Skip to content
2000
image of Emerging Protein Therapeutics as a Strategy for Cervical Cancer
Treatment

Abstract

Cervical cancer continues to be a critical public health concern globally, with increasing mortality rates, particularly in Low- and Middle-Income Countries (LMICs) where healthcare resources remain limited. With more than 300,000 fatalities each year, it is the fourth most frequent cancer in women globally. Long-term infection with carcinogenic Human Papillomavirus (HPV) variants, which cause cancer through viral proteins including E5, E6, and E7, is the leading cause of cervical cancer. These proteins interfere with host cellular functions, which promote the development and spread of cancer. Conventional treatment strategies, including chemotherapeutics and immunotherapies, have achieved varying degrees of success. However, protein-based therapeutics have recently emerged as a promising class of agents in oncology due to their ability to modulate specific molecular targets with high precision and specificity. These biologics interact with cell surface receptors and orchestrate essential signalling cascades, such as the NF-κB, MAPK, and PI3K/AKT pathways. Notably, new classes of protein therapeutics, such as toxin-based agents and Bromodomain and Extra-Terminal (BET) domain inhibitors, have shown effectiveness in disrupting tumor-promoting pathways. In addition to their direct antitumor activities, protein therapeutics also modify the tumor microenvironment, affecting stromal elements and lymphatic architecture, and ultimately promoting apoptosis. This review critically examines the landscape of protein-based therapeutic approaches for cervical cancer, delineating their mechanisms of action and highlighting their role in targeting inflammatory pathways—such as inflammasomes and cytokine networks—that contribute to tumor progression and immune modulation.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010397753250704105423
2025-07-25
2025-08-18
Loading full text...

Full text loading...

References

  1. Bray F. Laversanne M. Sung H. Ferlay J. Siegel R.L. Soerjomataram I. Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  2. Brotherton J.M. Vajdic C.M. Nightingale C. The socioeconomic burden of cervical cancer and its implications for strategies required to achieve the WHO elimination targets. Expert Rev. Pharmacoecon. Outcomes Res. 2025 25 4 487 506 10.1080/14737167.2025.2451732
    [Google Scholar]
  3. Palmer M.R. Saito E. Katanoda K. Sakamoto H. Hocking J.S. Brotherton J.M.L. Ong J.J. The impact of alternate HPV vaccination and cervical screening strategies in Japan: A cost-effectiveness analysis. Lancet Reg Health. West Pac 2024 44 101018 10.1016/j.lanwpc.2024.101018 38404421
    [Google Scholar]
  4. Alexander S.P.H. Kelly E. Mathie A.A. Peters J.A. Veale E.L. Armstrong J.F. Buneman O.P. Faccenda E. Harding S.D. Spedding M. Cidlowski J.A. Fabbro D. Davenport A.P. Striessnig J. Davies J.A. Ahlers-Dannen K.E. Alqinyah M. Arumugam T.V. Bodle C. Dagner J.B. Chakravarti B. Choudhuri S.P. Druey K.M. Fisher R.A. Gerber K.J. Hepler J.R. Hooks S.B. Kantheti H.S. Karaj B. Layeghi-Ghalehsoukhteh S. Lee J.K. Luo Z. Martemyanov K. Mascarenhas L.D. McNabb H. Montañez-Miranda C. Ogujiofor O. Phan H. Roman D.L. Shaw V. Sjogren B. Sobey C. Spicer M.M. Squires K.E. Sutton L. Wendimu M. Wilkie T. Xie K. Zhang Q. Zolghadri Y. The concise guide to PHARMACOLOGY 2023/24: Introduction and other protein targets. Br. J. Pharmacol. 2023 180 S2 S1 S22 10.1111/bph.16176 38123153
    [Google Scholar]
