Skip to content
2000
image of Critical Processes for Stability Enhancement of Phyto-ingredients: A Comprehensive Review

Abstract

Plants contain valuable phytochemicals with biological activity. However, factors such as instability, poor solubility, and bioavailability limit their use in the food, cosmetics, and pharmaceutical industries. In this context, a wide variety of strategies have been developed with the objective of improving the stability of herbal sources and bioactive compounds under processing, storage, or gastrointestinal digestion conditions. Moreover, these strategies seek to enhance solubility, mask undesirable flavors, and facilitate targeted delivery to specific tissues, thereby enabling the bioactive compounds to exert their biological activity and contribute to improved human health. It is of great importance to conduct studies on the stability of herbal medicines to identify the various factors, physical, chemical, and environmental, which may affect their stability. Also, such studies are essential for determining the shelf life of the products and always ensuring their quality during storage and use. This review presents the strategies and latest advances utilized to improve the stability of pure plant bioactive compounds, extracts, and essential oils to overcome the previously mentioned challenges. The information presented will assist in the production of safe, stable, and effective substances and products. Furthermore, a comprehensive overview of the various applications of these compounds is provided, along with an analysis of emerging trends.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode.
Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010377710250731193153
2025-08-08
2025-11-03
Loading full text...

Full text loading...

/deliver/fulltext/cpb/10.2174/0113892010377710250731193153/BMS-CPB-2024-659.html?itemId=/content/journals/cpb/10.2174/0113892010377710250731193153&mimeType=html&fmt=ahah

References

  1. Khan M.K. Paniwnyk L. Hassan S. Polyphenols as natural antioxidants: sources, extraction and applications in food, cosmetics and drugs. Plant. Based “Green Chemistry 20” Springer 2019 197 235 10.1007/978‑981‑13‑3810‑6_8
    [Google Scholar]
  2. Awuchi C.G. Medicinal plants: the medical, food, and nutritional biochemistry and uses. Int. J. Adv. Acad. Res. 2019 5 11 220 241
    [Google Scholar]
  3. Keservani, R.K.; Sharma, A.K.; Kesharwani, R.K., Eds.; Nutraceuticals and dietary supplements: Applications in health improvement and disease management. CRC Press 2020 10.1201/9780367821517
    [Google Scholar]
  4. Thakur L. Ghodasra U. Patel N. Dabhi M. Novel approaches for stability improvement in natural medicines. Pharmacogn. Rev. 2011 5 9 48 54 10.4103/0973‑7847.79099 22096318
    [Google Scholar]
  5. Choudhary N. Sekhon B.S. An overview of advances in the standardization of herbal drugs. J. Pharm. Educ. Res. 2011 2 2 55
    [Google Scholar]
  6. Alğin Yapar E. Cilt beyazlatıcılara genel bakış. Marmara Pharm. J. 2016 21 24530 48 53 10.12991/marupj.259880
    [Google Scholar]
  7. Mukherjee P.K. Harwansh R.K. Bhattacharyya S. Bioavailability of herbal products: Approach toward improved pharmacokinetics. Evidence-Based Validation of Herbal Medicine. Elsevier 2015 217 245 10.1016/B978‑0‑12‑800874‑4.00010‑6
    [Google Scholar]
  8. Enaru B. Drețcanu G. Pop T.D. Stǎnilǎ A. Diaconeasa Z. Anthocyanins: Factors affecting their stability and degradation. Antioxidants 2021 10 12 1967 10.3390/antiox10121967 34943070
    [Google Scholar]
  9. Guldiken B. Ozkan G. Catalkaya G. Ceylan F.D. Ekin Yalcinkaya I. Capanoglu E. Phytochemicals of herbs and spices: Health versus toxicological effects. Food Chem. Toxicol. 2018 119 37 49 10.1016/j.fct.2018.05.050 29802945
    [Google Scholar]
  10. Prabhakar P. Mamoni B. Technical problems, regulatory and market challenges in bringing herbal drug into mainstream of modern medicinal practices. Res. J. Biotechnol. 2021 16 3 222
    [Google Scholar]
  11. Alfei S. Nanotechnology applications to improve solubility of bioactive constituents of foods for health‑promoting purposes. Nano-Food Engineering: Volume One Springer 2020 189 257 10.1007/978‑3‑030‑44552‑2_8
    [Google Scholar]
  12. Gunasekaran T. Haile T. Nigusse T. Dhanaraju M.D. Nanotechnology: An effective tool for enhancing bioavailability and bioactivity of phytomedicine. Asian Pac. J. Trop. Biomed. 2014 4 S1 S7 (Suppl. 1) 10.12980/APJTB.4.2014C980 25183064
    [Google Scholar]
  13. Kyriakoudi A. Spanidi E. Mourtzinos I. Gardikis K. Innovative delivery systems loaded with plant bioactive ingredients: formulation approaches and applications. Plants 2021 10 6 1238 10.3390/plants10061238 34207139
    [Google Scholar]
