Skip to content
2000
image of Causal Relationships Between Specific Gut Microbiota Taxa, Plasma 
Metabolites, and Cerebral Small Vessel Disease Risk: A Mendelian 
Randomization Analysis

Abstract

Aims

This study investigates causal relationships between gut microbiota (GM), plasma metabolites, and cerebral small vessel disease (CSVD), with a focus on identifying GM taxa and metabolites that mediate disease risk.

Methods

Summary data from genome-wide association studies on GM (MiBioGen), 1,400 plasma metabolites, and CSVD were analyzed using a two-step Mendelian randomization (MR) approach. The primary analysis utilized inverse-variance weighting, complemented by weighted median, weighted mode, and MR-Egger methods for robustness.

Results

The MR analysis identified 12 GM taxa associated with CSVD risk, including 7 taxa linked to increased risk (Veillonellaceae, Hungatella, Ruminococcus2, Lachnospiraceae UCG010, Streptococcus, Cyanobacteria, Verrucomicrobia) and 5 taxa linked to decreased risk (Faecalibacterium, Alphaproteobacteria, Eubacterium nodatum group, Fusicatenibacter, Rhodospirillales). Additionally, 10 plasma metabolites were causally associated with CSVD risk, with sphingomyelin (d18:2/14:0, d18:1/14:1), nicotinamide, 3-ethylcatechol sulfate (2), sphingosine, and phenylpyruvate-to-4 hydroxyphenylpyruvate ratio linked to increased risk, while phosphate-to-uridine ratio, adenosine 5'-diphosphate (ADP)-toflavin adenine dinucleotide (FAD) ratio, arginine, caffeine-to-theobromine ratio and N-succinylphenylalanine were linked to decreased risk. Mediation analysis identified 8 causal pathways through which plasma metabolites connect GM taxa to CSVD.

Conclusion

These findings underscore the substantial influence of GM and plasma metabolites on CSVD risk, highlighting potential therapeutic targets. Further investigation is needed to elucidate the biological mechanisms underlying these associations.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010373952250510105002
2025-05-20
2025-09-19
Loading full text...

Full text loading...