  5. Ebrahimi S.B. Samanta D. Engineering protein-based therapeutics through structural and chemical design. Nat. Commun. 2023 14 1 2411 10.1038/s41467‑023‑38039‑x 37105998
    [Google Scholar]
  6. Law C.S.W. Yeong K.Y. Current trends of benzothiazoles in drug discovery: A patent review (2015–2020). Expert Opin. Ther. Pat. 2022 32 3 299 315 10.1080/13543776.2022.2026327 34986720
    [Google Scholar]
  7. Aria H. Rezaei M. Immunogenic cell death inducer peptides: A new approach for cancer therapy, current status and future perspectives. Biomed. Pharmacother. 2023 161 114503 10.1016/j.biopha.2023.114503 36921539
    [Google Scholar]
  8. Xie X. Yu T. Li X. Zhang N. Foster L.J. Peng C. Huang W. He G. Recent advances in targeting the “undruggable” proteins: From drug discovery to clinical trials. Signal Transduct. Target. Ther. 2023 8 1 335 10.1038/s41392‑023‑01589‑z 37669923
    [Google Scholar]
  9. Mascarenhas-Melo F. Diaz M. Gonçalves M.B.S. Vieira P. Bell V. Viana S. Nunes S. Paiva-Santos A.C. Veiga F. An overview of biosimilars—development, quality, regulatory issues, and management in healthcare. Pharmaceuticals 2024 17 2 235 10.3390/ph17020235 38399450
    [Google Scholar]
  10. Mansouri S. Alharbi Y. Alqahtani A. Current status and prospects for improved targeted delivery approaches for cancer. Pathol. Res. Pract. 2024 253 154993 10.1016/j.prp.2023.154993 38118217
    [Google Scholar]
  11. Yang S.T. Wang P.H. Liu H.H. Chang C.W. Chang W.H. Lee W.L. Cervical cancer: Part II the landscape of treatment for persistent, recurrent and metastatic diseases (I). Taiwan. J. Obstet. Gynecol. 2024 63 5 637 650 10.1016/j.tjog.2024.08.001 39266144
    [Google Scholar]
  12. Gennigens C. Jerusalem G. Lapaille L. De Cuypere M. Streel S. Kridelka F. Ray-Coquard I. Recurrent or primary metastatic cervical cancer: Current and future treatments. ESMO Open 2022 7 5 100579 10.1016/j.esmoop.2022.100579 36108558
    [Google Scholar]
  13. Li Q. Tie Y. Alu A. Ma X. Shi H. Targeted therapy for head and neck cancer: Signaling pathways and clinical studies. Signal Transduct. Target. Ther. 2023 8 1 31 10.1038/s41392‑022‑01297‑0 36646686
    [Google Scholar]
  14. Khamidullina A.I. Abramenko Y.E. Bruter A.V. Tatarskiy V.V. Key proteins of replication stress response and cell cycle control as cancer therapy targets. Int. J. Mol. Sci. 2024 25 2 1263 10.3390/ijms25021263 38279263
    [Google Scholar]
  15. Matthews H.K. Bertoli C. de Bruin R.A.M. Cell cycle control in cancer. Nat. Rev. Mol. Cell Biol. 2022 23 1 74 88 10.1038/s41580‑021‑00404‑3 34508254
    [Google Scholar]
  16. Sebastian J. Rathinasamy K. Microtubules and cell division: Potential pharmacological targets in cancer therapy. Curr. Drug Targets 2023 24 11 889 918 10.2174/1389450124666230731094837 37519203
    [Google Scholar]
  17. Niu F. Yu Y. Li Z. Ren Y. Li Z. Ye Q. Liu P. Ji C. Qian L. Xiong Y. Arginase: An emerging and promising therapeutic target for cancer treatment. Biomed. Pharmacother. 2022 149 112840 10.1016/j.biopha.2022.112840 35316752
    [Google Scholar]
  18. Bhattacharjee R. Das S.S. Biswal S.S. Nath A. Das D. Basu A. Malik S. Kumar L. Kar S. Singh S.K. Upadhye V.J. Iqbal D. Almojam S. Roychoudhury S. Ojha S. Ruokolainen J. Jha N.K. Kesari K.K. Mechanistic role of HPV-associated early proteins in cervical cancer: Molecular pathways and targeted therapeutic strategies. Crit. Rev. Oncol. Hematol. 2022 174 103675 10.1016/j.critrevonc.2022.103675 35381343
    [Google Scholar]
  19. Burmeister C.A. Khan S.F. Schäfer G. Mbatani N. Adams T. Moodley J. Prince S. Cervical cancer therapies: Current challenges and future perspectives. Tumour Virus. Res. 2022 13 200238 10.1016/j.tvr.2022.200238 35460940
