [Google Scholar]
  16. Ibrahim M.K. Nandha S.R. Patil A.S. Sathaye S. Degani M.S. Kumar B. Checker R. Sharma D. Sandur S.K. Mitochondria-targeted derivative of pterostilbene, a dietary phytoestrogen, exhibits superior cancer cell cytotoxicity via mitochondrial superoxide mediated induction of autophagy. Adv. Redox Res. 2023 8 Jul 100071 10.1016/j.arres.2023.100071
    [Google Scholar]
  17. Zhang L. Zhou G. Song W. Tan X. Guo Y. Zhou B. Jing H. Zhao S. Chen L. Pterostilbene protects vascular endothelial cells against oxidized low-density lipoprotein-induced apoptosis in vitro and in vivo . Apoptosis 2012 17 1 25 36 10.1007/s10495‑011‑0653‑6 21928089
    [Google Scholar]
  18. Benitez S. Puig N. Rives J. Solé A. Sánchez-Quesada J.L. Can electronegative LDL act as a multienzymatic complex? Int. J. Mol. Sci. 2023 24 8 7074 10.3390/ijms24087074 37108253
    [Google Scholar]
  19. Nagarajan S. Mohandas S. Ganesan K. Xu B. Ramkumar K.M. New insights into dietary pterostilbene: Sources, metabolism, and health promotion effects. Molecules 2022 27 19 6316 10.3390/molecules27196316 36234852
    [Google Scholar]
  20. Thiruvengadam M. Venkidasamy B. Subramanian U. Samynathan R. Ali Shariati M. Rebezov M. Girish S. Thangavel S. Dhanapal A.R. Fedoseeva N. Lee J. Chung I.M. Bioactive compounds in oxidative stress-mediated diseases: targeting the NRF2/ARE signaling pathway and epigenetic regulation. Antioxidants 2021 10 12 1859 10.3390/antiox10121859 34942962
    [Google Scholar]
  21. Kim H.J. Park J. Kim S.K. Park H. Kim J.E. Lee S. Autophagy: Guardian of skin barrier. Biomedicines 2022 10 8 1817 10.3390/biomedicines10081817 36009363
    [Google Scholar]
  22. Choi M.S. Chae Y.J. Choi J.W. Chang J.E. Potential therapeutic approaches through modulating the autophagy process for skin barrier dysfunction. Int. J. Mol. Sci. 2021 22 15 7869 10.3390/ijms22157869 34360634
    [Google Scholar]
  23. Liu C. Gu L. Ding J. Meng Q. Li N. Dai G. Li Q. Wu X. Autophagy in skin barrier and immune‐related skin diseases. J. Dermatol. 2021 48 12 1827 1837 10.1111/1346‑8138.16185 34655245
    [Google Scholar]
  24. Chen S.J. Hseu Y.C. Gowrisankar Y.V. Chung Y.T. Zhang Y.Z. Way T.D. Yang H.L. The anti-melanogenic effects of 3-O-ethyl ascorbic acid via Nrf2-mediated α-MSH inhibition in UVA-irradiated keratinocytes and autophagy induction in melanocytes. Free Radic. Biol. Med. 2021 173 151 169 10.1016/j.freeradbiomed.2021.07.030 34314818
    [Google Scholar]
  25. Hseu Y.C. Vudhya Gowrisankar Y. Wang L.W. Zhang Y.Z. Chen X.Z. Huang P.J. Yen H.R. Yang H.L. The in vitro and in vivo depigmenting activity of pterostilbene through induction of autophagy in melanocytes and inhibition of UVA-irradiated α-MSH in keratinocytes via Nrf2-mediated antioxidant pathways. Redox Biol. 2021 44 Aug 102007 10.1016/j.redox.2021.102007 34049220
    [Google Scholar]
  26. Chen R.J. Lee Y.H. Yeh Y.L. Wu W.S. Ho C.T. Li C.Y. Wang B.J. Wang Y.J. Autophagy-inducing effect of pterostilbene: A prospective therapeutic/preventive option for skin diseases. Yao Wu Shi Pin Fen Xi 2017 25 1 125 133 10.1016/j.jfda.2016.10.022 28911530
    [Google Scholar]
  27. Liu J. Fan C. Yu L. Yang Y. Jiang S. Ma Z. Hu W. Li T. Yang Z. Tian T. Duan W. Yu S. Pterostilbene exerts an anti-inflammatory effect via regulating endoplasmic reticulum stress in endothelial cells. Cytokine 2016 77 88 97 10.1016/j.cyto.2015.11.006 26551859