  14. Ali H. Ali D. Almutairi B.O. Kumar G. Karga G.A. Masi C. Sundramurthy V.P. [Retracted] synergistic effect of conventional medicinal herbs against different pharmacological activity. BioMed Res. Int. 2022 2022 1 7337261 10.1155/2022/7337261 35813228
    [Google Scholar]
  15. Rasoanaivo P. Wright C.W. Willcox M.L. Gilbert B. Whole plant extracts versus single compounds for the treatment of malaria: Synergy and positive interactions. Malar. J. 2011 10 S1 S4 (Suppl. 1) 10.1186/1475‑2875‑10‑S1‑S4 21411015
    [Google Scholar]
  16. Wang H. Chen Y. Wang L. Liu Q. Yang S. Wang C. Advancing herbal medicine: Enhancing product quality and safety through robust quality control practices. Front. Pharmacol. 2023 14 1265178 10.3389/fphar.2023.1265178 37818188
    [Google Scholar]
  17. Ogino M. Yamada K. Sato H. Onoue S. Enhanced nutraceutical functions of herbal oily extract employing formulation technology: The present and future. PharmaNutrition 2022 22 100318 10.1016/j.phanu.2022.100318
    [Google Scholar]
  18. Dini I. Laneri S. The new challenge of green cosmetics: Natural food ingredients for cosmetic formulations. Molecules 2021 26 13 3921 10.3390/molecules26133921 34206931
    [Google Scholar]
  19. Braithwaite M.C. Tyagi C. Tomar L.K. Kumar P. Choonara Y.E. Pillay V. Nutraceutical-based therapeutics and formulation strategies augmenting their efficiency to complement modern medicine: An overview. J. Funct. Foods 2014 6 82 99 10.1016/j.jff.2013.09.022
    [Google Scholar]
  20. Bilia A.R. Piazzini V. Risaliti L. Vanti G. Casamonti M. Wang M. Bergonzi M.C. Nanocarriers: A successful tool to increase solubility, stability and optimise bioefficacy of natural constituents. Curr. Med. Chem. 2019 26 24 4631 4656 10.2174/0929867325666181101110050 30381065
    [Google Scholar]
  21. Sun S. Wang Y. Wu A. Ding Z. Liu X. Influence factors of the pharmacokinetics of herbal resourced compounds in clinical practice. Evid. Based Complement. Alternat. Med. 2019 2019 1 16 10.1155/2019/1983780 30949215
    [Google Scholar]
  22. Wahab S. Ahmad M.P. Hussain A. Qadir S.F.A. Ahmed M.M. Nanomaterials for the delivery of herbal bioactive compounds. Curr. Nanosci. 2022 18 4 425 441 10.2174/1573413717666211004090341
    [Google Scholar]
  23. Chaudhary A. Nagaich U. Gulati N. Sharma V.K. Khosa R.L. Enhancement of solubilization and bioavailability of poorly soluble drugs by physical and chemical modifications: A recent review. J. Adv. Pharm. Educ. Res. 2012 2 1 32 67 10.51847/zQlOOZe
    [Google Scholar]
  24. Kalepu S. Nekkanti V. Insoluble drug delivery strategies: Review of recent advances and business prospects. Acta Pharm. Sin. B 2015 5 5 442 453 10.1016/j.apsb.2015.07.003 26579474
    [Google Scholar]
  25. Annex W.H.O. Annex 1: WHO guidelines on good herbal processing practices for herbal medicines. 2018 Available from: https://cdn.who.int/media/docs/default-source/medicines/norms-and-standards/guidelines/production/trs1010-annex1-herbal-processing.pdf?sfvrsn=80b60ae5_0
  26. de Vos P. Faas M.M. Spasojevic M. Sikkema J. Encapsulation for preservation of functionality and targeted delivery of bioactive food components. Int. Dairy J. 2010 20 4 292 302 10.1016/j.idairyj.2009.11.008
    [Google Scholar]
  27. Bansal G. Thakur G. Sarma A. Gupta M.K. Rajput S.K. Stability testing issues and test parameters for herbal medicinal products. Methods for Stability Testing of Pharmaceuticals. Singapore Springer 2018 307 333 10.1007/978‑1‑4939‑7686‑7_14
    [Google Scholar]
  28. Guo M. Qin S. Wang S. Sun M. Yang H. Wang X. Fan P. Jin Z. Herbal medicine nanocrystals: A potential novel therapeutic strategy. Molecules 2023 28 17 6370 10.3390/molecules28176370 37687199
    [Google Scholar]
  29. Mishra J. Shaik A. Agnihotri J. Salian M. Strategies to enhance the stability of herbal active. Acta Sci. Pharm. Sci. 2022 6 12 39 50 10.31080/ASPS.2022.06.0915
    [Google Scholar]
  30. Sosnik A. Seremeta K.P. Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers. Adv. Colloid Interface Sci. 2015 223 40 54 10.1016/j.cis.2015.05.003 26043877
    [Google Scholar]
  31. Gharsallaoui A. Roudaut G. Chambin O. Voilley A. Saurel R. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Res. Int. 2007 40 9 1107 1121 10.1016/j.foodres.2007.07.004
    [Google Scholar]
  32. Piñón-Balderrama C.I. Leyva-Porras C. Terán-Figueroa Y. Espinosa-Solís V. Álvarez-Salas C. Saavedra-Leos M.Z. Encapsulation of active ingredients in food industry by spray-drying and nano spray-drying technologies. Processes 2020 8 8 889 10.3390/pr8080889
    [Google Scholar]
  33. Samborska K. Boostani S. Geranpour M. Hosseini H. Dima C. Khoshnoudi-Nia S. Rostamabadi H. Falsafi S.R. Shaddel R. Akbari-Alavijeh S. Jafari S.M. Green biopolymers from by-products as wall materials for spray drying microencapsulation of phytochemicals. Trends Food Sci. Technol. 2021 108 297 325 10.1016/j.tifs.2021.01.008
    [Google Scholar]