    [Google Scholar]
  20. Girych M. Kulig W. Enkavi G. Vattulainen I. How neuromembrane lipids modulate membrane proteins: Insights from G-protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs). Cold Spring Harb. Perspect. Biol. 2023 15 10 a041419 10.1101/cshperspect.a041419 37487628
    [Google Scholar]
  21. Vaishnavi A. Kinsey C.G. McMahon M. Preclinical modeling of pathway-targeted therapy of human lung cancer in the mouse. Cold Spring Harb. Perspect. Med. 2024 14 1 a041385 10.1101/cshperspect.a041385 37788883
    [Google Scholar]
  22. Wei E. Li J. Anand P. French L.E. Wattad A. Clanner-Engelshofen B. Reinholz M. “From molecular to clinic”: The pivotal role of CDC42 in pathophysiology of human papilloma virus related cancers and a correlated sensitivity of afatinib. Front. Immunol. 2023 14 1118458 10.3389/fimmu.2023.1118458 36936942
    [Google Scholar]
  23. Sugimori M. Nishimura M. Sugimori K. Tsuyuki S. Hirotani A. Miwa H. A case of advanced biliary tract cancer with EGFR amplification that responded to Necitumumab and post-treatment resistance changes detected by liquid biopsy. Authorea Preprints 2024 1 6 10.22541/au.171189338.87013934/v1
    [Google Scholar]
  24. Expression of concern: prognostic impact of epidermal growth factor receptor overexpression in patients with cervical cancer: A meta-analysis. PLoS One 2023 18 5 0285579 10.1371/journal.pone.0285579 37141252
    [Google Scholar]
  25. Muthusami S. Sabanayagam R. Periyasamy L. Muruganantham B. Park W.Y. A review on the role of epidermal growth factor signaling in the development, progression and treatment of cervical cancer. Int. J. Biol. Macromol. 2022 194 179 187 10.1016/j.ijbiomac.2021.11.117 34848237
    [Google Scholar]
  26. Massobrio R. Bianco L. Campigotto B. Attianese D. Maisto E. Pascotto M. Ruo Redda M.G. Ferrero A. New frontiers in locally advanced cervical cancer treatment. J. Clin. Med. 2024 13 15 4458 10.3390/jcm13154458 39124724
    [Google Scholar]
  27. Li K. Chen J. Hu Y. Wang Y.Z. Shen Y. Chen G. Peng W. Fang Z. Xia B. Chen X. Song K. Wang Y. Zou D. Wang Y.C. Han Y. Feng X. Yuan J. Guo S. Meng X. Feng C. Chen Y. Yang J. Fan J. Wang J. Ai J. Ma D. Sun C. Neoadjuvant chemotherapy plus camrelizumab for locally advanced cervical cancer (NACI study): A multicentre, single-arm, phase 2 trial. Lancet Oncol. 2024 25 1 76 85 10.1016/S1470‑2045(23)00531‑4 38048802
    [Google Scholar]
  28. Tur Razia I. Kanwal A. Riaz H.F. Malik A. Ahsan M. Saleem Khan M. Raza A. Sabir S. Sajid Z. Fardeen Khan M. Tahir R.A. Arslan Sehgal S. Recent trends in computer-aided drug design for anti-cancer drug discovery. Curr. Top. Med. Chem. 2023 23 30 2844 2862 10.2174/0115680266258467231107102643 38031798
    [Google Scholar]
  29. Cazzato G. Sgarro N. Casatta N. Lupo C. Ingravallo G. Ribatti D. Epigenetics and control of tumor angiogenesis in melanoma: An update with therapeutic implications. Cancers 2024 16 16 2843 10.3390/cancers16162843 39199614
    [Google Scholar]
  30. Tu J. Liang H. Li C. Huang Y. Wang Z. Chen X. Yuan X. The application and research progress of anti-angiogenesis therapy in tumor immunotherapy. Front. Immunol. 2023 14 1198972 10.3389/fimmu.2023.1198972 37334350
    [Google Scholar]
  31. Liu Z.L. Chen H.H. Zheng L.L. Sun L.P. Shi L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct. Target. Ther. 2023 8 1 198 10.1038/s41392‑023‑01460‑1 37169756
    [Google Scholar]
  32. Zhao M. Guan P. Xu S. Lu H. Liu Z. Molecularly imprinted nanomedicine for anti-angiogenic cancer therapy via blocking vascular endothelial growth factor signaling. Nano Lett. 2023 23 18 8674 8682 10.1021/acs.nanolett.3c02514 37721331
