Skip to content
2000
image of The Role of Pioglitazone as a Ferroptosis Inhibitor in Mitigating 
Radiation-induced Damage in Testicular Tissue of Mice

Abstract

Introduction

Radiation targets cancer but risks causing infertility by damaging sensitive testes, especially spermatogonia. This study investigates IR-induced testicular damage and assesses PGZ's potential protective role as a ferroptosis inhibitor.

Material & Methods

In this study, Seventy-two BALB/c mice were randomly divided into eight groups: a control, PGZ (10, 20, and 30 mg/kg), IR (8 Gy), and IR+ PGZ (in three doses). PGZ was administered for 10 consecutive days, and mice were exposed to IR on the 11th day of the study. 24 h after RT, the mice's testis tissue was subjected to a series of evaluations to assess oxidative stress and antioxidant parameters, with histopathological analyses conducted one week after IR.

Results

Biochemical analyses revealed that exposure to IR significantly increased ferroptosis markers, while concurrently decreasing intracellular antioxidants GSH. Histological examinations confirmed damage to spermatogenic cells, leading to detachment from the basement membrane and reduced sperm counts. Pre-treatment with PGZ at 30 mg/kg effectively reduced the levels of oxidative stress markers and improved antioxidant levels, demonstrating its potential protective effects against ferroptosis.

Discussion

The results suggest PGZ can protect against radiation-induced testicular damage by inhibiting ferroptosis and promoting spermatogenesis recovery.

Conclusion

These results indicate that PGZ may act as a protective agent against radiation-induced testicular damage and support the recovery of spermatogenesis following IR exposure. Further research is warranted to explore the molecular mechanisms of PGZ's protective effects.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010395182250818105131
2025-08-29
2025-11-05
Loading full text...

Full text loading...

