Skip to content
2000
image of Advances in Polymer-based Nanoparticles for Biomedical and Industrial Applications

Abstract

Polymeric nanoparticles (PNPs) are considered to be a revolutionary method for drug delivery and offer significantly more advantages than conventional drug delivery systems. This review synthesizes recent research on biodegradable polymers in drug delivery, emphasizing their properties, modifications, toxicity, and applications in drug absorption. It consolidates key insights from 193 research papers to offer a comprehensive overview of the field, addressing existing research gaps and highlighting various applications. Polymers can be classified based on their structure, source, and biodegradability, which are crucial for assessing their environmental impact and suitability for various applications. Polymers are categorized into two main groups based on biodegradability: biodegradable and non-biodegrad-able. The primary aim of this review is to elucidate the diverse applications of natural and synthetic biodegradable polymeric nanoparticles, which include cancer treatment, diabetes management, pulmonary drug delivery, and the treatment of ocular infections, all of which are thoroughly explored in this review. Additionally, the role of polymer-based hydrogels is explored as a promising solution in drug delivery. These hydrogels address issues such as poor stability and enhance treatment efficacy by ensuring the sustained release of drugs.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010386798250708153155
2025-07-11
2025-09-14
Loading full text...

Full text loading...

References

  1. Dong W. Ye J. Wang W. Yang Y. Wang H. Sun T. Gao L. Liu Y. Self-assembled lecithin/chitosan nanoparticles based on phospholipid complex: A feasible strategy to improve entrapment efficiency and transdermal delivery of poorly lipophilic drug. Int. J. Nanomedicine 2020 15 5629 5643 10.2147/IJN.S261162 32801706
    [Google Scholar]
  2. Jin L. Nie L. Deng Y. Khana G.J. He N. The application of polymeric nanoparticles as drug delivery carriers to cells in neurodegenerative diseases. Cell Prolif. 2025 e13804 10.1111/cpr.13804 39931916
    [Google Scholar]
  3. de Paula G.A. de Paula M.C. Dutra J.A.P. Carvalho S.G. Di Filippo L.D. Villanova J.C.O. Chorilli M. Targeted polymeric nanoparticles as a strategy for the treatment of glioblastoma: A review. Curr. Drug Deliv. 2025 22 4 413 430 10.2174/0115672018257713231107060630 38013438
    [Google Scholar]
  4. Orozco M.F.S. Montero I.A. Gonzalez O.L. Santana M.A.C. Domínguez J.H.L. Olivares-Acosta I. Solis C.E.M. Marín N.P. Antimicrobial polymeric nanoparticles in endodontics: A systematic review. J. Nanotechnol. 2025 2025 1 3896901 10.1155/jnt/3896901
    [Google Scholar]
  5. Raval H. Bhattacharya S. Exploring the potentials of hyaluronic acid-coated polymeric nanoparticles in enhanced cancer treatment by precision drug delivery, tackling drug resistance, and reshaping the tumour micro environment. Curr. Med. Chem. 2025 10.2174/0109298673302510240328050115 38571347
    [Google Scholar]
  6. Chen Z. Wang X. Zhao N. Chen H. Guo G. Advancements in pH-responsive nanocarriers: Enhancing drug delivery for tumor therapy. Expert Opin. Drug Deliv. 2023 20 11 1623 1642 10.1080/17425247.2023.2292678 38059646
    [Google Scholar]
  7. Yang S. Liu Y. Wu T. Zhang X. Xu S. Pan Q. Zhu L. Zheng P. Qiao D. Zhu W. Synthesis and application of a novel multifunctional nanoprodrug for synergistic chemotherapy and phototherapy with hydrogen sulfide gas. J. Med. Chem. 2025 68 3 3197 3211 10.1021/acs.jmedchem.4c02426 39786725
    [Google Scholar]
  8. Zhang G.M. Nie S.C. Xu Z.Y. Fan Y.R. Jiao M.N. Miao H.J. Liang S.X. Yan Y.B. Advanced polymeric nanoagents for oral cancer theranostics: A mini-review. Front Chem. 2022 10 927595 10.3389/fchem.2022.927595 35774863
    [Google Scholar]
  9. Pulingam T. Foroozandeh P. Chuah J.A. Sudesh K. Exploring various techniques for the chemical and biological synthesis of polymeric nanoparticles. Nanomaterials 2022 12 3 576 10.3390/nano12030576 35159921
    [Google Scholar]
  10. Wang H. Li B. Sun Y. Ma Q. Feng Y. Jia Y. Wang W. Su M. Liu X. Shu B. Zheng J. Sang S. Yan Y. Wu Y. Zhang Y. Gao Q. Li P. Wang J. Ma F. Li X. Yan D. Wang D. Zou X. Liao Y. NIR‐II AIE Luminogen‐based erythrocyte‐like nanoparticles with granuloma‐targeting and self‐oxygenation characteristics for combined phototherapy of tuberculosis. Adv. Mater. 2024 36 38 2406143 10.1002/adma.202406143 39072892
    [Google Scholar]
  11. Jiang X. Lee M.J. Luo T. Tillman L. Lin W. Co-delivery of three synergistic chemotherapeutics in a core-shell nanoscale coordination polymer for the treatment of pancreatic cancer. Biomaterials 2023 301 122235 10.1016/j.biomaterials.2023.122235 37441902
    [Google Scholar]
  12. Dong Q. Jiang Z. Platinum–iron nanoparticles for oxygen-enhanced sonodynamic tumor cell suppression. Inorganics 2024 12 12 331 10.3390/inorganics12120331
    [Google Scholar]
  13. Tang J. Li J. Li G. Zhang H. Wang L. Li D. Ding J. Spermidine-mediated poly(lactic-co-glycolic acid) nanoparticles containing fluorofenidone for the treatment of idiopathic pulmonary fibrosis. Int. J. Nanomedicine 2017 12 6687 6704 10.2147/IJN.S140569 28932114
    [Google Scholar]
  14. Wang Y. Xu Y. Song J. Liu X. Liu S. Yang N. Wang L. Liu Y. Zhao Y. Zhou W. Zhang Y. Tumor cell-targeting and tumor microenvironment–responsive nanoplatforms for the multimodal imaging-guided photodynamic/photothermal/chemodynamic treatment of cervical cancer. Int. J. Nanomedicine 2024 19 5837 5858 10.2147/IJN.S466042 38887692
    [Google Scholar]
  15. Zhou J. Zhou L. Chen Z. Sun J. Guo X. Wang H. Zhang X. Liu Z. Liu J. Zhang K. Zhang X. Remineralization and bacterial inhibition of early enamel caries surfaces by carboxymethyl chitosan lysozyme nanogels loaded with antibacterial drugs. J. Dent. 2025 152 105489 10.1016/j.jdent.2024.105489 39617165
    [Google Scholar]
  16. Hao W. Li K. Ge X. Yang H. Xu C. Liu S. Yu H. Li P. Xing R. The effect of N-acetylation on the anti-inflammatory activity of chitooligosaccharides and its potential for relieving endotoxemia. Int. J. Mol. Sci. 2022 23 15 8205 10.3390/ijms23158205 35897781
    [Google Scholar]