  34. Coimbra P.P.S. Cardoso F.S.N. Gonçalves É.C.B.A. Spray-drying wall materials: Relationship with bioactive compounds. Crit. Rev. Food Sci. Nutr. 2021 61 17 2809 2826 10.1080/10408398.2020.1786354 32613840
    [Google Scholar]
  35. Halahlah A. Piironen V. Mikkonen K.S. Ho T.M. Miguel M.G. Polysaccharides as wall materials in spray-dried microencapsulation of bioactive compounds: Physicochemical properties and characterization. Crit. Rev. Food Sci. Nutr. 2023 63 24 6983 7015 10.1080/10408398.2022.2038080 35213281
    [Google Scholar]
  36. Veiga R.D.S.D. Aparecida Da Silva-Buzanello R. Corso M.P. Canan C. Essential oils microencapsulated obtained by spray drying: A review. J. Essent. Oil Res. 2019 31 6 457 473 10.1080/10412905.2019.1612788
    [Google Scholar]
  37. Altay Ö. Köprüalan Ö. İlter I. Koç M. Ertekin F.K. Jafari S.M. Spray drying encapsulation of essential oils; process efficiency, formulation strategies, and applications. Crit. Rev. Food Sci. Nutr. 2024 64 4 1139 1157 10.1080/10408398.2022.2113364 36004620
    [Google Scholar]
  38. Ribeiro A.M. Estevinho B.N. Rocha F. Spray drying encapsulation of elderberry extract and evaluating the release and stability of phenolic compounds in encapsulated powders. Food Bioprocess Technol. 2019 12 8 1381 1394 10.1007/s11947‑019‑02304‑z
    [Google Scholar]
  39. Gimbun J. Nguang S.L. Pang S.F. Yeong Y.L. Kee K.L. Chin S.C. Assessment of phenolic compounds stability and retention during spray drying of Phyllanthus niruri extracts. Ind. Eng. Chem. Res. 2019 58 2 752 761 10.1021/acs.iecr.8b03060
    [Google Scholar]
  40. Martinić A. Kalušević A. Lević S. Nedović V. Vojvodić Cebin A. Karlović S. Špoljarić I. Mršić G. Žižek K. Komes D. Microencapsulation of dandelion ( Taraxacum officinale L.) leaf extract by spray drying. Food Technol. Biotechnol. 2022 60 2 237 252 10.17113/ftb.60.02.22.7384 35910273
    [Google Scholar]
  41. Gavarić A. Vladić J. Ambrus R. Jokić S. Szabó-Révész P. Tomić M. Blažić M. Vidović S. Spray drying of a subcritical extract using Marrubium vulgare as a method of choice for obtaining high quality powder. Pharmaceutics 2019 11 10 523 10.3390/pharmaceutics11100523 31614551
    [Google Scholar]
  42. Shahidi Noghabi M. Molaveisi M. The effect of wall formulation on storage stability and physicochemical properties of cinnamon essential oil microencapsulated by spray drying. Chem. Pap. 2020 74 10 3455 3465 10.1007/s11696‑020‑01171‑9
    [Google Scholar]
  43. Grace M.H. Hoskin R. Xiong J. Lila M.A. Whey and soy proteins as wall materials for spray drying rosemary: Effects on polyphenol composition, antioxidant activity, bioaccessibility after in vitro gastrointestinal digestion and stability during storage. Lebensm. Wiss. Technol. 2021 149 111901 10.1016/j.lwt.2021.111901
    [Google Scholar]
  44. Yupanqui C.T. Suksanga A. Ardhanwanich S. Ungphaiboon S. Lee K-S. Spray-dried microparticles of turmeric extract for improved delivery and low toxicity. Pharmacia 2024 71 1 10 10.3897/pharmacia.71.e126108
    [Google Scholar]
  45. Duan X. Yang X. Ren G. Pang Y. Liu L. Liu Y. Technical aspects in freeze-drying of foods. Dry. Technol. 2016 34 11 1271 1285 10.1080/07373937.2015.1099545
    [Google Scholar]
  46. Ishwarya S.P. Anandharamakrishnan C. Stapley A.G.F. Spray-freeze-drying: A novel process for the drying of foods and bioproducts. Trends Food Sci. Technol. 2015 41 2 161 181 10.1016/j.tifs.2014.10.008
    [Google Scholar]
  47. Nowak D. Jakubczyk E. The freeze-drying of foods—the characteristic of the process course and the effect of its parameters on the physical properties of food materials. Foods 2020 9 10 1488 10.3390/foods9101488 33080983
    [Google Scholar]
  48. Ward K.R. Matejtschuk P. The principles of freeze-drying and application of analytical technologies. Cryopreservation and Freeze-Drying Protocols. New York Springer 2021 99 127 10.1007/978‑1‑0716‑0783‑1_3
    [Google Scholar]
  49. Bhatta S. Stevanovic Janezic T. Ratti C. Freeze-drying of plant-based foods. Foods 2020 9 1 87 10.3390/foods9010087 31941082
    [Google Scholar]
  50. Jovanović A.A. Lević S.M. Pavlović V.B. Marković S.B. Pjanović R.V. Đorđević V.B. Nedović V. Bugarski B.M. Freeze vs. spray drying for dry wild thyme ( Thymus serpyllum L.) extract formulations: The impact of gelatin as a coating material. Molecules 2021 26 13 3933 10.3390/molecules26133933 34203164
    [Google Scholar]
  51. Bilušić T. Drvenica I. Kalušević A. Marijanović Z. Jerković I. Mužek M.N. Bratanić A. Skroza D. Zorić Z. Pedisić S. Nedović V. Režek Jambrak A. Influences of freeze‐ and spray‐drying vs. encapsulation with soy and whey proteins on gastrointestinal stability and antioxidant activity of Mediterranean aromatic herbs. Int. J. Food Sci. Technol. 2021 56 4 1582 1596 10.1111/ijfs.14774
    [Google Scholar]