References

  1. Jalali-Zefrei F. Mousavi S.M. Delpasand K. Shourmij M. Farzipour S. Role of non-coding RNAs on the Radiotherapy sensitivity and resistance in cancer cells. Curr. Gene Ther. 2025 25 2 113 135 10.2174/0115665232301727240422092311 38676526
    [Google Scholar]
  2. Hosseinimehr S.J. Amiri F.T. Raeispour M. Farzipour S. Radioprotective effect of Febuxostat against testicular damage induced by ionizing radiation in mice. Curr. Radiopharm. 2022 15 2 134 140 10.2174/1874471014666210906154226 34488603
    [Google Scholar]
  3. Shaghaghi Z. Salari A. Jalali F. Alvandi M. Farzipour S. Zarei Polgardani N. Targeting ferroptosis as a new approach for radiation protection and mitigation. Recent Patents Anticancer Drug Discov. 2024 19 1 57 71 10.2174/1574892818666230119153247
    [Google Scholar]
  4. Abedi Cham Heidari Z. Ghanbarikondori P. Mortazavi Mamaghani E. Hheidari A. Saberian E. Mozaffari E. Alizadeh M. Allahyartorkaman M. Characteristics and cytotoxic effects of nano-liposomal paclitaxel on gastric cancer cells. Asian Pac. J. Cancer Prev. 2023 24 9 3291 3296 10.31557/APJCP.2023.24.9.3291 37774084
    [Google Scholar]
  5. Zefrei F.J. Shormij M. Dastranj L. Alvandi M. Shaghaghi Z. Farzipour S. Zarei-Polgardani N. Ferroptosis inducers as promising radiosensitizer agents in cancer radiotherapy. Curr. Radiopharm. 2024 17 1 14 29 10.2174/0118744710262369231110065230 37974441
    [Google Scholar]
  6. Fukunaga H. Yokoya A. Prise K.M. A brief overview of radiation-induced effects on spermatogenesis and oncofertility. Cancers 2022 14 3 805 10.3390/cancers14030805 35159072
    [Google Scholar]
  7. Ajayebi F.S. Hassanzadeh Nemati N. Hatamirad A. Ghazli M. Attaran N. Design and fabrication of alginate hydrogel nanohybrid as a promising cancer treatment. Iran. J. Basic Med. Sci. 2024 27 6 695 705 38645499
    [Google Scholar]
  8. Gong E.J. Shin I.S. Son T.G. Yang K. Heo K. Kim J.S. Low-dose-rate radiation exposure leads to testicular damage with decreases in DNMT1 and HDAC1 in the murine testis. J. Radiat. Res. (Tokyo) 2014 55 1 54 60 10.1093/jrr/rrt090 24027299
    [Google Scholar]
  9. Navari M. Zarei F. Sayedsalehi S. Mahmoudi T. Rostami M. Mahban A. Rezamand G. Asadi A. Dabiri R. Nobakht H. Farahani H. Tabaeian S.P. Zali M.R. The Arg/Arg genotype of leptin receptor gene Gln223Arg polymorphism may be an independent risk factor for nonalcoholic fatty liver disease. Lab. Med. 2024 55 5 590 594 10.1093/labmed/lmae016 38522074
    [Google Scholar]
  10. Jomova K. Raptova R. Alomar S.Y. Alwasel S.H. Nepovimova E. Kuca K. Valko M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch. Toxicol. 2023 97 10 2499 2574 10.1007/s00204‑023‑03562‑9 37597078
    [Google Scholar]
  11. Saberian E. Jenčová J. Jenča A. Jenča A. Petrášová A. Jenča J. akbarzadehkhayavi, A. Combination therapy of curcumin and cisplatin encapsulated in niosome nanoparticles for enhanced oral cancer treatment. Indian J. Clin. Biochem. 2025 40 1 59 66 10.1007/s12291‑024‑01279‑9 39835233
    [Google Scholar]
  12. Duan C. Jiao D. Wang H. Wu Q. Men W. Yan H. Li C. Activation of the PPARγ prevents ferroptosis-induced neuronal loss in response to intracerebral hemorrhage through synergistic actions with the Nrf2. Front. Pharmacol. 2022 13 869300 10.3389/fphar.2022.869300 35517804
    [Google Scholar]
  13. Cramer C.K. Alphonse-Sullivan N. Isom S. Metheny-Barlow L.J. Cummings T.L. Page B.R. Brown D.R. Blackstock A.W. Peiffer A.M. Strowd R.E. Rapp S. Lesser G.J. Shaw E.G. Chan M.D. Safety of pioglitazone during and after radiation therapy in patients with brain tumors: A phase I clinical trial. J. Cancer Res. Clin. Oncol. 2019 145 2 337 344 10.1007/s00432‑018‑2791‑5 30417218
    [Google Scholar]
  14. Al-Muzafar H.M. Alshehri F.S. Amin K.A. The role of pioglitazone in antioxidant, anti-inflammatory, and insulin sensitivity in a high fat-carbohydrate diet-induced rat model of insulin resistance. Braz. J. Med. Biol. Res. 2021 54 8 e10782 10.1590/1414‑431x2020e10782 34037093