  17. Varela-Fernández R. García-Otero X. Díaz-Tomé V. Regueiro U. López-López M. González-Barcia M. Isabel Lema M. Otero-Espinar F.J. Mucoadhesive PLGA nanospheres and nanocapsules for lactoferrin controlled ocular delivery. Pharmaceutics 2022 14 4 799 10.3390/pharmaceutics14040799 35456633
    [Google Scholar]
  18. Santos-Moriano P. Kidibule P. Míguez N. Fernández-Arrojo L. Ballesteros A.O. Fernández-Lobato M. Plou F.J. Tailored enzymatic synthesis of chitooligosaccharides with different deacetylation degrees and their anti-inflammatory activity. Catalysts 2019 9 5 405 10.3390/catal9050405
    [Google Scholar]
  19. Madej Marcel Kurowska Natalia Strzalka-Mrozik Barbara Polymeric nanoparticles—Tools in a drug delivery system in selected cancer therapies. Appl Sci 2022 12 19 9479 10.3390/app12199479
    [Google Scholar]
  20. Lima A.L. Gratieri T. Cunha-Filho M. Gelfuso G.M. Polymeric nanocapsules: A review on design and production methods for pharmaceutical purpose. Methods 2022 199 54 66 10.1016/j.ymeth.2021.07.009 34333117
    [Google Scholar]
  21. Ayub A. Wettig S. An overview of nanotechnologies for drug delivery to the brain. Pharmaceutics 2022 14 2 224 10.3390/pharmaceutics14020224 35213957
    [Google Scholar]
  22. Lombardo D. Kiselev M.A. Caccamo M.T. Smart nanoparticles for drug delivery application: Development of versatile nanocarrier platforms in biotechnology and nanomedicine. J. Nanomater. 2019 2019 1 26 10.1155/2019/3702518
    [Google Scholar]
  23. Muhamad N. Plengsuriyakarn T. Na-Bangchang K. Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: A systematic review. Int. J. Nanomedicine 2018 13 3921 3935 10.2147/IJN.S165210 30013345
    [Google Scholar]
  24. Parashar AK Saraogi GK Tiwari BK Tyagi LK Sethi VA Shrivastava V Polymeric Nanoparticles-Based Strategies for Cancer Immunotherapy. Nanotechnology Based Strategies for Cancer Immunotherapy. Springer Singapore 2025 355 378 10.1007/978‑981‑97‑7022‑9_13
    [Google Scholar]
  25. Geszke-Moritz M. Moritz M. Biodegradable polymeric nanoparticle-based drug delivery systems: Comprehensive overview, perspectives and challenges. Polymers 2024 16 17 2536 10.3390/polym16172536 39274168
    [Google Scholar]
  26. Satchanska G. Davidova S. Petrov P.D. Natural and synthetic polymers for biomedical and environmental applications. Polymers 2024 16 8 1159 10.3390/polym16081159 38675078
    [Google Scholar]
  27. Beach M.A. Nayanathara U. Gao Y. Zhang C. Xiong Y. Wang Y. Such G.K. Polymeric nanoparticles for drug delivery. Chem. Rev. 2024 124 9 5505 5616 10.1021/acs.chemrev.3c00705 38626459
    [Google Scholar]
  28. Meng T. Kulkarni V. Simmers R. Brar V. Xu Q. Therapeutic implications of nanomedicine for ocular drug delivery. Drug Discov. Today 2019 24 8 1524 1538 10.1016/j.drudis.2019.05.006 31102733
    [Google Scholar]
  29. Rai R. Alwani S. Badea I. Polymeric nanoparticles in gene therapy: New avenues of design and optimization for delivery applications. Polymers 2019 11 4 745 10.3390/polym11040745 31027272
    [Google Scholar]
  30. Cruz-Nova P. Ancira-Cortez A. Ferro-Flores G. Ocampo-García B. Gibbens-Bandala B. Controlled-release nanosystems with a dual function of targeted therapy and radiotherapy in colorectal cancer. Pharmaceutics 2022 14 5 1095 10.3390/pharmaceutics14051095 35631681
    [Google Scholar]
  31. Niza E. Ocaña A. Castro-Osma J.A. Bravo I. Alonso-Moreno C. Polyester polymeric nanoparticles as platforms in the development of novel nanomedicines for cancer treatment. Cancers 2021 13 14 3387 10.3390/cancers13143387 34298604
    [Google Scholar]
  32. Honmane S.M. Kumbhar P.S. Charde M.S. Chaudhari P.B. Manjappa A.S. Applications of biodegradable polymers in surgery. Handbook of Biodegradable Polymers. Jenny Stanford Publishing 2025 187 209
    [Google Scholar]
  33. Bhilare N.V. Marulkar V.S. Chatap V.K. Kulkarni A.S. Dombe S.A. Shirote P.J. Biodegradability and Biodegradable Polymers: An Overview. Handbook of Biodegradable Polymers Rapra Technology 2025 1 38
    [Google Scholar]
  34. Ali D. Naheed S. Khitab U. Arshad Z. Noreen A. Chohan A.A. Biodegradable polymers: Advancing chemistry for a sustainable future. Res. Med. Sci. Rev. 2025 3 1 761 778
    [Google Scholar]
  35. Esposito R. Federico S. Amato A. Viel T. Caramiello D. Macina A. Miralto M. Ambrosino L. Chiusano M.L. Cocca M. Manfra L. Libralato G. Zupo V. Costantini M. Isolation and identification of bacterial strains colonizing the surface of biodegradable polymers. Microorganisms 2025 13 3 609 10.3390/microorganisms13030609 40142502
    [Google Scholar]
  36. Gohil U. Chandarana C. Prajapati P. Prajapati B. Polymeric nanoparticles in ophthalmology: A comprehensive review of therapeutic applications. Bionanoscience 2025 15 1 151 10.1007/s12668‑024‑01631‑6
    [Google Scholar]
  37. Huang G. Liu Y. Chen L. Chitosan and its derivatives as vehicles for drug delivery. Drug Deliv. 2017 24 2 108 113 10.1080/10717544.2017.1399305 29124981
    [Google Scholar]
  38. Noshi S.H. Ibrahim M.S. Salama A. Fathy I.A. Elsayyad N.M.E. Chondroitin Sulphate-Chitosan polyelectrolyte complexes for etorocoxib transdermal delivery: In silico, in vitro and in vivo studies. Pharm. Dev. Technol. 2023 28 8 785 798 10.1080/10837450.2023.2251574 37610935
    [Google Scholar]
  39. Safdar R. Omar A.A. Arunagiri A. Regupathi I. Thanabalan M. Potential of Chitosan and its derivatives for controlled drug release applications – A review. J. Drug Deliv. Sci. Technol. 2019 49 642 659 10.1016/j.jddst.2018.10.020
    [Google Scholar]
  40. Bakshi P.S. Selvakumar D. Kadirvelu K. Kumar N.S. Chitosan as an environment friendly biomaterial – A review on recent modifications and applications. Int. J. Biol. Macromol. 2020 150 1072 1083 10.1016/j.ijbiomac.2019.10.113 31739057
    [Google Scholar]
  41. Khan F. Pham D.T.N. Oloketuyi S.F. Manivasagan P. Oh J. Kim Y.M. Chitosan and their derivatives: Antibiofilm drugs against pathogenic bacteria. Colloids Surf. B Biointerfaces 2020 185 110627 10.1016/j.colsurfb.2019.110627 31732391
    [Google Scholar]
  42. Mikušová V. Mikuš P. Advances in chitosan-based nanoparticles for drug delivery. Int. J. Mol. Sci. 2021 22 17 9652 10.3390/ijms22179652 34502560
    [Google Scholar]
  43. Ma Z. Garrido-Maestu A. Jeong K.C. Application, mode of action, and in vivo activity of chitosan and its micro- and nanoparticles as antimicrobial agents: A review. Carbohydr. Polym. 2017 176 257 265 10.1016/j.carbpol.2017.08.082 28927606
