Skip to content
2000
image of Genetic Evidence for Causal Effects of Lipid-lowering Drug Targets on Primary Sjögren's Syndrome Risk: A Mendelian Randomization Study

Abstract

Introduction

Primary Sjögren's Syndrome (pSS) is a chronic autoimmune condition affecting lacrimal and salivary glands. While previous studies suggest potential associations between dyslipidemia and autoimmune diseases, the causal relationship between lipid-lowering medications and pSS remains unclear.

Methods

This study employed drug-targeted Mendelian randomization (MR) analysis to assess the impact of lipid-lowering drugs on pSS risk, focusing on genetic targets including HMGCR, PCSK9, NPC1L1, APOB, CETP, and LDLR. Data were sourced from the Global Lipids Genetics Consortium and UK Biobank. Significant single-nucleotide polymorphisms linked to LDL cholesterol were utilized as instrumental variables. Causal effects were estimated using Inverse Variance Weighted, Weighted Median, MR Egger, Simple Mode, and Weighted Mode methods. Robustness was ensured through heterogeneity and sensitivity analyses.

Results

The inhibition of HMGCR and CETP genes was found to be significantly associated with an increased risk of developing pSS (HMGCR: OR = 3.602, 95% CI [1.051, 12.344], p = 0.041; CETP: OR = 12.251, 95% CI [2.599, 57.743], p = 0.002).

Discussion

HMGCR and CETP may affect pSS risk via non-lipid pathways, suggesting distinct mechanisms among different lipid-lowering drug targets.

Conclusion

This study provides compelling evidence suggesting that lipid-lowering drugs may contribute to the risk of pSS, thus offering new insights for clinical intervention strategies.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010387265250730110805
2025-08-04
2025-10-27
Loading full text...

Full text loading...