    [Google Scholar]
  15. Hasegawa T. Okada K. Okita Y. Pinsky D.J. Antioxidant properties of pioglitazone limit nicotinamide adenine dinucleotide phosphate hydrogen oxidase and augment superoxide dismutase activity in cardiac allotransplantation. J. Heart Lung Transplant. 2011 30 10 1186 1196 10.1016/j.healun.2011.07.006 21962020
    [Google Scholar]
  16. Council N.R. Guide for the Care and Use of Laboratory Animals. 8th ed Washington, DC The National Academies Press 2011
    [Google Scholar]
  17. Sievert W. Trott K.R. Azimzadeh O. Tapio S. Zitzelsberger H. Multhoff G. Late proliferating and inflammatory effects on murine microvascular heart and lung endothelial cells after irradiation. Radiother. Oncol. 2015 117 2 376 381 10.1016/j.radonc.2015.07.029 26233589
    [Google Scholar]
  18. Farzipour S. Amiri F.T. Mihandoust E. Shaki F. Noaparast Z. Ghasemi A. Hosseinimehr S.J. Radioprotective effect of diethylcarbamazine on radiation-induced acute lung injury and oxidative stress in mice. J. Bioenerg. Biomembr. 2020 52 1 39 46 10.1007/s10863‑019‑09820‑9 31853753
    [Google Scholar]
  19. Ebrahimi M. Ahangar N. Zamani E. Shaki F. L-carnitine prevents behavioural alterations in ketamine-induced schizophrenia in mice: Possible involvement of oxidative stress and inflammation pathways. J. Toxicol. 2023 2023 1 12 10.1155/2023/9093231 37363159
    [Google Scholar]
  20. Solaimani F. Habibi E. Ghasemi M. Mahboubi S. Zamani E. Shaki F. The protective effects of trametes versicolor on arsenic-induced male reproductive toxicity through regulation of oxidative stress: a biochemical and histopathological survey. Andrologia 2023 2023 1 1 13 10.1155/2023/7579366
    [Google Scholar]
  21. Talebpour Amiri F. Arzani S. Farzipour S. Hosseinimehr S.J. Radioprotective effects of gliclazide against irradiation-induced cardiotoxicity and lung injury through inhibiting oxidative stress. Med. Oncol. 2022 39 12 199 10.1007/s12032‑022‑01803‑y 36071308
    [Google Scholar]
  22. Mirzaei M. Eshaghi-Gorji R. Maleki E. Malekshah A.K. Amiri F.T. Investigating the comparative effect of conditioned medium from mesenchymal stem cells and fibroblast cells on articular cartilage defects. J. Res. Pharm. 2023 4 27
    [Google Scholar]
  23. Feng S. Tang D. Wang Y. Li X. Bao H. Tang C. Dong X. Li X. Yang Q. Yan Y. Yin Z. Shang T. Zheng K. Huang X. Wei Z. Wang K. Qi S. The mechanism of ferroptosis and its related diseases. Mol. Biomed. 2023 4 1 33 10.1186/s43556‑023‑00142‑2 37840106
    [Google Scholar]
  24. Nashtahosseini Z. Nejatollahi M. Fazilat A. Zarif Fakoor E. Emamvirdizadeh A. Bahadori K. Hadian N.S. Valilo M. The crosstalk between exosomal miRNA and ferroptosis: A narrative review. Biol. Cell 2025 117 1 e2400077 10.1111/boc.202400077 39853758
    [Google Scholar]
  25. Guo L. Qin T.Z. Liu L.Y. Lai P.P. Xue Y.Z. Jing Y.T. Zhang W. Li W. Li J. Ding G.R. The abscopal effects of cranial irradiation induce testicular damage in mice. Front. Physiol. 2021 12 717571 10.3389/fphys.2021.717571 34867437
    [Google Scholar]
  26. Manisaligil Y.A. Gumustekin M. Micili S.C. Ural C. Cavdar Z. Sisman G. Yurt A. The role of small GTPase Rac1 in ionizing radiation-induced testicular damage. Int. J. Radiat. Biol. 2022 98 1 41 49 10.1080/09553002.2021.1988752 34597250
    [Google Scholar]
  27. Lorian K. Kadkhodaee M. Kianian F. Abdi A. Sadeghipour H. Seifi B. Oxidative stress, nitric oxide and inflammation in the pathophysiology of varicocele and the effect of hydrogen sulfide as a potential treatment. Physiol. Pharmacol. 2019 23 4 249 260
    [Google Scholar]
  28. Dutta S. Sengupta P. Slama P. Roychoudhury S. Oxidative stress, testicular inflammatory pathways, and male reproduction. Int. J. Mol. Sci. 2021 22 18 10043 10.3390/ijms221810043 34576205
    [Google Scholar]
  29. Yakovlev V.A. Role of nitric oxide in the radiation-induced bystander effect. Redox Biol. 2015 6 396 400 10.1016/j.redox.2015.08.018 26355395
    [Google Scholar]