    [Google Scholar]
  44. Yadav R. Bhawale R. Kapoor D.N. Singh S.B. Mehra N.K. Experimental design approach for development of carboplatin loaded chitosan modified liposomal formulation with improved topical vaginal therapeutic potential. Pharm. Dev. Technol. 2024 29 1 1 12 10.1080/10837450.2023.2289133 38015058
    [Google Scholar]
  45. Lima B.V. Oliveira M.J. Barbosa M.A. Gonçalves R.M. Castro F. Immunomodulatory potential of chitosan-based materials for cancer therapy: A systematic review of in vitro, in vivo and clinical studies. Biomater. Sci. 2021 9 9 3209 3227 10.1039/D0BM01984D 33949372
    [Google Scholar]
  46. Haider A. Khan S. Iqbal D.N. Shrahili M. Haider S. Mohammad K. Mohammad A. Rizwan M. Kanwal Q. Mustafa G. Advances in chitosan-based drug delivery systems: A comprehensive review for therapeutic applications. Eur. Polym. J. 2024 210 112983 10.1016/j.eurpolymj.2024.112983
    [Google Scholar]
  47. Lee J.Y. Kim T.Y. Kang H. Oh J. Park J.W. Kim S.C. Kim M. Apostolidis E. Kim Y.C. Kwon Y.I. Anti-obesity and anti-adipogenic effects of chitosan oligosaccharide (GO2KA1) in SD Rats and in 3T3-L1 preadipocytes models. Molecules 2021 26 2 331 10.3390/molecules26020331 33440605
    [Google Scholar]
  48. Wang J. He W. Yang D. Cao H. Bai Y. Guo J. Su Z. Beneficial metabolic effects of chitosan and chitosan oligosaccharide on epididymal WAT browning and thermogenesis in obese rats. Molecules 2019 24 24 4455 10.3390/molecules24244455 31817377
    [Google Scholar]
  49. Liu S.H. Chiu C.Y. Shi C.M. Chiang M.T. Functional comparison of high and low molecular weight chitosan on lipid metabolism and signals in high-fat diet-fed rats. Mar. Drugs 2018 16 8 251 10.3390/md16080251 30060615
    [Google Scholar]
  50. Eisa A.A.A. Aboelghar G.E.S. Ammar I.M. Metwally H.G. Arafa S.S. Teratogenic effects induced by chitosan oligosaccharide in Wistar female rat Rattus norvegicus. Environ. Sci. Pollut. Res. Int. 2018 25 10 9371 9379 10.1007/s11356‑018‑1199‑8 29349737
    [Google Scholar]
  51. Chiu C.Y. Yen T.E. Liu S.H. Chiang M.T. Comparative effects and mechanisms of chitosan and its derivatives on hypercholesterolemia in high-fat diet-fed rats. Int. J. Mol. Sci. 2019 21 1 92 10.3390/ijms21010092 31877743
    [Google Scholar]
  52. Gonçalves C. Ferreira N. Lourenço L. Production of low molecular weight chitosan and chitooligosaccharides (COS): A review. Polymers 2021 13 15 2466 10.3390/polym13152466 34372068
    [Google Scholar]
  53. Anil Sukumaran Potential medical applications of chitooligosaccharides. Polymers 2022 14 17 3558 10.3390/polym14173558 36080631
    [Google Scholar]
  54. Hamedi H. Moradi S. Hudson S.M. Tonelli A.E. Chitosan based hydrogels and their applications for drug delivery in wound dressings: A review. Carbohydr. Polym. 2018 199 445 460 10.1016/j.carbpol.2018.06.114 30143150
    [Google Scholar]
  55. Sikorski Dominik Gzyra-Jagieła Karolina Draczyński Zbigniew The kinetics of chitosan degradation in organic acid solutions. Mar Drugs 2021 19 5 236 10.3390/md19050236 33922254
    [Google Scholar]
  56. Rodríguez-Félix D.E. Pérez-Caballero D. del Castillo-Castro T. Castillo-Ortega M.M. Garmendía-Diago Y. Alvarado-Ibarra J. Plascencia-Jatomea M. Ledezma-Pérez A.S. Burruel-Ibarra S.E. Chitosan hydrogels chemically crosslinked with L-glutamic acid and their potential use in drug delivery. Polym. Bull. 2023 80 3 2617 2636 10.1007/s00289‑022‑04152‑y
    [Google Scholar]
  57. Wang C. Zhang Z. Chen B. Gu L. Li Y. Yu S. Design and evaluation of galactosylated chitosan/graphene oxide nanoparticles as a drug delivery system. J. Colloid Interface Sci. 2018 516 332 341 10.1016/j.jcis.2018.01.073 29408121
    [Google Scholar]
  58. Wu D. Zhu L. Li Y. Zhang X. Xu S. Yang G. Delair T. Chitosan-Based colloidal polyelectrolyte complexes for drug delivery: A review. Carbohydr. Polym. 2020 238 116126 10.1016/j.carbpol.2020.116126 32299572
    [Google Scholar]
  59. Iacob A.T. Lupascu F.G. Apotrosoaei M. Vasincu I.M. Tauser R.G. Lupascu D. Giusca S.E. Caruntu I.D. Profire L. Recent biomedical approaches for chitosan-based materials as drug delivery nanocarriers. Pharmaceutics 2021 13 4 587 10.3390/pharmaceutics13040587 33924046
    [Google Scholar]
  60. M Ways T.M. Lau W.M. Khutoryanskiy V.V. Chitosan and its derivatives for application in mucoadhesive drug delivery systems. Polymers 2018 10 3 267 10.3390/polym10030267 30966302
    [Google Scholar]
  61. Del Valle L. Díaz A. Puiggalí J. Hydrogels for biomedical applications: Cellulose, chitosan, and protein/peptide derivatives. Gels 2017 3 3 27 10.3390/gels3030027 30920524
    [Google Scholar]
  62. Xing L. Fan Y.T. Shen L.J. Yang C.X. Liu X.Y. Ma Y.N. Qi L.Y. Cho K.H. Cho C.S. Jiang H.L. pH-sensitive and specific ligand-conjugated chitosan nanogels for efficient drug delivery. Int. J. Biol. Macromol. 2019 141 85 97 10.1016/j.ijbiomac.2019.08.237 31473314
    [Google Scholar]
  63. Aderibigbe B.A. Naki T. Chitosan-based nanocarriers for the nose to brain delivery. Appl. Sci. 2019 9 11 2219 10.3390/app9112219
    [Google Scholar]
  64. Pai R.V. Vavia P.R. Chitosan oligosaccharide enhances binding of nanostructured lipid carriers to ocular mucins: Effect on ocular disposition. Int. J. Pharm. 2020 577 119095 10.1016/j.ijpharm.2020.119095 32004680
    [Google Scholar]
  65. Bonin M. Sreekumar S. Cord-Landwehr S. Moerschbacher B.M. Preparation of defined chitosan oligosaccharides using chitin deacetylases. Int. J. Mol. Sci. 2020 21 21 7835 10.3390/ijms21217835 33105791
    [Google Scholar]
  66. Tao Wenjing Wang Geng Wei Jintao The role of chitosan oligosaccharide in metabolic syndrome: A review of possible mechanisms. Mar Drugs 2021 19 9 501 10.3390/md19090501 34564163
    [Google Scholar]
  67. He N. Wang S. Lv Z. Zhao W. Li S. Low molecular weight chitosan oligosaccharides (LMW-COSs) prevent obesity-related metabolic abnormalities in association with the modification of gut microbiota in high-fat diet (HFD)-fed mice. Food Funct. 2020 11 11 9947 9959 10.1039/D0FO01871F 33108433
    [Google Scholar]
  68. Silva N.S. Araújo N.K. Daniele-Silva A. Oliveira J.W.F. Medeiros J.M. Araújo R.M. Ferreira L.D.S. Rocha H.A.O. Silva-Junior A.A. Silva M.S. Fernandes-Pedrosa M.F. Antimicrobial activity of chitosan oligosaccharides with special attention to antiparasitic potential. Mar. Drugs 2021 19 2 110 10.3390/md19020110 33673266