    [Google Scholar]
  28. Basri D.F. Lew L.C. Muralitharan R.V. Nagapan T.S. Ghazali A.R. Pterostilbene inhibits the melanogenesis activity in UVB-irradiated B164A5 cells. Dose Response 2021 19 4 15593258211047651 10.1177/15593258211047651 34840540
    [Google Scholar]
  29. Chamcheu J. Roy T. Uddin M. Banang-Mbeumi S. Chamcheu R.C. Walker A. Liu Y.Y. Huang S. Role and therapeutic targeting of the PI3K/Akt/mTOR signaling pathway in skin cancer: A review of current status and future trends on natural and synthetic agents therapy. Cells 2019 8 8 803 10.3390/cells8080803 31370278
    [Google Scholar]
  30. Chung Y.C. Hyun C.G. Inhibitory effects of pinostilbene hydrate on melanogenesis in b16f10 melanoma cells via ERK and p38 signaling pathways. Int. J. Mol. Sci. 2020 21 13 4732 10.3390/ijms21134732 32630811
    [Google Scholar]
  31. Sercombe L. Veerati T. Moheimani F. Wu S.Y. Sood A.K. Hua S. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 2015 6 Dec 286 10.3389/fphar.2015.00286 26648870
    [Google Scholar]
  32. Guimaraes D. Cavaco-Paulo A. Nogueira E. Design of liposomes as drug delivery system for therapeutic applications. Int. J. Pharm. 2021 601 120571 10.1016/j.ijpharm.2021.120571 33812967
    [Google Scholar]
  33. He Y. Xu L. Pei X. Dong Y. Yang X. Preparation of polydeoxyribonucleotide nanoliposomes and their applicability to cosmetic formulations. Curr Pharm Biotechnol 2025 26 10.2174/0113892010353418250218064202
    [Google Scholar]
  34. Huang Z. Meng H. Xu L. Pei X. Xiong J. Wang Y. Zhan X. Li S. He Y. Liposomes in the cosmetics: Present and outlook. J. Liposome Res. 2024 34 4 715 727 10.1080/08982104.2024.2341139 38712581
    [Google Scholar]
  35. Verma D. Verma S. Blume G. Fahr A. Particle size of liposomes influences dermal delivery of substances into skin. Int. J. Pharm. 2003 258 1-2 141 151 10.1016/S0378‑5173(03)00183‑2 12753761
    [Google Scholar]
  36. Filipczak N. Pan J. Yalamarty S.S.K. Torchilin V.P. Recent advancements in liposome technology. Adv. Drug Deliv. Rev. 2020 156 4 22 10.1016/j.addr.2020.06.022 32593642
    [Google Scholar]
  37. Le N.T.T. Cao V.D. Nguyen T.N.Q. Le T.T.H. Tran T.T. Hoang Thi T.T. Soy lecithin-derived liposomal delivery systems: Surface modification and current applications. Int. J. Mol. Sci. 2019 20 19 4706 10.3390/ijms20194706 31547569
    [Google Scholar]
  38. Wang C. Y. Multidimensional delivery strategies for liposomal transdermal drug delivery systems. ACS Mater. Lett. 2025 7 5 1795 1806 10.1021/acsmaterialslett.4c01064
    [Google Scholar]
  39. He H. F. Li J. Y. Meng H. He Y. F. Pei X. J. Zhang Z. Recent advances in cationic nanoemulsions for drug delivery: Preparation, properties, and applications. Curr. Pharm. Des. 2025 2025 10.2174/0113816128357859250121120216
    [Google Scholar]
  40. Li C. Zhang X. Xinliang Xiaoying Guojian Chen Z. Preparation and characterization of flexible nanoliposomes loaded with daptomycin, a novel antibiotic, for topical skin therapy. Int. J. Nanomedicine 2013 8 1285 1292 10.2147/IJN.S41695 23569376
    [Google Scholar]
  41. Guan Y. Zhu H. Lin M. Zhang Y. He Q. Pan J. Preparation and stability evaluation of flexible nanoliposomes co-encapsulated with black wolfberry anthocyanins and EGCG. Lebensm. Wiss. Technol. 2025 217 Feb 117402 10.1016/j.lwt.2025.117402