    [Google Scholar]
  33. Orozco-García E. Getova V. Calderón J.C. Harmsen M.C. Narvaez-Sanchez R. Angiogenesis is promoted by hypoxic cervical carcinoma-derived extracellular vesicles depending on the endothelial cell environment. Vascul. Pharmacol. 2024 154 107276 10.1016/j.vph.2024.107276 38242295
    [Google Scholar]
  34. Yao N. Ma Q. Yi W. Liu Y. Zhang Q. Gao X. Zhao X. Wang H. Lei K. Sui A. Luo W. Ang-1 promotes tumorigenesis and mediates the anti-cancer effects of Artesunate on Choroidal melanoma via the regulation of Akt/mTOR signaling pathway. Cytokine 2024 184 156771 10.1016/j.cyto.2024.156771 39340959
    [Google Scholar]
  35. Wu Y. Jiang P. Chen Z. Li W. Dong B. Zhang Y. Efficacy and safety of different chemotherapy regimens concurrent with radiotherapy in the treatment of locally advanced cervical cancer. BMC Cancer 2024 24 1 589 10.1186/s12885‑024‑12358‑8 38745137
    [Google Scholar]
  36. Li F. Mei F. Yin S. Du Y. Hu L. Hong W. Li J. Improving the efficacy and safety of concurrent chemoradiotherapy by neoadjuvant chemotherapy: A randomized controlled study of locally advanced cervical cancer with a large tumor. J. Gynecol. Oncol. 2024 35 1 10 10.3802/jgo.2024.35.e10 37857565
    [Google Scholar]
  37. Nikfarjam S. Singh K.K. DNA damage response signaling: A common link between cancer and cardiovascular diseases. Cancer Med. 2023 12 4 4380 4404 10.1002/cam4.5274 36156462
    [Google Scholar]
  38. Fu X. Duan Z. Lu X. Zhu Y. Ren Y. Zhang W. Sun X. Ge L. Yang J. SND1 Promotes radioresistance in cervical cancer cells by targeting the DNA damage response. Cancer Biother. Radiopharm. 2024 39 6 425 434 10.1089/cbr.2021.0371 35271349
    [Google Scholar]
  39. Wen H. Guo Q.H. Zhou X.L. Wu X.H. Li J. Genomic profiling of Chinese cervical cancer patients reveals prevalence of DNA damage repair gene alterations and related hypoxia feature. Front. Oncol. 2022 11 792003 10.3389/fonc.2021.792003 35071000
    [Google Scholar]
  40. Wang X. Xu C. Sun H. DNA damage repair-related genes signature for immune infiltration and outcome in cervical cancer. Front. Genet. 2022 13 733164 10.3389/fgene.2022.733164 35309134
    [Google Scholar]
  41. Ragucci S. Landi N. Di Maro A. Ribosome-inactivating proteins from edible plants: Isolation, characterization and possible biotechnological applications. In: Defense-Related Proteins in Plants. United States Academic Press 2024 333 368 10.1016/B978‑0‑443‑13236‑0.00013‑0
    [Google Scholar]
  42. Zhou Y. Ran M. Shan W. Wang K. Sha O. Tam K. Targeting hexokinase 2 to enhance anticancer efficacy of trichosanthin in HeLa and SCC25 cell models. ADMET DMPK 2024 12 6 821 841 10.5599/admet.2455 39713255
    [Google Scholar]
  43. Zhang Y. Ding X. Zhang Q. Zeng C. Chen H. Lu L. Trichosanthin elicits antitumor activity via MICU3 mediated mitochondria calcium influx. J. Adv. Res. 2024 S2090-1232 24 00493 4 10.1016/j.jare.2024.11.001 39505142
    [Google Scholar]
  44. Tan Y. Xiang J. Huang Z. Wang L. Huang Y. Trichosanthin inhibits cell growth and metastasis by promoting pyroptosis in non-small cell lung cancer. J. Thorac. Dis. 2022 14 4 1193 1202 10.21037/jtd‑22‑282 35572907
    [Google Scholar]
  45. He M.L. Lei J. Cao X.W. Zhao J. Wang F.J. Screening and characterisation of a novel efficient tumour cell-targeting peptide derived from insulin-like growth factor binding proteins. J. Drug Target. 2023 31 5 500 510 10.1080/1061186X.2023.2196378 36974745
    [Google Scholar]