    [Google Scholar]
  69. El-Sayed S.T. Omar N.I. El-Sayed E.S.M. Shousha W.G. Evaluation Antioxidant and cytotoxic activities of novel chitooligosaccharides prepared from chitosan via enzymatic hydrolysis and ultrafiltration. J. Appl. Pharm. Sci. 2017 7 50 55
    [Google Scholar]
  70. Benchamas G. Huang G. Huang S. Huang H. Preparation and biological activities of chitosan oligosaccharides. Trends Food Sci. Technol. 2021 107 38 44 10.1016/j.tifs.2020.11.027
    [Google Scholar]
  71. Li J. Zhuang S. Antibacterial activity of chitosan and its derivatives and their interaction mechanism with bacteria: Current state and perspectives. Eur. Polym. J. 2020 138 109984 10.1016/j.eurpolymj.2020.109984
    [Google Scholar]
  72. Dimassi S. Tabary N. Chai F. Blanchemain N. Martel B. Sulfonated and sulfated chitosan derivatives for biomedical applications: A review. Carbohydr. Polym. 2018 202 382 396 10.1016/j.carbpol.2018.09.011 30287013
    [Google Scholar]
  73. Wang Wenqian Chitosan derivatives and their application in biomedicine. Int J Mol Sci 2020 21 2 487 10.3390/ijms21020487 31940963
    [Google Scholar]
  74. Shariatinia Z. Carboxymethyl chitosan: Properties and biomedical applications. Int. J. Biol. Macromol. 2018 120 Pt B 1406 1419 10.1016/j.ijbiomac.2018.09.131 30267813
    [Google Scholar]
  75. Wang D. Zhang N. Meng G. He J. Wu F. The effect of form of carboxymethyl-chitosan dressings on biological properties in wound healing. Colloids Surf. B Biointerfaces 2020 194 111191 10.1016/j.colsurfb.2020.111191 32574929
    [Google Scholar]
  76. Khan F. Lee J.W. Manivasagan P. Pham D.T.N. Oh J. Kim Y.M. Synthesis and characterization of chitosan oligosaccharide-capped gold nanoparticles as an effective antibiofilm drug against the Pseudomonas aeruginosa PAO1. Microb. Pathog. 2019 135 103623 10.1016/j.micpath.2019.103623 31325574
    [Google Scholar]
  77. Naveed M. Phil L. Sohail M. Hasnat M. Baig M.M.F.A. Ihsan A.U. Shumzaid M. Kakar M.U. Mehmood Khan T. Akabar M. Hussain M.I. Zhou Q.G. Chitosan oligosaccharide (COS): An overview. Int. J. Biol. Macromol. 2019 129 827 843 10.1016/j.ijbiomac.2019.01.192 30708011
    [Google Scholar]
  78. Ardean C. Davidescu C.M. Nemeş N.S. Negrea A. Ciopec M. Duteanu N. Negrea P. Duda-Seiman D. Musta V. Factors influencing the antibacterial activity of chitosan and chitosan modified by functionalization. Int. J. Mol. Sci. 2021 22 14 7449 10.3390/ijms22147449 34299068
    [Google Scholar]
  79. Thambiliyagodage C. Jayanetti M. Mendis A. Ekanayake G. Liyanaarachchi H. Vigneswaran S. Recent advances in chitosan-based applications—A review. Materials 2023 16 5 2073 10.3390/ma16052073 36903188
    [Google Scholar]
  80. Hemmingsen Lisa Myrseth Škalko-Basnet Nataša Jøraholmen May Wenche The expanded role of chitosan in localized antimicrobial therapy. Mar Drugs 2021 19 12 697 10.3390/md19120697 34940696
    [Google Scholar]
  81. Yee Kuen Cha Jaffri Masarudin Mas Chitosan nanoparticle-based system: A new insight into the promising controlled release system for lung cancer treatment. Molecules 2022 27 2 473 10.3390/molecules27020473 35056788
    [Google Scholar]
  82. Chandrasekaran Murugesan Kim Ki Deok Chun Se Chul Antibacterial activity of chitosan nanoparticles: A review. Processes 2020 8 9 1173 10.3390/pr8091173
    [Google Scholar]
  83. Bakshi P.S. Selvakumar D. Kadirvelu K. Kumar N.S. Comparative study on antimicrobial activity and biocompatibility of N-selective chitosan derivatives. React. Funct. Polym. 2018 124 149 155 10.1016/j.reactfunctpolym.2018.01.016
    [Google Scholar]
  84. Rukavina Z. Šegvić Klarić M. Filipović-Grčić J. Lovrić J. Vanić Ž. Azithromycin-loaded liposomes for enhanced topical treatment of methicillin-resistant Staphyloccocus aureus (MRSA) infections. Int. J. Pharm. 2018 553 1-2 109 119 10.1016/j.ijpharm.2018.10.024 30312749
    [Google Scholar]
  85. Forman H.J. Zhang H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 2021 20 9 689 709 10.1038/s41573‑021‑00233‑1 34194012
    [Google Scholar]
  86. Pisoschi A.M. Pop A. Iordache F. Stanca L. Predoi G. Serban A.I. Oxidative stress mitigation by antioxidants - An overview on their chemistry and influences on health status. Eur. J. Med. Chem. 2021 209 112891 10.1016/j.ejmech.2020.112891 33032084
    [Google Scholar]
  87. Abd El-Hack M.E. El-Saadony M.T. Shafi M.E. Zabermawi N.M. Arif M. Batiha G.E. Khafaga A.F. Abd El-Hakim Y.M. Al-Sagheer A.A. RETRACTED: Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: A review. Int. J. Biol. Macromol. 2020 164 2726 2744 10.1016/j.ijbiomac.2020.08.153 32841671
    [Google Scholar]
  88. Luan F. Wei L. Zhang J. Tan W. Chen Y. Dong F. Li Q. Guo Z. Preparation and characterization of quaternized chitosan derivatives and assessment of their antioxidant activity. Molecules 2018 23 3 516 10.3390/molecules23030516 29495379
    [Google Scholar]
  89. Luan F. Wei L. Zhang J. Mi Y. Dong F. Li Q. Guo Z. Antioxidant activity and antifungal activity of chitosan derivatives with propane sulfonate groups. Polymers 2018 10 4 395 10.3390/polym10040395 30966430
    [Google Scholar]
  90. Demetgül C. Beyazit N. Synthesis, characterization and antioxidant activity of chitosan-chromone derivatives. Carbohydr. Polym. 2018 181 812 817 10.1016/j.carbpol.2017.11.074 29254040
    [Google Scholar]
  91. Sun X. Zhang J. Chen Y. Mi Y. Tan W. Li Q. Dong F. Guo Z. Synthesis, characterization, and the antioxidant activity of carboxymethyl chitosan derivatives containing thiourea salts. Polymers 2019 11 11 1810 10.3390/polym11111810 31689968
    [Google Scholar]
  92. Zhang J. Wang L. Tan W. Li Q. Dong F. Guo Z. Preparation of chitosan-rosmarinic acid derivatives with enhanced antioxidant and anti-inflammatory activities. Carbohydr. Polym. 2022 296 119943 10.1016/j.carbpol.2022.119943 36087991
    [Google Scholar]
  93. He J. Zhang P. Shen L. Niu L. Tan Y. Chen L. Zhao Y. Bai L. Hao X. Li X. Zhang S. Zhu L. Short-chain fatty acids and their association with signalling pathways in inflammation, glucose and lipid metabolism. Int. J. Mol. Sci. 2020 21 17 6356 10.3390/ijms21176356 32887215
    [Google Scholar]
  94. Saha S. Buttari B. Panieri E. Profumo E. Saso L. An overview of Nrf2 signaling pathway and its role in inflammation. Molecules 2020 25 22 5474 10.3390/molecules25225474 33238435