References

  1. Gao Y. Li D. Lin J. Thomas A.M. Miao J. Chen D. Li S. Chu C. Cerebral small vessel disease: Pathological mechanisms and potential therapeutic targets. Front. Aging Neurosci. 2022 14 961661 10.3389/fnagi.2022.961661 36034144
    [Google Scholar]
  2. Sharrief A. Diagnosis and management of cerebral small vessel disease. Continuum (Minneap. Minn.) 2023 29 2 501 518 37039407
    [Google Scholar]
  3. Wardlaw J.M. Smith C. Dichgans M. Small vessel disease: Mechanisms and clinical implications. Lancet Neurol. 2019 18 7 684 696 31097385
    [Google Scholar]
  4. Nelson J.W. Phillips S.C. Ganesh B.P. Petrosino J.F. Durgan D.J. Bryan R.M. The gut microbiome contributes to blood-brain barrier disruption in spontaneously hypertensive stroke prone rats. FASEB J. 2021 35 2 e21201 33496989
    [Google Scholar]
  5. Shen X. Mu X. Systematic insights into the relationship between the microbiota-gut-brain axis and stroke with the focus on tryptophan metabolism. Metabolites 2024 14 8 399 39195495
    [Google Scholar]
  6. Harshfield E.L. Sands C.J. Tuladhar A.M. de Leeuw F.E. Lewis M.R. Markus H.S. Metabolomic profiling in small vessel disease identifies multiple associations with disease severity. Brain 2022 145 7 2461 2471 35254405
    [Google Scholar]
  7. Kijpaisalratana N. Ament Z. Bevers M.B. Bhave V.M. Garcia Guarniz A.L. Couch C.A. Irvin M.R. Kimberly W.T. Trimethylamine N-Oxide and white matter hyperintensity volume among patients with acute ischemic stroke. JAMA Netw. Open 2023 6 8 e2330446 37610752
    [Google Scholar]
  8. Harshfield E.L. Markus H.S. Association of baseline metabolomic profiles with incident stroke and dementia and with imaging markers of cerebral small vessel disease. Neurology 2023 101 5 e489 e501 37290969
    [Google Scholar]
  9. Guo M.N. Hao X.Y. Tian J. Wang Y.C. Li J.D. Fan Y. Shi J.J. Ma D.R. Li S.J. Zuo C.Y. Liang Y.Y. Li M.J. Shen S. Liu F. Yao D.B. Xu Y.M. Shi C.H. Human blood metabolites and lacunar stroke: A Mendelian randomization study. Int. J. Stroke 2023 18 1 109 116 36367219
    [Google Scholar]
  10. Huang Q. Xia J. Influence of the gut microbiome on inflammatory and immune response after stroke. Neurol. Sci. 2021 42 12 4937 4951 34536154
    [Google Scholar]
  11. Huang C. Zhang Y. Liu Y. Zhang M. Li Z. Li M. Ren M. Yin J. Zhou Y. Zhou X. Zhu X. Sun Z. A bidirectional mendelian randomization study of gut microbiota and cerebral small vessel disease. J. Nutr. 2024 154 7 1994 2005 10.1016/j.tjnut.2024.04.024 38642744
    [Google Scholar]
  12. Ma Y. Wang M. Chen X. Yao J. Ding Y. Gao Q. Zhou J. Lian X. Effect of the blood pressure and antihypertensive drugs on cerebral small vessel disease: A mendelian randomization study. Stroke 2024 55 7 1838 1846 10.1161/STROKEAHA.123.045664 38818733
    [Google Scholar]
  13. Skrivankova V.W. Richmond R.C. Woolf B.A.R. Yarmolinsky J. Davies N.M. Swanson S.A. VanderWeele T.J. Higgins J.P.T. Timpson N.J. Dimou N. Langenberg C. Golub R.M. Loder E.W. Gallo V. Tybjaerg-Hansen A. Davey Smith G. Egger M. Richards J.B. Strengthening the reporting of observational studies in epidemiology using mendelian randomization. JAMA 2021 326 16 1614 1621 10.1001/jama.2021.18236 34698778
    [Google Scholar]