    [Google Scholar]
  42. Yanling L.I.U. Hongxia D. Zeli L. Yang H.A.N. Jing H.A.N. Preparation of flexible nanoliposomes of volatile oil from Zanthoxylum schinifolium and its quality evaluation. The Food Industry 2023 44 7 71 76
    [Google Scholar]
  43. Cevc G. Schätzlein A. Richardsen H. Ultradeformable lipid vesicles can penetrate the skin and other semi-permeable barriers unfragmented: Evidence from double label CLSM experiments and direct size measurements. Biochimica Et Biophysica Acta - Biomembranes 2002 1564 1 21 30 10.1016/S0005‑2736(02)00401‑7
    [Google Scholar]
  44. Zhao Y.P. Han J.F. Zhang F.Y. Liao T.T. Na R. Yuan X.F. He G. Ye W. Flexible nano-liposomes-based transdermal hydrogel for targeted delivery of dexamethasone for rheumatoid arthritis therapy. Drug Deliv. 2022 29 1 2269 2282 10.1080/10717544.2022.2096718 35815790
    [Google Scholar]
  45. Park S. Kim H.K. Development of skin-permeable flexible liposome using ergosterol esters containing unsaturated fatty acids. Chem. Phys. Lipids 2023 250 Jan 105270 10.1016/j.chemphyslip.2022.105270 36493880
    [Google Scholar]
  46. Wang Y. Ouyang Q. Chang X. Yang M. He J. Tian Y. Sheng J. Anti-photoaging effects of flexible nanoliposomes encapsulated Moringa oleifera Lam . isothiocyanate in UVB-induced cell damage in HaCaT cells. Drug Deliv. 2022 29 1 871 881 10.1080/10717544.2022.2039802 35277099
    [Google Scholar]
  47. Elsayed M.M.A. Ibrahim M.M. Cevc G. The effect of membrane softeners on rigidity of lipid vesicle bilayers: Derivation from vesicle size changes. Chem. Phys. Lipids 2018 210 98 108 10.1016/j.chemphyslip.2017.10.008 29107604
    [Google Scholar]
  48. El Maghraby G.M. Barry B.W. Williams A.C. Liposomes and skin: From drug delivery to model membranes. Eur. J. Pharm. Sci. 2008 34 4-5 203 222 10.1016/j.ejps.2008.05.002 18572392
    [Google Scholar]
  49. Liu T. Zhen X. Cheng H. Li W. Hao B. Preparation and transdermal diffusion of flexible nanoliposomes of ginkgolide B. Zhongguo Zhong Yao Za Zhi 2009 34 17 2181 2184 19943480
    [Google Scholar]
  50. Zhang H. Thin-film hydration followed by extrusion method for liposome preparation. Methods in Molecular Biology Humana Press New York 2023 57 63 10.1007/978‑1‑0716‑2954‑3_4
    [Google Scholar]
  51. Li W. Antoniadi L. Zhou H. Chen H. Angelis A. Halabalaki M. Skaltsounis L.A. Qi Z. Wang C. Sodium cholate-coated Olea europaea polyphenol nanoliposomes: Preparation, stability, release, and bioactivity. Food Chem. 2025 469 142580 10.1016/j.foodchem.2024.142580 39721438
    [Google Scholar]
  52. Cevc G. Lipid vesicles and other colloids as drug carriers on the skin. Adv. Drug Deliv. Rev. 2004 56 5 675 711 10.1016/j.addr.2003.10.028 15019752
    [Google Scholar]
  53. Du G. Sun X. Ethanol injection method for liposome preparation. Methods Mol. Biol. 2023 2622 65 70 10.1007/978‑1‑0716‑2954‑3_5 36781750
    [Google Scholar]
  54. Chen J. Ma Y. Tao Y. Zhao X. Xiong Y. Chen Z. Tian Y. Formulation and evaluation of a topical liposomal gel containing a combination of zedoary turmeric oil and tretinoin for psoriasis activity. J. Liposome Res. 2021 31 2 130 144 10.1080/08982104.2020.1748646 32223352
    [Google Scholar]
  55. Liu Y. Xu H. Yang S. Zhu J. Li S. Zhang Z. Electrostatic spinning membranes of eugenol liposome-loaded polyvinyl alcohol: Preparation, characterisation and performance studies. Int. J. Food Sci. Technol. 2024 59 10 7580 7588 10.1111/ijfs.17534