    [Google Scholar]
  95. Zhao H. Wu L. Yan G. Chen Y. Zhou M. Wu Y. Li Y. Inflammation and tumor progression: Signaling pathways and targeted intervention. Signal Transduct. Target. Ther. 2021 6 1 263 10.1038/s41392‑021‑00658‑5 34248142
    [Google Scholar]
  96. Jafari H. Bernaerts K.V. Dodi G. Shavandi A. Chitooligosaccharides for wound healing biomaterials engineering. Mater. Sci. Eng. C 2020 117 111266 10.1016/j.msec.2020.111266 32919632
    [Google Scholar]
  97. Wen C. Zhu M. Wang Y. Man J. Priyanka R. Rutin–chitooligosaccharide complex: Comprehensive evaluation of its anti-inflammatory and analgesic properties in vitro and in vivo. Open Life Sci. 2025 20 1 20221021 10.1515/biol‑2022‑1021 40059877
    [Google Scholar]
  98. Chotphruethipong L. Chanvorachote P. Reudhabibadh R. Singh A. Benjakul S. Roytrakul S. Hutamekalin P. Chitooligosaccharide from Pacific white shrimp shell chitosan ameliorates inflammation and oxidative stress via NF-κB, Erk1/2, Akt, and Nrf2/HO-1 pathways in LPS-induced RAW264. 7 macrophage cells. Foods 2023 12 14 2740 10.3390/foods12142740 37509832
    [Google Scholar]
  99. Weißpflog J. Vehlow D. Müller M. Kohn B. Scheler U. Boye S. Schwarz S. Characterization of chitosan with different degree of deacetylation and equal viscosity in dissolved and solid state – Insights by various complimentary methods. Int. J. Biol. Macromol. 2021 171 242 261 10.1016/j.ijbiomac.2021.01.010 33418043
    [Google Scholar]
  100. Fan L. Khondee N. Weerawatanakorn M. Structure characteristics biological properties and application of chitooligosaccharides. J. Food Bioact. 2025 ••• 29 10.26599/JFB.2025.95029402
    [Google Scholar]
  101. Rajivgandhi G. Saravanan K. Ramachandran G. Li J.L. Yin L. Quero F. Alharbi N.S. Kadaikunnan S. Khaled J.M. Manoharan N. Li W.J. Enhanced anti-cancer activity of chitosan loaded Morinda citrifolia essential oil against A549 human lung cancer cells. Int. J. Biol. Macromol. 2020 164 4010 4021 10.1016/j.ijbiomac.2020.08.169 32853609
    [Google Scholar]
  102. Alizadeh N. Malakzadeh S. Antioxidant, antibacterial and anti-cancer activities of β-and γ-CDs/curcumin loaded in chitosan nanoparticles. Int. J. Biol. Macromol. 2020 147 778 791 10.1016/j.ijbiomac.2020.01.206 31982535
    [Google Scholar]
  103. Aliebrahimi S. Farnoudian-Habibi A. Heidari F. Amani A. Montazeri V. Sabz Andam S. Saber R. Alizadeh A.M. Ostad S.N. Using chitosan-coated magnetite nanoparticles as a drug carrier for opioid delivery against breast cancer. Pharm. Dev. Technol. 2024 29 6 596 603 10.1080/10837450.2024.2372568 38932720
    [Google Scholar]
  104. Zhai X. Li C. Ren D. Wang J. Ma C. Abd El-Aty A.M. The impact of chitooligosaccharides and their derivatives on the in vitro and in vivo antitumor activity: A comprehensive review. Carbohydr. Polym. 2021 266 118132 10.1016/j.carbpol.2021.118132 34044948
    [Google Scholar]
  105. Huang X. Huang X. Jiang X.H. Hu F.Q. Du Y.Z. Zhu Q.F. Jin C.S. In vitro antitumour activity of stearic acid- g -chitosan oligosaccharide polymeric micelles loading podophyllotoxin. J. Microencapsul. 2012 29 1 1 8 10.3109/02652048.2011.621551 22229874
    [Google Scholar]
  106. Siegel R.L. Cancer statistics, 2024. CA Cancer J Clin 2024 74 1 12 49 10.3322/caac.21820
    [Google Scholar]
  107. Pornpitchanarong C. Rojanarata T. Opanasopit P. Ngawhirunpat T. Patrojanasophon P. Catechol-modified chitosan/hyaluronic acid nanoparticles as a new avenue for local delivery of doxorubicin to oral cancer cells. Colloids Surf. B Biointerfaces 2020 196 111279 10.1016/j.colsurfb.2020.111279 32750605
    [Google Scholar]
  108. Iravani S. Varma R.S. Alginate-based micro- and nanosystems for targeted cancer therapy. Mar. Drugs 2022 20 10 598 10.3390/md20100598 36286422
    [Google Scholar]
  109. Maity C. Das N. Alginate-based smart materials and their application: Recent advances and perspectives. Top. Curr. Chem. 2022 380 1 3 10.1007/s41061‑021‑00360‑8 34812965
    [Google Scholar]
  110. Karzar Jeddi M. Mahkam M. Magnetic nano carboxymethyl cellulose-alginate/chitosan hydrogel beads as biodegradable devices for controlled drug delivery. Int. J. Biol. Macromol. 2019 135 829 838 10.1016/j.ijbiomac.2019.05.210 31158422
    [Google Scholar]
  111. Chen X. Zhao X. Wang G. Review on marine carbohydrate-based gold nanoparticles represented by alginate and chitosan for biomedical application. Carbohydr. Polym. 2020 244 116311 10.1016/j.carbpol.2020.116311 32536396
    [Google Scholar]
  112. Lakkakula J.R. Gujarathi P. Pansare P. Tripathi S. A comprehensive review on alginate-based delivery systems for the delivery of chemotherapeutic agent: Doxorubicin. Carbohydr. Polym. 2021 259 117696 10.1016/j.carbpol.2021.117696 33673985
    [Google Scholar]
  113. Hecht H. Srebnik S. Structural characterization of sodium alginate and calcium alginate. Biomacromolecules 2016 17 6 2160 2167 10.1021/acs.biomac.6b00378 27177209
    [Google Scholar]
  114. Shaikh M.A.J. Alharbi K.S. Almalki W.H. Imam S.S. Albratty M. Meraya A.M. Alzarea S.I. Kazmi I. Al-Abbasi F.A. Afzal O. Altamimi A.S.A. Singh Y. Singh S.K. Dua K. Gupta G. Sodium alginate based drug delivery in management of breast cancer. Carbohydr. Polym. 2022 292 119689 10.1016/j.carbpol.2022.119689 35725179
    [Google Scholar]
  115. Dodero A. Alberti S. Gaggero G. Ferretti M. Botter R. Vicini S. Castellano M. An up‐to‐date review on alginate nanoparticles and nanofibers for biomedical and pharmaceutical applications. Adv. Mater. Interfaces 2021 8 22 2100809 10.1002/admi.202100809
    [Google Scholar]
  116. Fernando I.P.S. Lee W. Han E.J. Ahn G. Alginate-based nanomaterials: Fabrication techniques, properties, and applications. Chem. Eng. J. 2020 391 123823 10.1016/j.cej.2019.123823
    [Google Scholar]
  117. Froelich A. Jakubowska E. Wojtyłko M. Jadach B. Gackowski M. Gadziński P. Napierała O. Ravliv Y. Osmałek T. Alginate-based materials loaded with nanoparticles in wound healing. Pharmaceutics 2023 15 4 1142 10.3390/pharmaceutics15041142 37111628
    [Google Scholar]
  118. Zdiri K. Cayla A. Elamri A. Erard A. Salaun F. Alginate-based bio-composites and their potential applications. J. Funct. Biomater. 2022 13 3 117 10.3390/jfb13030117 35997455
    [Google Scholar]