  46. Zhou L. Hou Y. Pan X. Wang X. Jin H. Yang X. Wang K. Ding X. Wang K. Zhu M. Pan Y. Wang W. Lu L. Trichosanthin- derived peptide Tk-PQ attenuates immune rejection in mouse tracheal allotransplant model by suppressing PI3K-Akt and inducing type II immune polarization. Int. Immunopharmacol, 2023 125 Pt A 111081 10.1016/j.intimp.2023.111081 37862724
    [Google Scholar]
  47. Park H.J. Park S.H. Root Extract of Trichosanthes kirilowii suppresses metastatic activity of egfr tki-resistant human lung cancer cells by inhibiting src-mediated EMT. Nutr. Cancer 2023 75 10 1945 1957 10.1080/01635581.2023.2272345 37870977
    [Google Scholar]
  48. Lu J.Q. Wong K.B. Shaw P.C. A sixty-year research and development of trichosanthin, a ribosome-inactivating protein. Toxins 2022 14 3 178 10.3390/toxins14030178 35324675
    [Google Scholar]
  49. Zhang Q. Chen L. Yang H. Fang Y. Wang S. Wang M. Yuan Q. Wu W. Zhang Y. Liu Z. Nan F. Xie X. GPR84 signaling promotes intestinal mucosal inflammation via enhancing NLRP3 inflammasome activation in macrophages. Acta Pharmacol. Sin. 2022 43 8 2042 2054 10.1038/s41401‑021‑00825‑y 34912006
    [Google Scholar]
  50. Alqudah A. Qnais E. Gammoh O. Bseiso Y. Wedyan M. Alqudah M. Aljabali A.A.A. Tambuwala M. Exploring scopoletin’s therapeutic efficacy in DSS-induced ulcerative colitis: Insights into inflammatory pathways, immune modulation, and microbial dynamics. Inflammation 2024 48 2 575 589 10.1007/s10753‑024‑02048‑9 38918333
    [Google Scholar]
  51. Li K. Qiu J. Pan J. Pan J.P. Pyroptosis and its role in cervical cancer. Cancers 2022 14 23 5764 10.3390/cancers14235764 36497244
    [Google Scholar]
  52. Fini M.A. Monks J.A. Li M. Gerasimovskaya E. Paucek P. Wang K. Macrophage xanthine oxidoreductase links LPS induced lung inflammatory injury to NLRP3 inflammasome expression and mitochondrial respiration. bioRxiv 2023 1 5
    [Google Scholar]
  53. Li T. Zhang W. Niu M. Wu Y. Deng X. Zhou J. STING agonist inflames the cervical cancer immune microenvironment and overcomes anti-PD-1 therapy resistance. Front. Immunol. 2024 15 1342647 10.3389/fimmu.2024.1342647 38550593
    [Google Scholar]
  54. Bhat A.A. Thapa R. Afzal O. Agrawal N. Almalki W.H. Kazmi I. Alzarea S.I. Altamimi A.S.A. Prasher P. Singh S.K. Dua K. Gupta G. The pyroptotic role of Caspase-3/GSDME signalling pathway among various cancer: A Review. Int. J. Biol. Macromol. 2023 242 Pt 2 124832 10.1016/j.ijbiomac.2023.124832 37196719
    [Google Scholar]
  55. Huang Y. Liu J. Lin C. Zhu Q. Wu L. Impact of caspase3/GSDME-mediated pyroptosis on tumor immune microenvironment and clinical prognosis across multiple cancers. Cancer Manag. Res. 2024 16 1663 1683 10.2147/CMAR.S492171 39618502
    [Google Scholar]
  56. Jiao C. Zhang H. Li H. Fu X. Lin Y. Cao C. Liu S. Liu Y. Li P. Caspase-3/GSDME mediated pyroptosis: A potential pathway for sepsis. Int. Immunopharmacol 2023 124 Pt B 111022 10.1016/j.intimp.2023.111022 37837715
    [Google Scholar]
  57. Jiang Q. Zhu Z. Mao X. Ubiquitination is a major modulator for the activation of inflammasomes and pyroptosis. Biochim. Biophys. Acta. Gene Regul. Mech. 2023 1866 3 194955 10.1016/j.bbagrm.2023.194955 37331650
    [Google Scholar]
  58. Guo M. Cao W. Chen S. Tian R. Xue B. Wang L. Liu Q. Deng R. Wang X. Wang Z. Zhang Y. Yang D. Zuo C. Li G. Tang S. Zhu H. TRIM21 regulates virus-induced cell pyroptosis through polyubiquitination of ISG12a. J. Immunol. 2022 209 10 1987 1998 10.4049/jimmunol.2200163 36426955
    [Google Scholar]
  59. Shiri Aghbash P. Rasizadeh R. Sadri Nahand J. Bannazadeh Baghi H. The role of immune cells and inflammasomes in Modulating cytokine responses in HPV-Related cervical cancer. Int. Immunopharmacol. 2025 145 113625 10.1016/j.intimp.2024.113625 39637578