    [Google Scholar]
  56. Choo Q.Y. Yeo S.C.M. Ho P.C. Tanaka Y. Lin H.S. Pterostilbene surpassed resveratrol for anti-inflammatory application: Potency consideration and pharmacokinetics perspective. J. Funct. Foods 2014 11 352 362 10.1016/j.jff.2014.10.018
    [Google Scholar]
  57. Kaade W. Rubio S. Bogas-Droy A. de Villedon V. Laurichesse E. Schmitt V. Highly concentrated emulsions containing high loads of pterostilbene. ACS Omega 2023 8 29 25951 25959 10.1021/acsomega.3c01861 37521615
    [Google Scholar]
  58. Surien O. Masre S.F. Basri D.F. Ghazali A.R. Anti-inflammatory and anti-cancer potential of pterostilbene: A review. Asian Pac. J. Trop. Biomed. 2023 13 12 497 506 10.4103/2221‑1691.391155
    [Google Scholar]
  59. Wu Y. Hu Q. Wang X. Cheng H. Yu J. Li Y. Luo J. Zhang Q. Wu J. Zhang G. Pterostilbene attenuates microglial inflammation and brain injury after intracerebral hemorrhage in an OPA1-dependent manner. Front. Immunol. 2023 14 Aug 1172334 10.3389/fimmu.2023.1172334 37614235
    [Google Scholar]
  60. Chen L. Wang K. Liu X. Wang L. Zou H. Hu S. Zhou L. Li R. Cao S. Ruan B. Cui Q. Design, synthesis, in vitro and in vivo biological evaluation of pterostilbene derivatives for anti-inflammation therapy. J. Enzyme Inhib. Med. Chem. 2024 39 1 2315227 10.1080/14756366.2024.2315227 38421003
    [Google Scholar]
  61. Li K. Lin M. Huang K. Han J. Wei L. Miao L. Chen H. Gong Q. Li X. Hu L. Therapeutic effect and mechanism of action of pterostilbene nano drugs in dry eye models. Exp. Eye Res. 2024 241 Apr 109836 10.1016/j.exer.2024.109836 38387712
    [Google Scholar]
  62. Zhou D.-D. Resveratrol and its analogues: Anti-ageing effects and underlying mechanisms. Biochemistry and Cell Biology of Ageing: Part V, Anti-Ageing Interventions Springer 2024 183 203 10.1007/978‑3‑031‑66768‑8_9
    [Google Scholar]
  63. Wu Z. Huang R. Sun W. He B. Wang C. Clinical characteristics, treatment and outcome of subacute cutaneous lupus erythematosus induced by PD-1/PD-L1 inhibitors. Arch. Dermatol. Res. 2024 316 10 722 10.1007/s00403‑024‑03484‑1 39460790
    [Google Scholar]
  64. Zhou X. Li H. Xie Z. METTL3-modified exosomes from adipose-derived stem cells enhance the proliferation and migration of dermal fibroblasts by mediating m6A modification of CCNB1 mRNA. Arch. Dermatol. Res. 2025 317 1 418 10.1007/s00403‑025‑03896‑7 39954139
    [Google Scholar]
  65. Hammoud Z. Gharib R. Fourmentin S. Elaissari A. Greige-Gerges H. New findings on the incorporation of essential oil components into liposomes composed of lipoid S100 and cholesterol. Int. J. Pharm. 2019 561 161 170 10.1016/j.ijpharm.2019.02.022 30836153
    [Google Scholar]
  66. Trivedi R. Umekar M. Kotagale N. Bonde S. Taksande J. Design, evaluation and in vivo pharmacokinetic study of a cationic flexible liposomes for enhanced transdermal delivery of pramipexole. J. Drug Deliv. Sci. Technol. 2021 61 Feb 102313 10.1016/j.jddst.2020.102313
    [Google Scholar]
  67. Zhao C. Kang J. Li Y. Wang Y. Tang X. Jiang Z. Carbon-based stimuli-responsive nanomaterials: Classification and application. Cyborg Bionic Syst. 2023 4 0022 10.34133/cbsystems.0022 37223546
    [Google Scholar]