  52. Dadi D.W. Emire S.A. Hagos A.D. Eun J-B. Physical and functional properties, digestibility, and storage stability of spray- and freeze-dried microencapsulated bioactive products from Moringa stenopetala leaves extract. Ind. Crops Prod. 2020 156 112891 10.1016/j.indcrop.2020.112891
    [Google Scholar]
  53. Ledari S.A. Milani J.M. Shahidi S.A. Golkar A. Alirezalu K. Mousavi Khaneghah A. Comparative analysis of freeze drying and spray drying methods for encapsulation of chlorophyll with maltodextrin and whey protein isolate. Food Chem. X 2024 21 101156 10.1016/j.fochx.2024.101156 38322765
    [Google Scholar]
  54. Sing C.E. Perry S.L. Recent progress in the science of complex coacervation. Soft Matter 2020 16 12 2885 2914 10.1039/D0SM00001A 32134099
    [Google Scholar]
  55. Mauguet M.C. Legrand J. Brujes L. Carnelle G. Larre C. Popineau Y. Gliadin matrices for microencapsulation processes by simple coacervation method. J. Microencapsul. 2002 19 3 377 384 10.1080/02652040110105346 12022503
    [Google Scholar]
  56. Chen K. Ni Y. Shi X. Jia Z. Qiu H. Portale G. Green fabrication of chitosan microcapsules via double emulsion-simple coacervation and their application in fabrics. Cellulose 2023 30 18 11875 11887 10.1007/s10570‑023‑05590‑1
    [Google Scholar]
  57. Zeng X. Jiang W. Du Z. Kokini J.L. Liang J. Liu C. Encapsulation of tannins and tannin-rich plant extracts by complex coacervation to improve their physicochemical properties and biological activities: A review. Crit. Rev. Food Sci. Nutr. 2023 63 18 3005 3018 10.1080/10408398.2022.2075313 35549567
    [Google Scholar]
  58. Tavares L. Noreña C.P.Z. Encapsulation of ginger essential oil using complex coacervation method: coacervate formation, rheological property, and physicochemical characterization. Food Bioprocess Technol. 2020 13 8 1405 1420 10.1007/s11947‑020‑02480‑3
    [Google Scholar]
  59. Heckert Bastos L.P. Vicente J. Corrêa dos Santos C.H. Geraldo de Carvalho M. Garcia-Rojas E.E. Encapsulation of black pepper (Piper nigrum L.) essential oil with gelatin and sodium alginate by complex coacervation. Food Hydrocoll. 2020 102 105605 10.1016/j.foodhyd.2019.105605
    [Google Scholar]
  60. Székely-Szentmiklósi I. Rédai E.M. Kovács B. Gergely A.L. Albert C. Szabó Z.I. Székely-Szentmiklósi B. Sipos E. Investigation of yarrow essential oil composition and microencapsulation by complex coacervation technology. Appl. Sci. 2024 14 17 7867 10.3390/app14177867
    [Google Scholar]
  61. Müller P.S. Perussello C.A. Zawadzki S.F. Scheer A.D. Encapsulation efficiency and thermal stability of orange essential oil microencapsulated by spray drying and by coacervation. Bol. Cent. Pesqui. Process. Aliment. 2016 34 1 133 150 10.5380/cep.v34i1.48992
    [Google Scholar]
  62. Tavares L. Zapata Noreña C.P. Encapsulation of garlic extract using complex coacervation with whey protein isolate and chitosan as wall materials followed by spray drying. Food Hydrocoll. 2019 89 360 369 10.1016/j.foodhyd.2018.10.052
    [Google Scholar]
  63. Soliman T.N. Mohammed D.M. El-Messery T.M. Elaaser M. Zaky A.A. Eun J.B. Shim J.H. El-Said M.M. Microencapsulation of plant phenolic extracts using complex coacervation incorporated in ultrafiltered cheese against AlCl 3 -induced neuroinflammation in rats. Front. Nutr. 2022 9 929977 10.3389/fnut.2022.929977 35845781
    [Google Scholar]
  64. Yuan S. Li C. Zhang Y. Yu H. Xie Y. Guo Y. Yao W. Ultrasound as an emerging technology for the elimination of chemical contaminants in food: A review. Trends Food Sci. Technol. 2021 109 374 385 10.1016/j.tifs.2021.01.048
    [Google Scholar]
  65. Rao M.V. Sengar A.S. Ultrasonication - A green technology extraction technique for spices: A review. Trends Food Sci. Technol. 2021 116 975 991 10.1016/j.tifs.2021.09.006
    [Google Scholar]
  66. Khadhraoui B. Ummat V. Tiwari B.K. Fabiano-Tixier A.S. Chemat F. Review of ultrasound combinations with hybrid and innovative techniques for extraction and processing of food and natural products. Ultrason. Sonochem. 2021 76 105625 10.1016/j.ultsonch.2021.105625 34147916
    [Google Scholar]
  67. Sharma H. Singh A.K. Borad S. Deshwal G.K. Processing stability and debittering of Tinospora cordifolia (giloy) juice using ultrasonication for potential application in foods. Lebensm. Wiss. Technol. 2021 139 110584 10.1016/j.lwt.2020.110584
    [Google Scholar]
  68. Teng F. He M. Xu J. Chen F. Wu C. Wang Z. Li Y. Effect of ultrasonication on the stability and storage of a soy protein isolate-phosphatidylcholine nanoemulsions. Sci. Rep. 2020 10 1 14010 10.1038/s41598‑020‑70462‑8 32814779
    [Google Scholar]
  69. Li Z. Xu D. Yuan Y. Wu H. Hou J. Kang W. Bai B. Advances of spontaneous emulsification and its important applications in enhanced oil recovery process. Adv. Colloid Interface Sci. 2020 277 102119 10.1016/j.cis.2020.102119 32045722
    [Google Scholar]