    [Google Scholar]
  60. Xie H. Wei L. Ruan G. Zhang H. Shi H. Interleukin-6 as a pan-cancer prognostic inflammatory biomarker: A population-based study and comprehensive bioinformatics analysis. J. Inflamm. Res. 2025 18 573 587 10.2147/JIR.S484962 39831196
    [Google Scholar]
  61. Ray I. Michael A. Meira L.B. Ellis P.E. The role of cytokines in epithelial–mesenchymal transition in gynaecological cancers: A systematic review. Cells 2023 12 3 416 10.3390/cells12030416 36766756
    [Google Scholar]
  62. Jeong S. Cho W.K. Jo Y. Choi S.R. Lee N. Jeon K. Park M.J. Song W. Lee K.Y. Immune-checkpoint proteins, cytokines, and microbiome impact on patients with cervical insufficiency and preterm birth. Front. Immunol. 2023 14 1228647 10.3389/fimmu.2023.1228647 37554329
    [Google Scholar]
  63. Yi M. Li T. Niu M. Zhang H. Wu Y. Wu K. Dai Z. Targeting cytokine and chemokine signaling pathways for cancer therapy. Signal Transduct. Target. Ther. 2024 9 1 176 10.1038/s41392‑024‑01868‑3 39034318
    [Google Scholar]
  64. Gorvel L. Olive D. Tumor associated macrophage in HPV+ tumors: Between immunosuppression and inflammation. Semin. Immunol. 2023 65 101671 10.1016/j.smim.2022.101671 36459926
    [Google Scholar]
  65. Del Prete A. Salvi V. Soriani A. Laffranchi M. Sozio F. Bosisio D. Sozzani S. Dendritic cell subsets in cancer immunity and tumor antigen sensing. Cell. Mol. Immunol. 2023 20 5 432 447 10.1038/s41423‑023‑00990‑6 36949244
    [Google Scholar]
  66. Tishe Z.H. Shawkat S. Popy M.N. Mumu S.B. Ferdous A. Raisa M.J. Hasan M. Sultana T.N. Chaity N.I. Apu M.N.H. Mostaid M.S. Cervical cancer risk in association with TNF-alpha gene polymorphisms in Bangladeshi women. Tumour Biol. 2024 46 1 13 24 10.3233/TUB‑240002 39031417
    [Google Scholar]
  67. Huang R. Liu Z. Sun T. Zhu L. Cervicovaginal microbiome, high-risk HPV infection and cervical cancer: Mechanisms and therapeutic potential. Microbiol. Res. 2024 287 127857 10.1016/j.micres.2024.127857 39121703
    [Google Scholar]
  68. Zheng J. Huang B. Xiao L. Wu M. Effects of BRD4 inhibitor JQ1 on the expression profile of super-enhancer related lncRNAs and mRNAs in cervical cancer HeLa cells. PeerJ 2024 12 17035 10.7717/peerj.17035 38410799
    [Google Scholar]
  69. Zhai F. Wang J. Yang W. Ye M. Jin X. The E3 ligases in cervical cancer and endometrial cancer. Cancers 2022 14 21 5354 10.3390/cancers14215354 36358773
    [Google Scholar]
  70. Valle-Mendiola A. Gutiérrez-Hoya A. Soto-Cruz I. JAK/STAT signaling and cervical cancer: From the cell surface to the nucleus. Genes 2023 14 6 1141 10.3390/genes14061141 37372319
    [Google Scholar]
  71. Yongprayoon V. Wattanakul N. Khomate W. Apithanangsiri N. Kasitipradit T. Nantajit D. Tavassoli M. Targeting BRD4: Potential therapeutic strategy for head and neck squamous cell carcinoma. (Review) Oncol. Rep. 2024 51 6 74 10.3892/or.2024.8733 38606512
    [Google Scholar]
  72. Alghamdi S. Baeissa H.M. Azhar Kamal M. Rafeeq M.M. Al Zahrani A. Maslum A.A. Hakeem I.J. Alazragi R.S. Alam Q. Unveiling the multitargeted potency of Sodium Danshensu against cervical cancer: A multitargeted docking-based, structural fingerprinting and molecular dynamics simulation study. J. Biomol. Struct. Dyn. 2024 42 16 8268 8280 10.1080/07391102.2023.2248260 37599470
    [Google Scholar]
  73. Evande R. Rana A. Biswas-Fiss E.E. Biswas S.B. Protein–DNA interactions regulate human papillomavirus DNA replication, transcription, and oncogenesis. Int. J. Mol. Sci. 2023 24 10 8493 10.3390/ijms24108493 37239839
    [Google Scholar]