  119. Jain Kewal K. An overview of drug delivery systems. Methods Mol Biol 2020 2059 1 54 10.1007/978‑1‑4939‑9798‑5_1 31435914
    [Google Scholar]
  120. Ramachandran S. Prakash P. Mohtar N. Kumar K.S. Parumasivam T. Review of inhalable nanoparticles for the pulmonary delivery of anti-tuberculosis drugs. Pharm. Dev. Technol. 2023 28 10 978 991 10.1080/10837450.2023.2279691 37937865
    [Google Scholar]
  121. García-Fernández A. Sancenón F. Martínez-Máñez R. Mesoporous silica nanoparticles for pulmonary drug delivery. Adv. Drug Deliv. Rev. 2021 177 113953 10.1016/j.addr.2021.113953 34474094
    [Google Scholar]
  122. Ehrmann S. Schmid O. Darquenne C. Rothen-Rutishauser B. Sznitman J. Yang L. Barosova H. Vecellio L. Mitchell J. Heuze-Vourc’h N. Innovative preclinical models for pulmonary drug delivery research. Expert Opin. Drug Deliv. 2020 17 4 463 478 10.1080/17425247.2020.1730807 32057260
    [Google Scholar]
  123. Li H-Y. Alginate-Based Inhalable Particles for Controlled Pulmonary Drug Delivery. Alginate Biomaterial Springer Singapore 2023 207 240
    [Google Scholar]
  124. Ahmady A.R. Solouk A. Saber-Samandari S. Akbari S. Ghanbari H. Brycki B.E. Capsaicin-loaded alginate nanoparticles embedded polycaprolactone-chitosan nanofibers as a controlled drug delivery nanoplatform for anticancer activity. J. Colloid Interface Sci. 2023 638 616 628 10.1016/j.jcis.2023.01.139 36774875
    [Google Scholar]
  125. Joshy K.S. George A. Jose J. Kalarikkal N. Pothen L.A. Thomas S. Novel dendritic structure of alginate hybrid nanoparticles for effective anti-viral drug delivery. Int. J. Biol. Macromol. 2017 103 1265 1275 10.1016/j.ijbiomac.2017.05.094 28559185
    [Google Scholar]
  126. Jayapal J.J. Dhanaraj S. Exemestane loaded alginate nanoparticles for cancer treatment: Formulation and in vitro evaluation. Int. J. Biol. Macromol. 2017 105 Pt 1 416 421 10.1016/j.ijbiomac.2017.07.064 28711612
    [Google Scholar]
  127. Abdelghany S. Alkhawaldeh M. AlKhatib H.S. Carrageenan-stabilized chitosan alginate nanoparticles loaded with ethionamide for the treatment of tuberculosis. J. Drug Deliv. Sci. Technol. 2017 39 442 449 10.1016/j.jddst.2017.04.034
    [Google Scholar]
  128. Kolawole O.M. Ifeanafor A.R. Ifade W.A. Akinleye M.O. Patrojanasophon P. Silva B.O. Osuntoki A.A. Formulation and evaluation of paclitaxel-loaded boronated chitosan/alginate nanoparticles as a mucoadhesive system for localized cervical cancer drug delivery. J. Drug Deliv. Sci. Technol. 2023 87 104810 10.1016/j.jddst.2023.104810 37601485
    [Google Scholar]
  129. Sahatsapan N. Rojanarata T. Ngawhirunpat T. Opanasopit P. Patrojanasophon P. Doxorubicin-loaded chitosan-alginate nanoparticles with dual mucoadhesive functionalities for intravesical chemotherapy. J. Drug Deliv. Sci. Technol. 2021 63 102481 10.1016/j.jddst.2021.102481
    [Google Scholar]
  130. Kumar S. Bhanjana G. Verma R.K. Dhingra D. Dilbaghi N. Kim K.H. Metformin-loaded alginate nanoparticles as an effective antidiabetic agent for controlled drug release. J. Pharm. Pharmacol. 2017 69 2 143 150 10.1111/jphp.12672 28033667
    [Google Scholar]
  131. Brown T.D. Whitehead K.A. Mitragotri S. Materials for oral delivery of proteins and peptides. Nat. Rev. Mater. 2019 5 2 127 148 10.1038/s41578‑019‑0156‑6
    [Google Scholar]
  132. Zielińska A. Carreiró F. Oliveira A.M. Neves A. Pires B. Venkatesh D.N. Durazzo A. Lucarini M. Eder P. Silva A.M. Santini A. Souto E.B. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules 2020 25 16 3731 10.3390/molecules25163731 32824172
    [Google Scholar]
  133. Thomas D. Latha M.S. Thomas K.K. Synthesis and in vitro evaluation of alginate-cellulose nanocrystal hybrid nanoparticles for the controlled oral delivery of rifampicin. J. Drug Deliv. Sci. Technol. 2018 46 392 399 10.1016/j.jddst.2018.06.004
    [Google Scholar]
  134. Jumelle C. Gholizadeh S. Annabi N. Dana R. Advances and limitations of drug delivery systems formulated as eye drops. J. Control. Release 2020 321 1 22 10.1016/j.jconrel.2020.01.057 32027938
    [Google Scholar]
  135. Kang-Mieler J.J. Rudeen K.M. Liu W. Mieler W.F. Advances in ocular drug delivery systems. Eye 2020 34 8 1371 1379 10.1038/s41433‑020‑0809‑0 32071402
    [Google Scholar]
  136. Kim Hyeong Min Woo Se Joon Ocular drug delivery to the retina: Current innovations and future perspectives. Pharmaceutics 2021 13 1 108 10.3390/pharmaceutics13010108 33467779
    [Google Scholar]
  137. Kianersi S. Solouk A. Saber-Samandari S. Keshel S.H. Pasbakhsh P. Alginate nanoparticles as ocular drug delivery carriers. J. Drug Deliv. Sci. Technol. 2021 66 102889 10.1016/j.jddst.2021.102889
    [Google Scholar]
  138. Chyzy Adam Tomczykowa Monika Plonska-Brzezinska Marta E. Hydrogels as potential nano-, micro- and macro-scale systems for controlled drug delivery. Materials 2020 13 1 188 10.3390/ma13010188 31906527
    [Google Scholar]
  139. Afshar M. Dini G. Vaezifar S. Mehdikhani M. Movahedi B. Preparation and characterization of sodium alginate/polyvinyl alcohol hydrogel containing drug-loaded chitosan nanoparticles as a drug delivery system. J. Drug Deliv. Sci. Technol. 2020 56 101530 10.1016/j.jddst.2020.101530
    [Google Scholar]
  140. Li C. Zhang D. Pan Y. Chen B. Human serum albumin based nanodrug delivery systems: Recent advances and future perspective. Polymers 2023 15 16 3354 10.3390/polym15163354 37631411
    [Google Scholar]
  141. Wang Y. Iqbal H. Ur-Rehman U. Zhai L. Yuan Z. Razzaq A. Lv M. Wei H. Ning X. Xin J. Xiao R. Albumin-based nanodevices for breast cancer diagnosis and therapy. J. Drug Deliv. Sci. Technol. 2023 79 104072 10.1016/j.jddst.2022.104072
    [Google Scholar]
  142. Bhushan B. Khanadeev V. Khlebtsov B. Khlebtsov N. Gopinath P. Impact of albumin based approaches in nanomedicine: Imaging, targeting and drug delivery. Adv. Colloid Interface Sci. 2017 246 13 39 10.1016/j.cis.2017.06.012 28716187
    [Google Scholar]
  143. Yang G. Phua S.Z.F. Lim W.Q. Zhang R. Feng L. Liu G. Wu H. Bindra A.K. Jana D. Liu Z. Zhao Y. A hypoxia-responsive albumin-based nanosystem for deep tumor penetration and excellent therapeutic efficacy. Adv. Mater. 2019 31 25 1901513 10.1002/adma.201901513 31069885
    [Google Scholar]