  70. Ravera F. Dziza K. Santini E. Cristofolini L. Liggieri L. Emulsification and emulsion stability: The role of the interfacial properties. Adv. Colloid Interface Sci. 2021 288 102344 10.1016/j.cis.2020.102344 33359938
    [Google Scholar]
  71. Jie Y. Chen F. Progress in the application of food-grade emulsions. Foods 2022 11 18 2883 10.3390/foods11182883 36141011
    [Google Scholar]
  72. Choudhary U. Sabikhi L. Abdul Hussain S. Khamrui K. Sharma V. Vij S. Stabilizing the primary emulsion with hydrophobic emulsifiers and salt for encapsulating herbal extracts in a double emulsion. J. Food Process. Preserv. 2018 42 8 e13699 10.1111/jfpp.13699
    [Google Scholar]
  73. Han J. Chen F. Gao C. Zhang Y. Tang X. Environmental stability and curcumin release properties of Pickering emulsion stabilized by chitosan/gum arabic nanoparticles. Int. J. Biol. Macromol. 2020 157 202 211 10.1016/j.ijbiomac.2020.04.177 32344077
    [Google Scholar]
  74. Herman-Lara E. Rivera-Abascal I. Gallegos-Marín I. Martínez-Sánchez C.E. Encapsulation of hydroalcoholic extracts of Moringa oleifera seed through ionic gelation. Lebensm. Wiss. Technol. 2024 203 116368 10.1016/j.lwt.2024.116368
    [Google Scholar]
  75. Hosseini S.M. Hosseini H. Mohammadifar M.A. Mortazavian A.M. Mohammadi A. Khosravi-Darani K. Shojaee-Aliabadi S. Dehghan S. Khaksar R. Incorporation of essential oil in alginate microparticles by multiple emulsion/ionic gelation process. Int. J. Biol. Macromol. 2013 62 582 588 10.1016/j.ijbiomac.2013.09.054 24120881
    [Google Scholar]
  76. Wani K. M. Uppaluri R. V. S. Efficacy of ionic gelation based encapsulation of bioactives from papaya leaf extract: Characterization and storage stability. Biomass Convers. Biorefin. 2023 14 16 19911 19928 10.1007/s13399‑023‑03956‑w
    [Google Scholar]
  77. de Moura S.C.S.R. Berling C.L. Germer S.P.M. Alvim I.D. Hubinger M.D. Encapsulating anthocyanins from Hibiscus sabdariffa L. calyces by ionic gelation: Pigment stability during storage of microparticles. Food Chem. 2018 241 317 327 10.1016/j.foodchem.2017.08.095 28958534
    [Google Scholar]
  78. Mehta P. Haj-Ahmad R. Rasekh M. Arshad M.S. Smith A. van der Merwe S.M. Li X. Chang M.W. Ahmad Z. Pharmaceutical and biomaterial engineering via electrohydrodynamic atomization technologies. Drug Discov. Today 2017 22 1 157 165 10.1016/j.drudis.2016.09.021 27693432
    [Google Scholar]
  79. Sun L. Zhou J. Chen Y. Yu D.G. Liu P. A combined electrohydrodynamic atomization method for preparing nanofiber/microparticle hybrid medicines. Front. Bioeng. Biotechnol. 2023 11 1308004 10.3389/fbioe.2023.1308004 38033817
    [Google Scholar]
  80. Li Y. Zhu J. Cheng H. Li G. Cho H. Jiang M. Gao Q. Zhang X. Developments of advanced electrospinning techniques: A critical review. Adv. Mater. Technol. 2021 6 11 2100410 10.1002/admt.202100410
    [Google Scholar]
  81. Keirouz A. Wang Z. Reddy V.S. Nagy Z.K. Vass P. Buzgo M. Ramakrishna S. Radacsi N. The history of electrospinning: Past, present, and future developments. Adv. Mater. Technol. 2023 8 11 2201723 10.1002/admt.202201723
    [Google Scholar]
  82. Luraghi A. Peri F. Moroni L. Electrospinning for drug delivery applications: A review. J. Control. Release 2021 334 463 484 10.1016/j.jconrel.2021.03.033 33781809
    [Google Scholar]
  83. Liu H. Bai Y. Huang C. Wang Y. Ji Y. Du Y. Xu L. Yu D.G. Bligh S.W.A. Recent progress of electrospun herbal medicine nanofibers. Biomolecules 2023 13 1 184 10.3390/biom13010184 36671570
    [Google Scholar]
  84. Eroğlu N.S. Production of nanofibers from plant extracts by electrospinning method. IntechOpen 2022 10.5772/intechopen.102614
    [Google Scholar]
  85. Szejtli J. Cyclodextrin inclusion complexes. Cyclodextrin Technology Springer Dordrecht 1988 79 185 10.1007/978‑94‑015‑7797‑7_2
    [Google Scholar]
  86. Cid-Samamed A. Rakmai J. Mejuto J.C. Simal-Gandara J. Astray G. Cyclodextrins inclusion complex: Preparation methods, analytical techniques and food industry applications. Food Chem. 2022 384 132467 10.1016/j.foodchem.2022.132467 35219231
    [Google Scholar]
  87. dos Santos C. Buera P. Mazzobre F. Novel trends in cyclodextrins encapsulation. Applications in food science. Curr. Opin. Food Sci. 2017 16 106 113 10.1016/j.cofs.2017.09.002
    [Google Scholar]
  88. Gidwani B. Vyas A. A comprehensive review on cyclodextrin-based carriers for delivery of chemotherapeutic cytotoxic anticancer drugs. BioMed Res. Int. 2015 2015 1 15 10.1155/2015/198268 26582104
    [Google Scholar]
  89. Chakraborty S. Basu S. Lahiri A. Basak S. Inclusion of chrysin in β-cyclodextrin nanocavity and its effect on antioxidant potential of chrysin: A spectroscopic and molecular modeling approach. J. Mol. Struct. 2010 977 1-3 180 188 10.1016/j.molstruc.2010.05.030
    [Google Scholar]