References

  1. Mihai A. Caruntu C. Jurcut C. Blajut F.C. Casian M. Opris-Belinski D. Ionescu R. Caruntu A. The spectrum of extraglandular manifestations in primary sjögren’s syndrome. J. Pers. Med. 2023 13 6 961 10.3390/jpm13060961 37373950
    [Google Scholar]
  2. Miyamoto S.T. Valim V. Fisher B.A. Health-related quality of life and costs in Sjögren’s syndrome. Rheumatology (Oxford) 2021 60 6 2588 2601 10.1093/rheumatology/key370 30770918
    [Google Scholar]
  3. Parisis D. Chivasso C. Perret J. Soyfoo M.S. Delporte C. Current state of knowledge on primary Sjögren’s syndrome, an autoimmune exocrinopathy. J. Clin. Med. 2020 9 7 2299 10.3390/jcm9072299 32698400
    [Google Scholar]
  4. Verstappen G.M. Pringle S. Bootsma H. Kroese F.G.M. Epithelial–immune cell interplay in primary Sjögren syndrome salivary gland pathogenesis. Nat. Rev. Rheumatol. 2021 17 6 333 348 10.1038/s41584‑021‑00605‑2 33911236
    [Google Scholar]
  5. Yang L. Liang Y. Pu J. Cai L. Gao R. Han F. Chang K. Pan S. Wu Z. Zhang Y. Wang Y. Song J. Wu H. Tang J. Wang X. Dysregulated serum lipid profile is associated with inflammation and disease activity in primary Sjögren’s syndrome: A retrospective study in China. Immunol. Lett. 2024 267 106865 10.1016/j.imlet.2024.106865 38705483
    [Google Scholar]
  6. Wang Y. Yu H. He J. Role of dyslipidemia in accelerating inflammation, autoimmunity, and atherosclerosis in systemic lupus erythematosus and other autoimmune diseases. Discov. Med. 2020 30 159 49 56 33357362
    [Google Scholar]
  7. Li H. Zhan H. Cheng L. Huang Y. Li X. Yan S. Liu Y. Wang L. Li Y. Plasma lipidomics of primary biliary cholangitis and its comparison with Sjögren’s syndrome. Front. Immunol. 2023 14 1124443 10.3389/fimmu.2023.1124443 37215104
    [Google Scholar]
  8. Michaeli D.T. Michaeli J.C. Albers S. Boch T. Michaeli T. Established and emerging lipid-lowering drugs for primary and secondary cardiovascular prevention. Am. J. Cardiovasc. Drugs 2023 23 5 477 495 10.1007/s40256‑023‑00594‑5 37486464
    [Google Scholar]
  9. Dehnavi S. Sohrabi N. Sadeghi M. Lansberg P. Banach M. Al-Rasadi K. Johnston T.P. Sahebkar A. Statins and autoimmunity: State-of-the-art. Pharmacol. Ther. 2020 214 107614 10.1016/j.pharmthera.2020.107614 32592715
    [Google Scholar]
  10. Hu X. Zhang P. Gao Y. Ding W.W. Cheng X.E. Shi Q.Q. Li S. Zhu Y.Y. Pan H.F. Wang P. Identification of lipid-modifying drug targets for autoimmune diseases: insights from drug target mendelian randomization. Lipids Health Dis. 2024 23 1 193 10.1186/s12944‑024‑02181‑2 38909219
    [Google Scholar]
  11. Chen H. Tang X. Su W. Li S. Yang R. Cheng H. Zhang G. Zhou X. Causal effects of lipid-lowering therapies on aging-related outcomes and risk of cancers: A drug-target Mendelian randomization study. Aging (Albany NY) 2023 15 24 15228 15242 10.18632/aging.205347 38127052
    [Google Scholar]
  12. Qin H. Yang F. Zhao H. Zhao J. Lin S. Shang Y. Zhang C. Hao P. Zhang X. Associations of lipids and lipid-lowering drugs with risk of stroke: A Mendelian randomization study. Front. Neurol. 2023 14 1185986 10.3389/fneur.2023.1185986 37528862
    [Google Scholar]
  13. Liu M. Chen X. Yu C. Chen J. Zhen P. Liu Z. A causal association between lipid-lowering medications and rotator cuff syndrome: A drug-targeted mendelian randomization study. Front. Genet. 2024 15 1383646 10.3389/fgene.2024.1383646 38903760
    [Google Scholar]
  14. Tan Y. Yin J. Wu Z. Xiong W. Integrative multi-omics analysis reveals cellular and molecular insights into primary Sjögren’s syndrome. Heliyon 2024 10 13 e33433 10.1016/j.heliyon.2024.e33433 39027515
    [Google Scholar]
  15. Hayat M. Kerr R. Bentley A.R. Rotimi C.N. Raal F.J. Ramsay M. Genetic associations between serum low LDL-cholesterol levels and variants in LDLR, APOB, PCSK9 and LDLRAP1 in African populations. PLoS One 2020 15 2 e0229098 10.1371/journal.pone.0229098 32084179
    [Google Scholar]