  74. García-Quiroz J. Vázquez-Almazán B. García-Becerra R. Díaz L. Avila E. The interaction of human papillomavirus infection and prostaglandin E2 signaling in carcinogenesis: A focus on cervical cancer therapeutics. Cells 2022 11 16 2528 10.3390/cells11162528 36010605
    [Google Scholar]
  75. Wu Y. He X. Immunotherapy for recurrent and metastatic cervical cancer: A review. Clin. Exp. Obstet. Gynecol. 2024 51 7 155 10.31083/j.ceog5107155
    [Google Scholar]
  76. Duenas-Gonzalez A. Combinational therapies for the treatment of advanced cervical cancer. Expert Opin. Pharmacother. 2023 24 1 73 81 10.1080/14656566.2022.2084689 35653267
    [Google Scholar]
  77. Ge Y. Zhang Y. Zhao K.N. Zhu H. Emerging therapeutic strategies of different immunotherapy approaches combined with PD-1/PD-L1 blockade in cervical cancer. Drug Des. Devel. Ther. 2022 16 3055 3070 10.2147/DDDT.S374672 36110399
    [Google Scholar]
  78. Wang Y. Zhao J. Liang H. Liu J. Huang S. Zou G. Huang X. Lan C. Efficacy and safety of sintilimab plus albumin-bound-paclitaxel in recurrent or metastatic cervical cancer: A multicenter, open-label, single-arm, phase II trial. EClinicalMedicine 2023 65 102274 10.1016/j.eclinm.2023.102274 38106561
    [Google Scholar]
  79. Velimirovici M.D. Feier C.V.I. Vonica R.C. Faur A.M. Muntean C. Efficacy and safety of atezolizumab as a pd-l1 inhibitor in the treatment of cervical cancer: A systematic review. Biomedicines 2024 12 6 1291 10.3390/biomedicines12061291 38927498
    [Google Scholar]
  80. Watkins D.E. Craig D.J. Vellani S.D. Hegazi A. Fredrickson K.J. Walter A. Stanbery L. Nemunaitis J. Advances in targeted therapy for the treatment of cervical cancer. J. Clin. Med. 2023 12 18 5992 10.3390/jcm12185992 37762931
    [Google Scholar]
  81. Oaknin A. Moore K. Meyer T. López-Picazo González J. Devriese L.A. Amin A. Lao C.D. Boni V. Sharfman W.H. Park J.C. Tahara M. Topalian S.L. Magallanes M. Molina Alavez A. Khan T.A. Copigneaux C. Lee M. Garnett-Benson C. Wang X. Naumann R.W. Nivolumab with or without ipilimumab in patients with recurrent or metastatic cervical cancer (CheckMate 358): A phase 1–2, open-label, multicohort trial. Lancet Oncol. 2024 25 5 588 602 10.1016/S1470‑2045(24)00088‑3 38608691
    [Google Scholar]
  82. Wu X. Xia L. Zhang K. Tang Y. Zhang G. Wang D. Lou H. Liu N. Zhang H. Chen H. Wang K. Wei S. Wang L. Gao K. Li G. Zhang H. Hu Y. Zhou X. Wang Y. Wang Q. Overall survival with camrelizumab plus famitinib versus camrelizumab alone and investigator’s choice of chemotherapy for recurrent or metastatic cervical cancer. Gynecol. Oncol. 2024 190 S23 S24 10.1016/j.ygyno.2024.07.040
    [Google Scholar]
  83. Salani R. McCormack M. Kim Y.M. Ghamande S. Hall S.L. Lorusso D. Barraclough L. Gilbert L. Guzman Ramirez A. Lu C.H. Sabatier R. Colombo N. Hu Y. Krishnan V. Molinero L. Feng Y. Kim N. Castro M. Lin Y.G. Monk B.J. A non-comparative, randomized, phase II trial of atezolizumab or atezolizumab plus tiragolumab for programmed death-ligand 1-positive recurrent cervical cancer (SKYSCRAPER-04). Int. J. Gynecol. Cancer 2024 34 8 1140 1148 10.1136/ijgc‑2024‑005588 38858106
    [Google Scholar]
  84. Monk B.J. Enomoto T. Kast W.M. McCormack M. Tan D.S.P. Wu X. González-Martín A. Integration of immunotherapy into treatment of cervical cancer: Recent data and ongoing trials. Cancer Treat. Rev. 2022 106 102385 10.1016/j.ctrv.2022.102385 35413489
    [Google Scholar]
  85. Ding H. Zhang J. Zhang F. Xu Y. Yu Y. Liang W. Li Q. Effectiveness of combination therapy with ISA101 vaccine for the treatment of human papillomavirus-induced cervical cancer. Front. Oncol. 2022 12 990877 10.3389/fonc.2022.990877 36300095