  90. Dudi M. Sharma K. Pandey S.K. Mehta S.K. Encapsulation of St. John’s Wort extract in β-Cyclodextrin carrier: In-vitro antioxidant, antimicrobial and Caco-2 cell viability studies. J. Mol. Struct. 2023 1287 135656 10.1016/j.molstruc.2023.135656
    [Google Scholar]
  91. Yin X. Hu Q. Chen X. Tan S. Niu A. Qiu W. Wang G. Inclusion complexes of clove essential oil with sodium caseinate and gum arabic prepared by high-pressure homogenization: Characterization and non-contact antimicrobial activity. Food Control 2023 150 109765 10.1016/j.foodcont.2023.109765
    [Google Scholar]
  92. Huang J. Pu J. Yang Z. Zhang S. Zhang Z. Lu Q. Song D. Li X. Fang Z. Liu Y. Hu B. Development of a Syzygium aromaticum, L. essential oil/hydroxypropyl-β-cyclodextrin inclusion complex: Preparation, characterization, and evaluation. Ind. Crops Prod. 2024 214 118500 10.1016/j.indcrop.2024.118500
    [Google Scholar]
  93. Deng N. Deng Z. Tang C. Liu C. Luo S. Chen T. Hu X. Formation, structure and properties of the starch-polyphenol inclusion complex: A review. Trends Food Sci. Technol. 2021 112 667 675 10.1016/j.tifs.2021.04.032
    [Google Scholar]
  94. Wu Y. Liu Y. Jia Y. Zhang H. Ren F. Formation and application of starch–polyphenol complexes: Influencing factors and rapid screening based on chemometrics. Foods 2024 13 10 1557 10.3390/foods13101557 38790857
    [Google Scholar]
  95. Tong Y. Deng H. Kong Y. Tan C. Chen J. Wan M. Wang M. Yan T. Meng X. Li L. Stability and structural characteristics of amylopectin nanoparticle-binding anthocyanins in Aronia melanocarpa. Food Chem. 2020 311 125687 10.1016/j.foodchem.2019.125687 31862570
    [Google Scholar]
  96. Chitprasert P. Ngamekaue N. Stability Enhancement of Ocimum sanctum Linn. essential oils using stearic acid in aluminum carboxymethyl cellulose Film‐Coated gelatin microcapsules. J. Food Sci. 2017 82 6 1310 1318 10.1111/1750‑3841.13738 28494101
    [Google Scholar]
  97. Székely-Szentmiklósi I. Rédai E.M. Szabó Z.I. Kovács B. Albert C. Gergely A.L. Székely-Szentmiklósi B. Sipos E. Microencapsulation by complex coacervation of lavender oil obtained by steam distillation at semi-industrial scale. Foods 2024 13 18 2935 10.3390/foods13182935 39335864
    [Google Scholar]
  98. Sharma R. Goel A. Development of insect repellent finish by a simple coacervation microencapsulation technique. Int. J. Cloth. Sci. Technol. 2018 30 2 152 158 10.1108/IJCST‑02‑2017‑0022
    [Google Scholar]
  99. Muhoza B. Xia S. Wang X. Zhang X. Li Y. Zhang S. Microencapsulation of essential oils by complex coacervation method: preparation, thermal stability, release properties and applications. Crit. Rev. Food Sci. Nutr. 2022 62 5 1363 1382 10.1080/10408398.2020.1843132 33176432
    [Google Scholar]
  100. Brito de Souza V. Thomazini M. Chaves I.E. Ferro-Furtado R. Favaro-Trindade C.S. Microencapsulation by complex coacervation as a tool to protect bioactive compounds and to reduce astringency and strong flavor of vegetable extracts. Food Hydrocoll. 2020 98 105244 10.1016/j.foodhyd.2019.105244
    [Google Scholar]
  101. Timilsena Y.P. Adhikari R. Barrow C.J. Adhikari B. Microencapsulation of chia seed oil using chia seed protein isolate⿿chia seed gum complex coacervates. Int. J. Biol. Macromol. 2016 91 347 357 10.1016/j.ijbiomac.2016.05.058 27212219
    [Google Scholar]
  102. Mazza K.E.L. Costa A.M.M. da Silva J.P.L. Alviano D.S. Bizzo H.R. Tonon R.V. Microencapsulation of marjoram essential oil as a food additive using sodium alginate and whey protein isolate. Int. J. Biol. Macromol. 2023 233 123478 10.1016/j.ijbiomac.2023.123478 36736518
    [Google Scholar]
  103. Mostaghimi M. Majdinasab M. Golmakani M.T. Hadian M. Hosseini S.M.H. Development and characterization of antimicrobial alginate hydrogel beads filled with cinnamon essential oil nanoemulsion. J. Biomater. Sci. Polym. Ed. 2023 34 15 2144 2160 10.1080/09205063.2023.2230843 37382897
    [Google Scholar]
  104. Cerrón-Mercado F. Salva-Ruíz B.K. Nolazco-Cama D. Espinoza-Silva C. Fernández-López J. Pérez-Alvarez J.A. Viuda-Martos M. Development of chincho ( Tagetes elliptica Sm.) essential oil organogel nanoparticles through ionic gelation and process optimization with box–behnken design. Gels 2022 8 12 815 10.3390/gels8120815 36547339
    [Google Scholar]
  105. de Oliveira T.S. Costa A.M.M. Cabral L.M.C. Freitas-Silva O. Tonon R.V. Physical and biological properties of alginate-based cinnamon essential oil nanoemulsions: Study of two different production strategies. Int. J. Biol. Macromol. 2024 275 Pt 2 133627 10.1016/j.ijbiomac.2024.133627 38964684
    [Google Scholar]
  106. Soliman E.A. El-Moghazy A.Y. El-Din M.S.M. Massoud M.A. Microencapsulation of essential oils within alginate: Formulation and in vitro evaluation of antifungal activity. J. Encapsul. Adsorpt. Sci. 2013 3 1 48 55 10.4236/jeas.2013.31006
    [Google Scholar]