  144. Bhushan B. Dubey P. Kumar S.U. Sachdev A. Matai I. Gopinath P. Bionanotherapeutics: Niclosamide encapsulated albumin nanoparticles as a novel drug delivery system for cancer therapy. RSC Advances 2015 5 16 12078 12086 10.1039/C4RA15233F
    [Google Scholar]
  145. Prajapati Rama Garcia-Garrido Eduardo Somoza Álvaro Albumin-based nanoparticles for the delivery of doxorubicin in breast cancer. Cancers 2021 13 12 3011 10.3390/cancers13123011 34208533
    [Google Scholar]
  146. Choi S.H. Byeon H.J. Choi J.S. Thao L. Kim I. Lee E.S. Shin B.S. Lee K.C. Youn Y.S. Inhalable self-assembled albumin nanoparticles for treating drug-resistant lung cancer. J. Control. Release 2015 197 199 207 10.1016/j.jconrel.2014.11.008 25445703
    [Google Scholar]
  147. Esim O. Kiymaci M.E. Hascicek C. Ciprofloxacin HCl-loaded albumin nanoparticles for the treatment of recurrent urinary tract infections: Preparation, optimization, and evaluation of antibacterial activity. J. Pharm. Innov. 2023 18 3 1100 1110 10.1007/s12247‑023‑09709‑6
    [Google Scholar]
  148. Salehiabar M. Nosrati H. Javani E. Aliakbarzadeh F. Kheiri Manjili H. Davaran S. Danafar H. Production of biological nanoparticles from bovine serum albumin as controlled release carrier for curcumin delivery. Int. J. Biol. Macromol. 2018 115 83 89 10.1016/j.ijbiomac.2018.04.043 29653171
    [Google Scholar]
  149. Wang D. Liang N. Kawashima Y. Cui F. Yan P. Sun S. Biotin-modified bovine serum albumin nanoparticles as a potential drug delivery system for paclitaxel. J. Mater. Sci. 2019 54 11 8613 8626 10.1007/s10853‑019‑03486‑9
    [Google Scholar]
  150. Siri M. Grasselli M. Alonso S.V. Correlation between assembly structure of a gamma irradiated albumin nanoparticle and its function as a drug delivery system. Colloids Surf. A Physicochem. Eng. Asp. 2020 603 125176 10.1016/j.colsurfa.2020.125176
    [Google Scholar]
  151. Van de Sande L. Cosyns S. Willaert W. Ceelen W. Albumin-based cancer therapeutics for intraperitoneal drug delivery: A review. Drug Deliv. 2020 27 1 40 53 10.1080/10717544.2019.1704945 31858848
    [Google Scholar]
  152. Stein N.C. Mulac D. Fabian J. Herrmann F.C. Langer K. Nanoparticle albumin-bound mTHPC for photodynamic therapy: Preparation and comprehensive characterization of a promising drug delivery system. Int. J. Pharm. 2020 582 119347 10.1016/j.ijpharm.2020.119347 32315751
    [Google Scholar]
  153. Joshi M. Nagarsenkar M. Prabhakar B. Albumin nanocarriers for pulmonary drug delivery: An attractive approach. J. Drug Deliv. Sci. Technol. 2020 56 101529 10.1016/j.jddst.2020.101529
    [Google Scholar]
  154. Fanciullino R. Ciccolini J. Milano G. Challenges, expectations and limits for nanoparticles-based therapeutics in cancer: A focus on nano-albumin-bound drugs. Crit. Rev. Oncol. Hematol. 2013 88 3 504 513 10.1016/j.critrevonc.2013.06.010 23871532
    [Google Scholar]
  155. Parashar P. Kumar P. Gautam A.K. Singh N. Bera H. Sarkar S. Saraf S.A. Saha S. Gelatin-based nanomaterials in drug delivery and biomedical applications. Biopolymer-Based Nanomaterials in Drug Delivery and Biomedical Applications. Academic Press 2021 407 426 10.1016/B978‑0‑12‑820874‑8.00020‑8
    [Google Scholar]
  156. Pal A. Bajpai J. Bajpai A.K. Easy fabrication and characterization of gelatin nanocarriers and in vitro investigation of swelling controlled release dynamics of paclitaxel. Polym. Bull. 2018 75 10 4691 4711 10.1007/s00289‑018‑2291‑4
    [Google Scholar]
  157. Milano F. Masi A. Madaghiele M. Sannino A. Salvatore L. Gallo N. Current trends in gelatin-based drug delivery systems. Pharmaceutics 2023 15 5 1499 10.3390/pharmaceutics15051499 37242741
    [Google Scholar]
  158. Lee Y. Kwon J. Khang G. Lee D. Reduction of inflammatory responses and enhancement of extracellular matrix formation by vanillin-incorporated poly(lactic-co-glycolic acid) scaffolds. Tissue Eng. Part A 2012 18 19-20 1967 1978 10.1089/ten.tea.2012.0001 22551555
    [Google Scholar]
  159. Mahmoudi Saber M. Strategies for surface modification of gelatin-based nanoparticles. Colloids Surf. B Biointerfaces 2019 183 110407 10.1016/j.colsurfb.2019.110407 31400613
    [Google Scholar]
  160. Zhang X. Wei D. Xu Y. Zhu Q. Hyaluronic acid in ocular drug delivery. Carbohydr. Polym. 2021 264 118006 10.1016/j.carbpol.2021.118006 33910737
    [Google Scholar]
  161. Panchal S.S. Vasava D.V. Biodegradable polymeric materials: Synthetic approach. ACS Omega 2020 5 9 4370 4379 10.1021/acsomega.9b04422 32175484
    [Google Scholar]
  162. Wang X. Zhang Z. Hadjichristidis N. Poly(amino ester)s as an emerging synthetic biodegradable polymer platform: Recent developments and future trends. Prog. Polym. Sci. 2023 136 101634 10.1016/j.progpolymsci.2022.101634
    [Google Scholar]
  163. Rahimi M. Charmi G. Matyjaszewski K. Banquy X. Pietrasik J. Recent developments in natural and synthetic polymeric drug delivery systems used for the treatment of osteoarthritis. Acta Biomater. 2021 123 31 50 10.1016/j.actbio.2021.01.003 33444800
    [Google Scholar]
  164. McMahan S. Taylor A. Copeland K.M. Pan Z. Liao J. Hong Y. Current advances in biodegradable synthetic polymer based cardiac patches. J. Biomed. Mater. Res. A 2020 108 4 972 983 10.1002/jbm.a.36874 31895482
    [Google Scholar]
  165. Al-Shalawi F.D. Azmah Hanim M.A. Ariffin M.K.A. Looi Seng Kim C. Brabazon D. Calin R. Al-Osaimi M.O. Biodegradable synthetic polymer in orthopaedic application: A review. Mater. Today Proc. 2023 74 540 546 10.1016/j.matpr.2022.12.254
    [Google Scholar]
  166. Ranakoti L. Gangil B. Bhandari P. Singh T. Sharma S. Singh J. Singh S. Promising role of polylactic acid as an ingenious biomaterial in scaffolds, drug delivery, tissue engineering, and medical implants: Research developments, and prospective applications. Molecules 2023 28 2 485 10.3390/molecules28020485 36677545
    [Google Scholar]
  167. Sushma M.V. Biodegradable Polymers. Biomaterials and Biopolymers Springer International Publishing Cham 2023 33 54
    [Google Scholar]
  168. Alvi M. Yaqoob A. Rehman K. Shoaib S.M. Akash M.S.H. PLGA-based nanoparticles for the treatment of cancer: Current strategies and perspectives. AAPS Open 2022 8 1 12 10.1186/s41120‑022‑00060‑7
    [Google Scholar]
  169. Albarqi H.A. Wong L.H. Schumann C. Sabei F.Y. Korzun T. Li X. Hansen M.N. Dhagat P. Moses A.S. Taratula O. Taratula O. Biocompatible nanoclusters with high heating efficiency for systemically delivered magnetic hyperthermia. ACS Nano 2019 13 6 6383 6395 10.1021/acsnano.8b06542 31082199