  14. Kurilshikov A. Medina-Gomez C. Bacigalupe R. Radjabzadeh D. Wang J. Demirkan A. Le Roy C.I. Raygoza Garay J.A. Finnicum C.T. Liu X. Zhernakova D.V. Bonder M.J. Hansen T.H. Frost F. Rühlemann M.C. Turpin W. Moon J.Y. Kim H.N. Lüll K. Barkan E. Shah S.A. Fornage M. Szopinska-Tokov J. Wallen Z.D. Borisevich D. Agreus L. Andreasson A. Bang C. Bedrani L. Bell J.T. Bisgaard H. Boehnke M. Boomsma D.I. Burk R.D. Claringbould A. Croitoru K. Davies G.E. van Duijn C.M. Duijts L. Falony G. Fu J. van der Graaf A. Hansen T. Homuth G. Hughes D.A. Ijzerman R.G. Jackson M.A. Jaddoe V.W.V. Joossens M. Jørgensen T. Keszthelyi D. Knight R. Laakso M. Laudes M. Launer L.J. Lieb W. Lusis A.J. Masclee A.A.M. Moll H.A. Mujagic Z. Qibin Q. Rothschild D. Shin H. Sørensen S.J. Steves C.J. Thorsen J. Timpson N.J. Tito R.Y. Vieira-Silva S. Völker U. Völzke H. Võsa U. Wade K.H. Walter S. Watanabe K. Weiss S. Weiss F.U. Weissbrod O. Westra H.J. Willemsen G. Payami H. Jonkers D.M.A.E. Arias Vasquez A. de Geus E.J.C. Meyer K.A. Stokholm J. Segal E. Org E. Wijmenga C. Kim H.L. Kaplan R.C. Spector T.D. Uitterlinden A.G. Rivadeneira F. Franke A. Lerch M.M. Franke L. Sanna S. D’Amato M. Pedersen O. Paterson A.D. Kraaij R. Raes J. Zhernakova A. Large-scale association analyses identify host factors influencing human gut microbiome composition. Nat. Genet. 2021 53 2 156 165 10.1038/s41588‑020‑00763‑1 33462485
    [Google Scholar]
  15. Chen Y. Lu T. Pettersson-Kymmer U. Stewart I.D. Butler-Laporte G. Nakanishi T. Cerani A. Liang K.Y.H. Yoshiji S. Willett J.D.S. Su C.Y. Raina P. Greenwood C.M.T. Farjoun Y. Forgetta V. Langenberg C. Zhou S. Ohlsson C. Richards J.B. Genomic atlas of the plasma metabolome prioritizes metabolites implicated in human diseases. Nat. Genet. 2023 55 1 44 53 10.1038/s41588‑022‑01270‑1 36635386
    [Google Scholar]
  16. Persyn E. Hanscombe K.B. Howson J.M.M. Lewis C.M. Traylor M. Markus H.S. Genome-wide association study of MRI markers of cerebral small vessel disease in 42,310 participants. Nat. Commun. 2020 11 1 2175 32358547
    [Google Scholar]
  17. Traylor M. Persyn E. Tomppo L. Klasson S. Abedi V. Bakker M.K. Torres N. Li L. Bell S. Rutten-Jacobs L. Tozer D.J. Griessenauer C.J. Zhang Y. Pedersen A. Sharma P. Jimenez-Conde J. Rundek T. Grewal R.P. Lindgren A. Meschia J.F. Salomaa V. Havulinna A. Kourkoulis C. Crawford K. Marini S. Mitchell B.D. Kittner S.J. Rosand J. Dichgans M. Jern C. Strbian D. Fernandez-Cadenas I. Zand R. Ruigrok Y. Rost N. Lemmens R. Rothwell P.M. Anderson C.D. Wardlaw J. Lewis C.M. Markus H.S. Helsinki Stroke, Study Dutch Parelsnoer Institute-Cerebrovascular Accident (CVA) Study Group National Institute of Neurological Disorders and Stroke (NINDS) Stroke Genetics Network UK DNA Lacunar Stroke Study Investigators International Stroke Genetics Consortium Genetic basis of lacunar stroke: A pooled analysis of individual patient data and genome-wide association studies. Lancet Neurol. 2021 20 5 351 361 10.1016/S1474‑4422(21)00031‑4 33773637
    [Google Scholar]
  18. Xu B. Zhu L. Hu P. Yao W. Ke M. Zhu Z. Exploring the mediation effect of metabolite levels on the association between gut microbiota and HCC: A two-step, two-sample bidirectional mendelian randomization. J. Cancer 2024 15 12 3975 3983 10.7150/jca.96579 38911378
    [Google Scholar]
  19. Bowden J. Del Greco M F. Minelli C. Davey Smith G. Sheehan N. Thompson J. A framework for the investigation of pleiotropy in two‐sample summary data Mendelian randomization. Stat. Med. 2017 36 11 1783 1802 10.1002/sim.7221 28114746
    [Google Scholar]
  20. Bowden J. Davey Smith G. Haycock P.C. Burgess S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet. Epidemiol. 2016 40 4 304 314 10.1002/gepi.21965 27061298
    [Google Scholar]
  21. Burgess S. Thompson S.G. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur. J. Epidemiol. 2017 32 5 377 389 10.1007/s10654‑017‑0255‑x 28527048
    [Google Scholar]