  107. de Oliveira J.M. de Jesus M.S. Cabral A.V. de Andrade Wartha E.R.S. Narain N. Pagani A.A.C. Characterization of microcapsules obtained from lemon balm extract (Melissa officinalis L.) by the ionic gelation process. Plant Foods Hum. Nutr. 2025 80 1 42 10.1007/s11130‑025‑01295‑x 39836260
    [Google Scholar]
  108. Silva de Azevedo E. Zapata Noreña C.P. External ionic gelation as a tool for the encapsulation and stability of betacyanins from Bougainvillea glabra bracts extract in a food model. J. Food Process. Preserv. 2021 45 9 10.1111/jfpp.15637
    [Google Scholar]
  109. Li Y. Zhao W. Chen S. Zhai H. Wu S. Bioactive electrospun nanoyarn-constructed textile dressing patches delivering Chinese herbal compound for accelerated diabetic wound healing. Mater. Des. 2024 237 112623 10.1016/j.matdes.2023.112623
    [Google Scholar]
  110. Wen P. Hu T.G. Wen Y. Li K.E. Qiu W.P. He Z.L. Wang H. Wu H. Development of Nervilia fordii extract-loaded electrospun PVA/PVP nanocomposite for antioxidant packaging. Foods 2021 10 8 1728 10.3390/foods10081728 34441506
    [Google Scholar]
  111. Rongthong W. Niamnont N. Srisuwannaket C. Paradee N. Mingvanish W. Electrospun gelatin fiber mats mixed with C.carandas extract and its enhanced stability and bioactivity. J. Pharm. Sci. 2021 110 6 2405 2415 10.1016/j.xphs.2020.12.031 33388354
    [Google Scholar]
  112. Rodriguez C. Padilla V. Lozano K. McDonald A. Materon L. Chapa A. Ahmad F. De Leo C.T. Gilkerson R. Fabrication of Forcespinning® nanofibers incorporating nopal extract. Polym. Int. 2021 70 5 679 686 10.1002/pi.6163
    [Google Scholar]
  113. Baranauskaite J. Adomavičiūtė E. Jankauskaitė V. Marksa M. Barsteigienė Z. Bernatoniene J. Formation and investigation of electrospun eudragit E100/Oregano mats. Molecules 2019 24 3 628 10.3390/molecules24030628 30754653
    [Google Scholar]
  114. Akbarbaglu Z. Peighambardoust S.H. Sarabandi K. Jafari S.M. Spray drying encapsulation of bioactive compounds within protein-based carriers; Different options and applications. Food Chem. 2021 359 129965 10.1016/j.foodchem.2021.129965 33975145
    [Google Scholar]
  115. Stupar A. Vidović S. Vladić J. Radusin T. Mišan A. A sustainable approach for enhancing stability and bioactivity of Allium ursinum extract for food additive applications. Separations 2024 11 3 81 10.3390/separations11030081
    [Google Scholar]
  116. S P. Anandharamakrishnan C. Enhancement of oral bioavailability of vitamin E by spray-freeze drying of whey protein microcapsules. Food Bioprod. Process. 2016 100 469 476 10.1016/j.fbp.2016.09.004
    [Google Scholar]
  117. Yang M. Li L. Zhu X. Liang L. Chen J. Cao W. Liu W. Duan X. Ren G. Liu Z. Microencapsulation of fish oil by spray drying, spray freeze‐drying, freeze‐drying, and microwave freeze‐drying: Microcapsule characterization and storage stability. J. Food Sci. 2024 89 6 3276 3289 10.1111/1750‑3841.17098 38700316
    [Google Scholar]
  118. Sachan A.K. Kumar A. Stability testing of herbal products. J. Chem. Pharm. Res. 2015 7 12 511 514
    [Google Scholar]
  119. Bandaranayake W. M. Quality control, screening, toxicity, and regulation of herbal drugs. Modern Phytomedicine: Turning Medicinal Plants into Drugs Weinheim Wiley‑VCH 2006 25 57 10.1002/9783527609987
    [Google Scholar]
  120. Jordan S.A. Cunningham D.G. Marles R.J. Assessment of herbal medicinal products: Challenges, and opportunities to increase the knowledge base for safety assessment. Toxicol. Appl. Pharmacol. 2010 243 2 198 216 10.1016/j.taap.2009.12.005 20018204
    [Google Scholar]
  121. Elder D.P. Kuentz M. Holm R. Pharmaceutical excipients — quality, regulatory and biopharmaceutical considerations. Eur. J. Pharm. Sci. 2016 87 88 99 10.1016/j.ejps.2015.12.018 26699228
    [Google Scholar]
  122. Joshi K. Chavan P. Warude D. Patwardhan B. Molecular markers in herbal drug technology. Curr. Sci. 2004 87 2 159 165
    [Google Scholar]
  123. Salgueiro L. Martins A.P. Correia H. Raw materials: The importance of quality and safety. A review. Flavour Fragrance J. 2010 25 5 253 271 10.1002/ffj.1973
    [Google Scholar]
  124. Khan M.S.S. Dashti M.G. Optimizing extraction techniques for maximized bioactive compound yield in medicinal herbs. Aust. Herb. Insight 2023 6 1 1 10 10.25163/ahi.6121072
    [Google Scholar]
  125. Usman I. Rasul A. Butt M.S. Nisa M. Khalid N. Traditional and innovative approaches for the extraction of bioactive compounds. Int. J. Food Prop. 2022 25 1 1215 1233 10.1080/10942912.2022.2074030
    [Google Scholar]
  126. Chew Y.L. Khor M.A. Lim Y.Y. Choices of chromatographic methods as stability indicating assays for pharmaceutical products: A review. Heliyon 2021 7 3 e06553 10.1016/j.heliyon.2021.e06553 33855234
    [Google Scholar]
  127. Mohammed Abubakar B. Mohd Salleh F. Shamsir Omar M.S. Wagiran A. Review: DNA barcoding and chromatography fingerprints for the authentication of botanicals in herbal medicinal products. Evid. Based Complement. Alternat. Med. 2017 2017 1 1352948 10.1155/2017/1352948 28536641