    [Google Scholar]
  170. Sun S. Cui Y. Yuan B. Dou M. Wang G. Xu H. Wang J. Yin W. Wu D. Peng C. Drug delivery systems based on polyethylene glycol hydrogels for enhanced bone regeneration. Front. Bioeng. Biotechnol. 2023 11 1117647 10.3389/fbioe.2023.1117647 36793443
    [Google Scholar]
  171. Meghana M.C. Nandhini C. Benny L. George L. Varghese A. A road map on synthetic strategies and applications of biodegradable polymers. Polym. Bull. 2023 80 11 11507 11556 10.1007/s00289‑022‑04565‑9
    [Google Scholar]
  172. Rigobello J.L. Bernardes A. Moura A.A. Zanetti A.C.B. Gabriel C.S. Laus A.M. Care and management actions developed in the Supervised Curricular Internship: Perceptions by involved actors. Rev. Esc. Enferm. USP 2018 52 0 e03369 10.1590/s1980‑220x2017035303369 30403267
    [Google Scholar]
  173. El-Nawawy T.M. Adel Y.A. Teaima M. Nassar N.N. Nemr A.A. Al-Samadi I. El-Nabarawi M.A. Elhabal S.F. Intranasal bilosomes in thermosensitive hydrogel: Advancing desvenlafaxine succinate delivery for depression management. Pharm. Dev. Technol. 2024 29 7 663 674 10.1080/10837450.2024.2376067 38965754
    [Google Scholar]
  174. Bebawy G. Sokar M.S. Abdallah O.Y. Buccal lidocaine mucoadhesive patches for pediatrics' teething pain: Overcoming possible hazards of oral gels. Pharm Dev Technol 2024 29 8 805 813 10.1080/10837450.2024.2393729 39166264
    [Google Scholar]
  175. Naahidi S. Jafari M. Logan M. Wang Y. Yuan Y. Bae H. Dixon B. Chen P. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnol. Adv. 2017 35 5 530 544 10.1016/j.biotechadv.2017.05.006 28558979
    [Google Scholar]
  176. Yazdi M.K. Vatanpour V. Taghizadeh A. Taghizadeh M. Ganjali M.R. Munir M.T. Habibzadeh S. Saeb M.R. Ghaedi M. Hydrogel membranes: A review. Mater. Sci. Eng. C 2020 114 111023 10.1016/j.msec.2020.111023 32994021
    [Google Scholar]
  177. Bastiancich C. Danhier P. Préat V. Danhier F. Anticancer drug-loaded hydrogels as drug delivery systems for the local treatment of glioblastoma. J. Control. Release 2016 243 29 42 10.1016/j.jconrel.2016.09.034 27693428
    [Google Scholar]
  178. Wang M. Chen J. Li W. Zang F. Liu X. Qin S. Paclitaxel-nanoparticles-loaded double network hydrogel for local treatment of breast cancer after surgical resection. Mater. Sci. Eng. C 2020 114 111046 10.1016/j.msec.2020.111046 32993992
    [Google Scholar]
  179. Leng Q. Li Y. Zhou P. Xiong K. Lu Y. Cui Y. Wang B. Wu Z. Zhao L. Fu S. Injectable hydrogel loaded with paclitaxel and epirubicin to prevent postoperative recurrence and metastasis of breast cancer. Mater. Sci. Eng. C 2021 129 112390 10.1016/j.msec.2021.112390 34579909
    [Google Scholar]
  180. Shefa A.A. Sultana T. Park M.K. Lee S.Y. Gwon J.G. Lee B.T. Curcumin incorporation into an oxidized cellulose nanofiber-polyvinyl alcohol hydrogel system promotes wound healing. Mater. Des. 2020 186 108313 10.1016/j.matdes.2019.108313
    [Google Scholar]
  181. Pham L. Dang L.H. Truong M.D. Nguyen T.H. Le L. Le V.T. Nam N.D. Bach L.G. Nguyen V.T. Tran N.Q. A dual synergistic of curcumin and gelatin on thermal-responsive hydrogel based on Chitosan-P123 in wound healing application. Biomed. Pharmacother. 2019 117 109183 10.1016/j.biopha.2019.109183 31261029
    [Google Scholar]
  182. Ahmed Sadek Amin Maha M. Sayed Sinar Ocular drug delivery: A comprehensive review. AAPS PharmSciTech 2023 24 2 66 10.1208/s12249‑023‑02516‑9 36788150
    [Google Scholar]
  183. Almeida Hugo Silva Ana Catarina Nanoparticles in ocular drug delivery systems. Pharmaceutics 2023 10.3390/books978‑3‑0365‑8002‑9
    [Google Scholar]
  184. Onugwu A.L. Nwagwu C.S. Onugwu O.S. Echezona A.C. Agbo C.P. Ihim S.A. Emeh P. Nnamani P.O. Attama A.A. Khutoryanskiy V.V. Nanotechnology based drug delivery systems for the treatment of anterior segment eye diseases. J. Control. Release 2023 354 465 488 10.1016/j.jconrel.2023.01.018 36642250
    [Google Scholar]
  185. Yadav K.S. Rajpurohit R. Sharma S. Glaucoma: Current treatment and impact of advanced drug delivery systems. Life Sci. 2019 221 362 376 10.1016/j.lfs.2019.02.029 30797820
    [Google Scholar]
  186. Lynch C.R. Kondiah P.P.D. Choonara Y.E. du Toit L.C. Ally N. Pillay V. Hydrogel biomaterials for application in ocular drug delivery. Front. Bioeng. Biotechnol. 2020 8 228 10.3389/fbioe.2020.00228 32266248
    [Google Scholar]
  187. Siafaka P.I. Özcan Bülbül E. Miliotou A.N. Karantas I.D. Okur M.E. Üstündağ Okur N. Delivering active molecules to the eye; the concept of electrospinning as potent tool for drug delivery systems. J. Drug Deliv. Sci. Technol. 2023 84 104565 10.1016/j.jddst.2023.104565
    [Google Scholar]
  188. Gravallese E.M. Firestein G.S. Rheumatoid Arthritis — Common origins, divergent mechanisms. N. Engl. J. Med. 2023 388 6 529 542 10.1056/NEJMra2103726 36780677
    [Google Scholar]
  189. Deshmukh R. Rheumatoid arthritis: Pathophysiology, current therapeutic strategies and recent advances in targeted drug delivery system. Mater. Today Commun. 2023 35 105877 10.1016/j.mtcomm.2023.105877
    [Google Scholar]
  190. Gupta A. Lee J. Ghosh T. Nguyen V.Q. Dey A. Yoon B. Um W. Park J.H. Polymeric hydrogels for controlled drug delivery to treat arthritis. Pharmaceutics 2022 14 3 540 10.3390/pharmaceutics14030540 35335915
    [Google Scholar]
  191. Bernhard S. Tibbitt M.W. Supramolecular engineering of hydrogels for drug delivery. Adv. Drug Deliv. Rev. 2021 171 240 256 10.1016/j.addr.2021.02.002 33561451
    [Google Scholar]
  192. Calori I.R. Braga G. de Jesus P.C.C. Bi H. Tedesco A.C. Polymer scaffolds as drug delivery systems. Eur. Polym. J. 2020 129 109621 10.1016/j.eurpolymj.2020.109621
    [Google Scholar]
  193. Elmowafy M. Shalaby K. Elkomy M.H. Alsaidan O.A. Gomaa H.A.M. Abdelgawad M.A. Mostafa E.M. Polymeric nanoparticles for delivery of natural bioactive agents: Recent advances and challenges. Polymers 2023 15 5 1123 10.3390/polym15051123 36904364
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010386798250708153155
Loading
/content/journals/cpb/10.2174/0113892010386798250708153155
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: biodegradability ; biocompatibility ; Polymeric NPs ; biodegradable polymers ; DDSs
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test