  30. Ohta S. Matsuda S. Gunji M. Kamogawa A. The role of nitric oxide in radiation damage. Biol. Pharm. Bull. 2007 30 6 1102 1107 10.1248/bpb.30.1102 17541161
    [Google Scholar]
  31. Shahin S. Singh S.P. Chaturvedi C.M. 2.45 GHz microwave radiation induced oxidative and nitrosative stress mediated testicular apoptosis: Involvement of a p53 dependent bax‐caspase‐3 mediated pathway. Environ. Toxicol. 2018 33 9 931 945 10.1002/tox.22578 29968967
    [Google Scholar]
  32. Ibrahim R.Y.M. Ghoneim M.A.M. Study of some biochemical and molecular changes induced by radiation hormesis in testicular tissues of male rats. Egypt Int. J. Adv. Res. 2014 2 7 397 407
    [Google Scholar]
  33. Gumieniczek A. Hopkała H. Zabek A. Protective effects of a PPARgamma agonist pioglitazone on anti-oxidative system in testis of diabetic rabbits. Pharmazie 2008 63 5 377 378 18557423
    [Google Scholar]
  34. El-Sayed K. Ali D.A. Maher S.A. Ghareeb D. Selim S. Albogami S. Fayad E. Kolieb E. Prophylactic and ameliorative effects of ppar-γ agonist pioglitazone in improving oxidative stress, germ cell apoptosis and inflammation in gentamycin-induced testicular damage in adult male albino rats. Antioxidants 2022 11 2 191 10.3390/antiox11020191 35204074
    [Google Scholar]
  35. Xing B. Xin T. Hunter R.L. Bing G. Pioglitazone inhibition of lipopolysaccharide-induced nitric oxide synthase is associated with altered activity of p38 MAP kinase and PI3K/Akt. J. Neuroinflammation 2008 5 1 4 10.1186/1742‑2094‑5‑4 18205920
    [Google Scholar]
  36. Jenča A. Mills D.K. Ghasemi H. Saberian E. Jenča A. Karimi Forood A.M. Petrášová A. Jenčová J. Jabbari Velisdeh Z. Zare-Zardini H. Ebrahimifar M. Herbal therapies for cancer treatment: A review of phytotherapeutic efficacy. Biologics 2024 18 229 255 39281032
    [Google Scholar]
  37. Malekifard F. Dalirezh N. Soleimanzadeh A. Modulatory effect of pioglitazone on sperm parameters and oxidative stress, apoptotic and inflammatory biomarkers in testes of streptozotocin-induced diabetic rats. Int. J. Med. Lab. 2018 5 1 19 34
    [Google Scholar]
  38. Mahmoud N.M. Kabil S.L. Pioglitazone abrogates testicular damage induced by testicular torsion/detorsion in rats. Iran. J. Basic Med. Sci. 2019 22 8 884 892 31579444
    [Google Scholar]
  39. Theriot C.A. Westby C.M. Morgan J.L.L. Zwart S.R. Zanello S.B. High dietary iron increases oxidative stress and radiosensitivity in the rat retina and vasculature after exposure to fractionated gamma radiation. NPJ Microgravity 2016 2 1 16014 10.1038/npjmgrav.2016.14 28725729
    [Google Scholar]
  40. Yu H.C. Feng S.F. Chao P.L. Lin A.M.Y. Anti-inflammatory effects of pioglitazone on iron-induced oxidative injury in the nigrostriatal dopaminergic system. Neuropathol. Appl. Neurobiol. 2010 36 7 612 622 10.1111/j.1365‑2990.2010.01107.x 20626630
    [Google Scholar]
  41. Georgakopoulos I. Kouloulias V. Ntoumas G.N. Desse D. Koukourakis I. Kougioumtzopoulou A. Kanakis G. Zygogianni A. Radiotherapy and testicular function: A comprehensive review of the radiation-induced effects with an emphasis on spermatogenesis. Biomedicines 2024 12 7 1492 10.3390/biomedicines12071492 39062064
    [Google Scholar]
  42. Mohammadinezhad F. Talebi A. Allahyartorkaman M. Nahavandi R. Vesal M. Akbarzadeh Khiyavi A. Velisdeh Z.J. Saberian E. Mirmoghaddam P. Eslami S. Preparation, characterization and cytotoxic studies of cisplatin-containing nanoliposomes on breast cancer cell lines. Asian Pacific J. Cancer Biol. 2023 8 2 155 159 10.31557/apjcb.2023.8.2.155‑159
    [Google Scholar]
  43. Mohammad Hoseini S. Neshat Gharamaleki M. Safavi E. Study of the effect of pioglitazone on testicular function after scrotal heat induced shock in the rat. Veter Clin. Pathol. Quarter Scientific J. 2015 9 11 22
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010395182250818105131
Loading
/content/journals/cpb/10.2174/0113892010395182250818105131
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test