    [Google Scholar]
  128. WHO guidelines on good manufacturing practices (GMP) for herbal medicines. Geneva World Health Organization 2007
    [Google Scholar]
  129. Subramaniam, P.; Wareing, P., Eds.; The stability and shelf life of food. 2nd ed Cambridge Woodhead Publishing 2016
    [Google Scholar]
  130. Mostafidi M. Sanjabi M.R. Shirkhan F. Zahedi M.T. A review of recent trends in the development of the microbial safety of fruits and vegetables. Trends Food Sci. Technol. 2020 103 321 332 10.1016/j.tifs.2020.07.009
    [Google Scholar]
  131. Applications of microencapsulated essential oils. E.P. Patent EP19911052B1 2005
  132. Formulations containing microencapsulated essential oils. E.P. Patent EP1845786B1 2005
  133. Makruk Arri Incapsulated essential oils. R.U. Patent RU2347608C2 2003
  134. Markus A Strongin P. Linder C. Applications of microencapsulated essential oils. U.S. Patent US9717240B2 2015
  135. Markus A. Strongin P. Linder C. Applications of microencapsulated essential oils. U.S. Patent US9210926B2 2014
  136. Markus A. Strongin P. Linder C. Formulations containing microencapsulated essential oils. U.S. Patent US9101143B2 2014
  137. Kritzman A. Markus A. Strongin P. Linder C. Applications of microencapsulated essential oils. C.A. Patent CA2641906C 2007
  138. Singh PK. Prabhune AA. Ogale SB. Curcumin-sophorolipid complex. W.O. Patent WO2016013026A1 2015
  139. Hoag GE Topical analgesic pain relief formulations, manufacture and methods of use thereof. U.S. Patent US20180311184A1 2018
  140. Blatt Y. Kimmelman E. Cohen D. Rotman A. Microencapsulated and controlled-release herbal formulations. U.S. Patent US6340478B1 2000
  141. Sustained-release microgranules containing ginkgo extract and the process for manufacturing these. C.N. Patent CN1874764B 2004
  142. Blatt Y. Kimmelman E. Cohen D. Rotman A. Microencapsulated and controlled-release formulations of isoflavone from enriched fractions of soy and other plants. U.S. Patent US6890561B1 2000
  143. Doney JA Carotenoids of enhanced bioavailability. U.S. Patent US20080181960A1 2007
  144. Doney JA Sirtuin-activating compounds of enhanced bioavailability. W.O. Patent WO2008086400A2 2008
  145. Daidzein solid dispersion micro-pill capsule and preparation method thereof. C.N. Patent CN102552208A 2011
  146. Kurtz E. Enhanced bioactive formulations of resveratrol. K.R. Patent KR20110096132A 2009
  147. A curcumin loaded stabilized polymeric nanoparticles with increased solubility and photo-stability. I.N. Patent IN201811032671 2023
  148. Ramalakshmi K Srinivas P Raghavan B A process for the preparation of photo-stable encapsulated curcumin colorant from turmeric (curcuma longa). I.N. Patent IN806/DEL/2008 2023
  149. A process for the encapsulation of garcinia extract. I.N. Patent IN225361 2008
  150. Borse Babasaheb Bhaskararao Sulochanamma Guruguntla Ramalakshmi Kulathooran Raghavan Bashyam A process for preparation of stabilized basil oil. I.N. Patent IN0807DEL2005 2005
  151. Manzoor M. Singh J. Gani A. Noor N. Bhat Z.F. Shabbir U. Bekhit A.E.D.A. Valorization of natural colors as health-promoting bioactive compounds: Phytochemical profile, extraction techniques, and pharmacological perspectives. Food Chem. 2021 362 130141 10.1016/j.foodchem.2021.130141 34091168
    [Google Scholar]
  152. Rahman H.S. Othman H.H. Hammadi N.I. Yeap S.K. Amin K.M. Abdul Samad N. Alitheen N.B. Hafiza N.S. Chartrand M.S. Doolaanea A.A. Novel drug delivery systems for loading of natural plant extracts and their biomedical applications. Int. J. Nanomedicine 2020 15 2439 2483 10.2147/IJN.S227805 32346289
    [Google Scholar]
  153. Najmi A. Javed S.A. Al Bratty M. Alhazmi H.A. Ahmad M. Modern approaches in the discovery and development of plant-based natural products and their analogues as potential therapeutic agents. Molecules 2022 27 2 349 10.3390/molecules27020349 35056662
    [Google Scholar]
  154. Govindaraghavan S. Sucher N.J. Quality assessment of medicinal herbs and their extracts: Criteria and prerequisites for consistent safety and efficacy of herbal medicines. Epilepsy Behav. 2015 52 Pt B 363 371 10.1016/j.yebeh.2015.03.004 25899015
    [Google Scholar]
  155. Das P. Das M.K. Physical, chemical, and microbiological stability of nanocosmetics. Nanocosmeceuticals. Cambridge, MA Academic Press 2022 139 166 10.1016/B978‑0‑323‑91077‑4.00005‑3
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010377710250731193153
Loading
/content/journals/cpb/10.2174/0113892010377710250731193153
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: phytochemicals ; bioavailability ; instability ; safety ; activity ; Phyto-ingredients ; efficacy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test