    [Google Scholar]
  86. Jian X. Zhang J. Huang Y. Duan J. Linghu H. Li R. Early salvage therapy with anti-PD-1 antibody Camrelizumab in patients with advanced cervical cancer: A retrospective study. Clin. Transl. Oncol. 2024 27 2 693 698 10.1007/s12094‑024‑03610‑5 39033255
    [Google Scholar]
  87. Lorusso D. Xiang Y. Hasegawa K. Scambia G. Leiva M. Ramos-Elias P. Acevedo A. Sukhin V. Cloven N. Pereira de Santana Gomes A.J. Contreras Mejía F. Reiss A. Ayhan A. Lee J.Y. Saevets V. Zagouri F. Gilbert L. Sehouli J. Tharavichitkul E. Lindemann K. Lazzari R. Chang C.L. Lampé R. Zhu H. Oaknin A. Christiaens M. Polterauer S. Usami T. Li K. Yamada K. Toker S. Keefe S.M. Pignata S. Duska L.R. Pembrolizumab or placebo with chemoradiotherapy followed by pembrolizumab or placebo for newly diagnosed, high-risk, locally advanced cervical cancer (ENGOT-cx11/GOG-3047/KEYNOTE-A18): A randomised, double-blind, phase 3 clinical trial. Lancet 2024 403 10434 1341 1350 10.1016/S0140‑6736(24)00317‑9 38521086
    [Google Scholar]
  88. Galicia-Carmona T. Arango-Bravo E.A. Coronel-Martínez J.A. Cetina-Pérez L. Vanoye-Carlo E.G. Villalobos-Valencia R. García-Pacheco J.A. Cortés-Esteban P. Advanced, recurrent, and persistent cervical cancer management: In the era of immunotherapy. Front. Oncol. 2024 14 1392639 10.3389/fonc.2024.1392639 39161386
    [Google Scholar]
  89. Xu Q. 794TiP Disitamab vedotin and zimberelimab combined with stereotactic body radiation therapy for the treatment of recurrent, metastatic cervical cancer: A single-arm, open-label, phase II study. Ann. Oncol. 2024 35 S592 S593 10.1016/j.annonc.2024.08.2154
    [Google Scholar]
  90. Schoenfeld A.J. Lee S.M. Doger de Spéville B. Gettinger S.N. Häfliger S. Sukari A. Papa S. Rodríguez-Moreno J.F. Graf Finckenstein F. Fiaz R. Catlett M. Chen G. Qi R. Masteller E.L. Gontcharova V. He K. Lifileucel, an autologous tumor-infiltrating lymphocyte monotherapy, in patients with advanced non–small cell lung cancer resistant to immune checkpoint inhibitors. Cancer Discov. 2024 14 8 1389 1402 10.1158/2159‑8290.CD‑23‑1334 38563600
    [Google Scholar]
  91. Vergote I. González-Martín A. Fujiwara K. Kalbacher E. Bagaméri A. Ghamande S. Lee J.Y. Banerjee S. Maluf F.C. Lorusso D. Yonemori K. Van Nieuwenhuysen E. Manso L. Woelber L. Westermann A. Covens A. Hasegawa K. Kim B.G. Raimondo M. Bjurberg M. Cruz F.M. Angelergues A. Cibula D. Barraclough L. Oaknin A. Gennigens C. Nicacio L. Teng M.S.L. Whalley E. Soumaoro I. Slomovitz B.M. Tisotumabvedotin as second-or third-line therapy for recurrent cervical cancer. N. Engl. J. Med. 2024 391 1 44 55 10.1056/NEJMoa2313811 38959480
    [Google Scholar]
  92. Ashique S. Hussain A. Fatima N. Altamimi M.A. HPV pathogenesis, various types of vaccines, safety concern, prophylactic and therapeutic applications to control cervical cancer, and future perspective. Virusdisease 2023 34 2 172 190 10.1007/s13337‑023‑00824‑z 37363362
    [Google Scholar]
  93. Chauhan P. Pramodh S. Hussain A. Elsori D. Lakhanpal S. Kumar R. Alsaweed M. Iqbal D. Pandey P. Al Othaim A. Khan F. Understanding the role of miRNAs in cervical cancer pathogenesis and therapeutic responses. Front. Cell Dev. Biol. 2024 12 1397945 10.3389/fcell.2024.1397945 39263322
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010397753250704105423
Loading
/content/journals/cpb/10.2174/0113892010397753250704105423
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: TME ; HPV ; signaling pathway ; apoptosis ; protein therapeutics ; Cervical cancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test