  16. Qiao L. Lv S. Meng K. Yang J. Genetically proxied therapeutic inhibition of lipid-lowering drug targets and risk of rheumatoid arthritis disease: A Mendelian randomization study. Clin. Rheumatol. 2024 43 3 939 947 10.1007/s10067‑023‑06837‑9 38198113
    [Google Scholar]
  17. Aguchem R.N. Okagu I.U. Okorigwe E.M. Uzoechina J.O. Nnemolisa S.C. Ezeorba T.P.C. Role of CETP, PCSK-9, and CYP7-alpha in cholesterol metabolism: Potential targets for natural products in managing hypercholesterolemia. Life Sci. 2024 351 122823 10.1016/j.lfs.2024.122823 38866219
    [Google Scholar]
  18. Anand P.K. Lipids, inflammasomes, metabolism, and disease. Immunol. Rev. 2020 297 1 108 122 10.1111/imr.12891 32562313
    [Google Scholar]
  19. Lu J. Guo Y. Lu Y. Ji W. Lin L. Qian W. Chen W. Wang J. Lv X. Ke M. Kong D. Shen Q. Zhu Y. Liu P. Su J. Wang L. Li Y. Gao P. Shan J. Liu S. Untargeted lipidomics reveals specific lipid abnormalities in Sjögren’s syndrome. Rheumatology (Oxford) 2021 60 3 1252 1259 10.1093/rheumatology/keaa456 32911538
    [Google Scholar]
  20. Yan J. Horng T. Lipid metabolism in regulation of macrophage functions. Trends Cell Biol. 2020 30 12 979 989 10.1016/j.tcb.2020.09.006 33036870
    [Google Scholar]
  21. Kiran S. Rakib A. Kodidela S. Kumar S. Singh U.P. High-fat diet-induced dysregulation of immune cells correlates with macrophage phenotypes and chronic inflammation in adipose tissue. Cells 2022 11 8 1327 10.3390/cells11081327 35456006
    [Google Scholar]
  22. Sisto M. Ribatti D. Lisi S. Molecular mechanisms linking inflammation to autoimmunity in Sjögren’s syndrome: Identification of new targets. Int. J. Mol. Sci. 2022 23 21 13229 10.3390/ijms232113229 36362017
    [Google Scholar]
  23. Williams M.J. Alsehli A.M. Gartner S.N. Clemensson L.E. Liao S. Eriksson A. Isgrove K. Thelander L. Khan Z. Itskov P.M. Moulin T.C. Ambrosi V. Al-Sabri M.H. Lagunas-Rangel F.A. Olszewski P.K. Schiöth H.B. The statin target HMGCR regulates energy metabolism and food intake through central mechanisms. Cells 2022 11 6 970 10.3390/cells11060970 35326421
    [Google Scholar]
  24. Voss L. Guttek K. Reddig A. Reinhold A. Voss M. Simeoni L. Schraven B. Reinhold D. Pitavastatin is a highly potent inhibitor of T-cell proliferation. Pharmaceuticals 2021 14 8 727 10.3390/ph14080727 34451823
    [Google Scholar]
  25. Rizzo C. Grasso G. Destro Castaniti G.M. Ciccia F. Guggino G. Primary Sjogren syndrome: Focus on innate immune cells and inflammation. Vaccines 2020 8 2 272 10.3390/vaccines8020272 32503132
    [Google Scholar]
  26. Nurmohamed N.S. Ditmarsch M. Kastelein J.J.P. Cholesteryl ester transfer protein inhibitors: From high-density lipoprotein cholesterol to low-density lipoprotein cholesterol lowering agents? Cardiovasc. Res. 2022 118 14 2919 2931 10.1093/cvr/cvab350 34849601
    [Google Scholar]
  27. Mehta N. Dangas K. Ditmarsch M. Rensen P.C.N. Dicklin M.R. Kastelein J.J.P. The evolving role of cholesteryl ester transfer protein inhibition beyond cardiovascular disease. Pharmacol. Res. 2023 197 106972 10.1016/j.phrs.2023.106972 37898443
    [Google Scholar]
  28. Dorighello G.G. Assis L.H.P. Rentz T. Morari J. Santana M.F.M. Passarelli M. Ridgway N.D. Vercesi A.E. Oliveira H.C.F. Novel role of CETP in macrophages: Reduction of mitochondrial oxidants production and modulation of cell immune-metabolic profile. Antioxidants 2022 11 9 1734 10.3390/antiox11091734 36139808
    [Google Scholar]
  29. Bonacina F. Pirillo A. Catapano A.L. Norata G.D. HDL in immune-inflammatory responses: Implications beyond cardiovascular diseases. Cells 2021 10 5 1061 10.3390/cells10051061 33947039
    [Google Scholar]
  30. Thorlacius G.E. Björk A. Wahren-Herlenius M. Genetics and epigenetics of primary Sjögren syndrome: Implications for future therapies. Nat. Rev. Rheumatol. 2023 19 5 288 306 10.1038/s41584‑023‑00932‑6 36914790
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010387265250730110805
Loading
/content/journals/cpb/10.2174/0113892010387265250730110805
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test