  68. Zhou J. Zhou L. Chen Z. Sun J. Guo X. Wang H. Zhang X. Liu Z. Liu J. Zhang K. Zhang X. Remineralization and bacterial inhibition of early enamel caries surfaces by carboxymethyl chitosan lysozyme nanogels loaded with antibacterial drugs. J. Dent. 2025 152 Jan 105489 10.1016/j.jdent.2024.105489 39617165
    [Google Scholar]
  69. Antimisiaris S.G. Marazioti A. Kannavou M. Natsaridis E. Gkartziou F. Kogkos G. Mourtas S. Overcoming barriers by local drug delivery with liposomes. Adv. Drug Deliv. Rev. 2021 174 53 86 10.1016/j.addr.2021.01.019 33539852
    [Google Scholar]
  70. Wang X. Cai H. Huang X. Lu Z. Zhang L. Hu J. Tian D. Fu J. Zhang G. Meng Y. Zheng G. Chang C. Formulation and evaluation of a two-stage targeted liposome coated with hyaluronic acid for improving lung cancer chemotherapy and overcoming multidrug resistance. J. Biomater. Sci. Polym. Ed. 2023 34 14 1928 1951 10.1080/09205063.2023.2201815 37060335
    [Google Scholar]
  71. Wang Y. Wu K. Li S. Li X. He Y. In vivo confocal Raman spectroscopy investigation of glabridin liposomes dermal penetration process in human skin. Vib. Spectrosc. 2023 129 Nov 103610 10.1016/j.vibspec.2023.103610
    [Google Scholar]
  72. Yan J. Ying C. Yan W. Li-ying B. Shi-feng Y. Ying Y. Preparation condition optimization of corn yellow pigment nanoliposomes. Food Sci. Technol. 2015 40 5 284 288
    [Google Scholar]
  73. Qian T.U. Preparation and physicochemical properties of cinnamon essential oil liposomes. Food Ferment. Ind. 2023 17 194 201
    [Google Scholar]
  74. Lu M. Zhou J. Wang L. Zhao W. Lu Y. Zhang L. Liu Y. Design and preparation of cross‐linked polystyrene nanoparticles for elastomer reinforcement. J. Nanomater. 2010 2010 1 352914 10.1155/2010/352914
    [Google Scholar]
  75. Danaei M. Dehghankhold M. Ataei S. Hasanzadeh Davarani F. Javanmard R. Dokhani A. Khorasani S. Mozafari M.R. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 2018 10 2 57 10.3390/pharmaceutics10020057 29783687
    [Google Scholar]
  76. Zhang C. Gu C. Peng F. Liu W. Wan J. Xu H. Lam C. Yang X. Preparation and optimization of triptolide-loaded solid lipid nanoparticles for oral delivery with reduced gastric irritation. Molecules 2013 18 11 13340 13356 10.3390/molecules181113340 24172242
    [Google Scholar]
  77. Cheng Liu R.B. Zhao Z. Sun Y. Yu J. Zhang P. Design of a novel felbinac cataplasm with high permeability for the treatment of arthritis. Research Square 2023 1 20 10.21203/rs.3.rs‑2758753/v1
    [Google Scholar]
  78. You J. Meng S. Ning Y-K. Yang L-Q. Zhang X-W. Wang H-N. Li J-J. Yin F-M. Liu J. Zhai Z-Y. Li B. Fan J-C. Chen Z-X. Development and application of an osthole microemulsion hydrogel for external drug evaluation. J. Drug Deliv. Sci. Technol. 2019 54 Dec 101331 10.1016/j.jddst.2019.101331
    [Google Scholar]
  79. Wu Z. Li X. Huang R. He B. Wang C. Clinical features, treatment, and prognosis of pembrolizumab -induced Stevens-Johnson syndrome / toxic epidermal necrolysis. Invest. New Drugs 2025 43 1 74 80 10.1007/s10637‑024‑01499‑z 39752075
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010392765250919183207
Loading
/content/journals/cpb/10.2174/0113892010392765250919183207
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: transdermal ability ; flexible nanoliposomes ; antioxidant ; stability ; skin brightening ; PTS
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test