  22. Chen X. Han L. Xu W. Dissecting causal relationships between gut microbiota, blood metabolites, and glioblastoma multiforme: a two-sample Mendelian randomization study. Front. Microbiol. 2024 15 1403316 10.3389/fmicb.2024.1403316 39021629
    [Google Scholar]
  23. Kishimoto T. Ishitsuka R. Kobayashi T. Detectors for evaluating the cellular landscape of sphingomyelin- and cholesterol-rich membrane domains. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2016 1861 8 812 829.(8 Pt B) 10.1016/j.bbalip.2016.03.013 26993577
    [Google Scholar]
  24. Moseholm K.F. Horn J.W. Fitzpatrick A.L. Djoussé L. Longstreth W.T. Lopez O.L. Hoofnagle A.N. Jensen M.K. Lemaitre R.N. Mukamal K.J. Circulating sphingolipids and subclinical brain pathology: The cardiovascular health study. Front. Neurol. 2024 15 1385623 10.3389/fneur.2024.1385623 38765262
    [Google Scholar]
  25. Zeng Q. Li D. He Y. Li Y. Yang Z. Zhao X. Liu Y. Wang Y. Sun J. Feng X. Wang F. Chen J. Zheng Y. Yang Y. Sun X. Xu X. Wang D. Kenney T. Jiang Y. Gu H. Li Y. Zhou K. Li S. Dai W. Discrepant gut microbiota markers for the classification of obesity-related metabolic abnormalities. Sci. Rep. 2019 9 1 13424 10.1038/s41598‑019‑49462‑w 31530820
    [Google Scholar]
  26. Fongang B. Satizabal C. Kautz T.F. Wadop Y.N. Muhammad J.A.S. Vasquez E. Mathews J. Gireud-Goss M. Saklad A.R. Himali J. Beiser A. Cavazos J.E. Mahaney M.C. Maestre G. DeCarli C. Shipp E.L. Vasan R.S. Seshadri S. Cerebral small vessel disease burden is associated with decreased abundance of gut Barnesiella intestinihominis bacterium in the Framingham Heart Study. Sci. Rep. 2023 13 1 13622 10.1038/s41598‑023‑40872‑5 37604954
    [Google Scholar]
  27. Arslan R. Doganay S. Budak O. Bahtiyar N. Investigation of preconditioning and the protective effects of nicotinamide against cerebral ischemia-reperfusion injury in rats. Neurosci. Lett. 2024 840 137949 10.1016/j.neulet.2024.137949 39181500
    [Google Scholar]
  28. Li C.C. Chen W.X. Wang J. Xia M. Jia Z.C. Guo C. Tang X.Q. Li M.X. Yin Y. Liu X. Feng H. Nicotinamide riboside rescues angiotensin II–induced cerebral small vessel disease in mice. CNS Neurosci. Ther. 2020 26 4 438 447 10.1111/cns.13276 31943833
    [Google Scholar]
  29. Wagner C.A. The basics of phosphate metabolism. Nephrol. Dial. Transplant. 2024 39 2 190 201 10.1093/ndt/gfad188 37660247
    [Google Scholar]
  30. Zhang Y. Guo S. Xie C. Fang J. Uridine metabolism and its role in glucose, lipid, and amino acid homeostasis. BioMed Res. Int. 2020 2020 1 7091718 10.1155/2020/7091718 32382566
    [Google Scholar]
  31. Pretnar-Oblak J. Cerebral endothelial function determined by cerebrovascular reactivity to L-arginine. BioMed Res. Int. 2014 2014 1 1 8 10.1155/2014/601515 24860826
    [Google Scholar]
  32. Dobrynina L.A. Shabalina A.A. Shamtieva K.V. Kremneva E.I. Zabitova M.R. Krotenkova M.V. Burmak A.G. Gnedovskaya E.V. L-Arginine-eNOS-NO functional system in brain damage and cognitive impairments in cerebral small vessel disease. Int. J. Mol. Sci. 2023 24 19 14537 10.3390/ijms241914537 37833984
    [Google Scholar]
  33. Dobrowolski S.F. Phua Y.L. Vockley J. Goetzman E. Blair H.C. Phenylketonuria oxidative stress and energy dysregulation: Emerging pathophysiological nlms provide interventional opportunity. Mol. Genet. Metab. 2022 136 2 111 117 10.1016/j.ymgme.2022.03.012 35379539
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010373952250510105002
Loading
/content/journals/cpb/10.2174/0113892010373952250510105002
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test